Polynomials

The next object to know about is polynomials. A polynomial is a syntactic object that also defines a function.

Specifically, let be a field (or more generally it could even be a ring, which is like a field but without necessarily having division, like the integers ). And pick a variable name like . Then (pronounced, “R adjoin x” or “polynomials in x over R” or “polynomials in x with R coefficients”) is the set of syntactic expressions of the form

where each and is any natural number. If we wanted to be very formal about it, we could define to be the set of lists of elements of (the lists of coefficients), and the above is just a suggestive way of writing that list.

An important fact about polynomials over is that they can be interpreted as functions . In other words, there is a function defined by

where is just a variable name without a value assigned to it and maps it to a field element and evaluates the function as the inner product between the list of coefficients and the powers of .

It is important to remember that polynomials are different than the functions that they compute. Polynomials are really just lists of coefficients. Over some fields, there are polynomials and such that , but .

For example, consider in the polynomials and . These map to the same function (meaning for it holds that ), but are distinct polynomials.

Some definitions and notation

If is a polynomial in and , we write for

If is a polynomial, the degree of is the largest for which the coefficient of is non-zero in . For example, the degree of is 10.

We will use the notation and for the set of polynomials of degree less-than and less-than-or-equal respectively.

Polynomials can be added (by adding the coefficients) and multiplied (by carrying out the multiplication formally and collecting like terms to reduce to a list of coefficients). Thus is a ring.

Fundamental theorem of polynomials

An important fact for zk-SNARKs about polynomials is that we can use them to encode arrays of field elements. In other words, there is a way of converting between polynomials of degree and arrays of field elements of length .

This is important for a few reasons

  • It will allow us to translate statements about arrays of field elements into statements about polynomials, which will let us construct zk-SNARKs.

  • It will allow us to perform certain operations on polynomials more efficiently.

So let’s get to defining and proving this connection between arrays of field elements.

The first thing to understand is that we won’t be talking about arrays directly in this section. Instead, we’ll be talking about functions where is a finite subset of . The idea is, if has size , and we put an ordering on , then we can think of a function as the same thing as an immutable array of length , since such a function can be thought of as returning the value of an array at the input position.

With this understanding in hand, we can start describing the “fundamental theorem of polynomials”. If has size , this theorem will define an isomorphism between functions and , the set of polynomials of degree at most .

Now let’s start defining this isomorphism.

One direction of it is very easy to define. It is none other than the evaluation map, restricted to :

We would now like to construct an inverse to this map. What would that mean? It would be a function that takes as input a function (remember, basically an array of length ), and returns a polynomial which agrees with on the set . In other words, we want to construct a polynomial that interpolates between the points for .

Our strategy for constructing this polynomial will be straightforward. For each , we will construct a polynomial that is equal to when evaluated at , and equal to when evaluated anywhere else in the set .

Then, our final polynomial will be . Then, when is evaluated at , only the term will be non-zero (and equal to as desired), all the other terms will disappear.

Constructing the interpolation map requires a lemma.

Lemma. (construction of vanishing polynomials)

Let . Then there is a polynomial of degree such that evaluates to on , and is non-zero off of . is called the vanishing polynomial of .

Proof. Let . Clearly has degree . If , then since is one of the terms in the product defining , so when we evaluate at , is one of the terms. If , then all the terms in the product are non-zero, and thus is non-zero as well.

Now we can define the inverse map. Define

Since each has degree , this polynomial has degree . Now we have, for any ,

Thus is the identity.

So we have successfully devised a way of interpolating a set of points with a polynomial of degree .

What remains to be seen is that these two maps are inverse in the other direction. That is, that for any polynomial , we have

This says that if we interpolate the function that has the values of on , we get back itself. This essentially says that there is only one way to interpolate a set of points with a degree polynomial. So let’s prove it by proving that statement.

Lemma: polynomials that agree on enough points are equal.

Let be a field and suppose have degree at most . Let have size .

Suppose for all , . Then as polynomials.

Proof. Define . Our strategy will be to show that is the zero polynomial. This would then imply that as polynomials. Note that vanishes on all of since and are equal on .

To that end, let . Then we can apply the polynomial division algorithm to divide by and obtain polynomials such that and has degree less than 1. I.e., is a constant in .

Now, so and thus .

Note that is 0 on all elements with since , but .

Thus, if we iterate the above, enumerating the elements of as , we find that

Now, if is not the zero polynomial, then will have degree at least since it would have as a factor the linear terms . But since both have degree at most and , has degree at most as well. Thus, , which means as well.

This gives us the desired conclusion, that as polynomials.

Now we can easily show that interpolating the evaluations of a polynomial yields that polynomial itself. Let . Then is a polynomial of degree at most that agrees with on , a set of size . Thus, by the lemma, they are equal as polynomials. So indeed for all .

So far we have proven that and give an isomorphism of sets (i.e., a bijection) between the sets and .

But we can take this theorem a bit further. The set of functions can be given the structure of a ring, where addition and multiplication happen pointwise. I.e., for we define and . Then we can strengthen our theorem to say

Fundamental theorem of polynomials (final version)

Let and let with . With

defined as above, these two functions define an isomorphism of rings.

That is is, they are mutually inverse and each one respects addition, subtraction and multiplication.

The fundamental theorem of polynomials is very important when it comes to computing operations on polynomials. As we will see in the next section, the theorem will help us to compute the product of degree polynomials in time , whereas the naive algorithm takes time . To put this in perspective, if , is times larger than and the gap only gets bigger as grows.

Schwartz–Zippel lemma

Computer representation

There are three common representations for polynomials used in computer implementations.

  1. Dense coefficient form. A degree polynomial is represented as a vector of length of all the coefficients. Entry of the vector corresponds to the coefficient . This corresponds to the DensePolynomial type in arkworks. Sometimes this is also described as writing the polynomial “in the monomial basis”, because it amounts to writing the polynomial as a linear combination of the monomials .

  2. Sparse coefficient form. If a polynomial does not have very many non-zero coefficients, the above representation is wasteful. In sparse coefficient form, you represent a polynomial as a vector (or potentially a hash-map) of pairs (usize, F) where F is the type of coefficients. The polynomial corresponding to the list [(i_0, b_0), ..., (i_n, b_n)] is

  3. Evaluation form. We fix an index set , with , and represent a polynomial as the vector [f(a_0), ..., f(a_d)]. By the fundamental theorem of polynomials, this is a valid way of representing the polynomials, since the coefficients form can be obtained by using the function.

The evaluation form is very important. The reason is that multiplying two polynomials in the evaluation form takes time . You just multiply the two vectors entry-wise. By contrast, the coefficient forms naively require time to multiply.

Now, there is a trick. For certain sets , we can efficiently translate between the dense coefficients form and the evaluation form. That is, for certain , the functions and can be computed more efficiently than .