Struct poly_commitment::ipa::OpeningProof
source · pub struct OpeningProof<G: AffineRepr> {
pub lr: Vec<(G, G)>,
pub delta: G,
pub z1: G::ScalarField,
pub z2: G::ScalarField,
pub sg: G,
}
Fields§
§lr: Vec<(G, G)>
Vector of rounds of L & R commitments
delta: G
§z1: G::ScalarField
§z2: G::ScalarField
§sg: G
A final folded commitment base
Implementations§
source§impl<G: AffineRepr> OpeningProof<G>
impl<G: AffineRepr> OpeningProof<G>
sourcepub fn prechallenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>(
&self,
sponge: &mut EFqSponge
) -> Vec<ScalarChallenge<G::ScalarField>>
pub fn prechallenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>( &self, sponge: &mut EFqSponge ) -> Vec<ScalarChallenge<G::ScalarField>>
Computes a log-sized vector of scalar challenges for recombining elements inside the IPA.
sourcepub fn challenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>(
&self,
endo_r: &G::ScalarField,
sponge: &mut EFqSponge
) -> Challenges<G::ScalarField>
pub fn challenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>( &self, endo_r: &G::ScalarField, sponge: &mut EFqSponge ) -> Challenges<G::ScalarField>
Same as prechallenges
, but maps scalar challenges using the
provided endomorphism, and computes their inverses.
Trait Implementations§
source§impl<G: Clone + AffineRepr> Clone for OpeningProof<G>where
G::ScalarField: Clone,
impl<G: Clone + AffineRepr> Clone for OpeningProof<G>where G::ScalarField: Clone,
source§fn clone(&self) -> OpeningProof<G>
fn clone(&self) -> OpeningProof<G>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<G: Default + AffineRepr> Default for OpeningProof<G>where
G::ScalarField: Default,
impl<G: Default + AffineRepr> Default for OpeningProof<G>where G::ScalarField: Default,
source§fn default() -> OpeningProof<G>
fn default() -> OpeningProof<G>
Returns the “default value” for a type. Read more
source§impl<'de, G> Deserialize<'de> for OpeningProof<G>where
G: CanonicalDeserialize + CanonicalSerialize + AffineRepr,
impl<'de, G> Deserialize<'de> for OpeningProof<G>where G: CanonicalDeserialize + CanonicalSerialize + AffineRepr,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where __D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<G, CamlF, CamlG> From<CamlOpeningProof<CamlG, CamlF>> for OpeningProof<G>where
G: AffineRepr,
CamlG: Into<G>,
CamlF: Into<G::ScalarField>,
impl<G, CamlF, CamlG> From<CamlOpeningProof<CamlG, CamlF>> for OpeningProof<G>where G: AffineRepr, CamlG: Into<G>, CamlF: Into<G::ScalarField>,
source§fn from(caml: CamlOpeningProof<CamlG, CamlF>) -> Self
fn from(caml: CamlOpeningProof<CamlG, CamlF>) -> Self
Converts to this type from the input type.
source§impl<G, CamlF, CamlG> From<OpeningProof<G>> for CamlOpeningProof<CamlG, CamlF>where
G: AffineRepr,
CamlG: From<G>,
CamlF: From<G::ScalarField>,
impl<G, CamlF, CamlG> From<OpeningProof<G>> for CamlOpeningProof<CamlG, CamlF>where G: AffineRepr, CamlG: From<G>, CamlF: From<G::ScalarField>,
source§fn from(opening_proof: OpeningProof<G>) -> Self
fn from(opening_proof: OpeningProof<G>) -> Self
Converts to this type from the input type.
source§impl<BaseField: PrimeField, G: AffineRepr<BaseField = BaseField> + CommitmentCurve + EndoCurve> OpenProof<G> for OpeningProof<G>
impl<BaseField: PrimeField, G: AffineRepr<BaseField = BaseField> + CommitmentCurve + EndoCurve> OpenProof<G> for OpeningProof<G>
type SRS = SRS<G>
source§fn open<EFqSponge, RNG, D: EvaluationDomain<<G as AffineRepr>::ScalarField>>(
srs: &Self::SRS,
group_map: &<G as CommitmentCurve>::Map,
plnms: &'_ [(DensePolynomialOrEvaluations<'_, G::ScalarField, D>, PolyComm<G::ScalarField>)],
elm: &[<G as AffineRepr>::ScalarField],
polyscale: <G as AffineRepr>::ScalarField,
evalscale: <G as AffineRepr>::ScalarField,
sponge: EFqSponge,
rng: &mut RNG
) -> Selfwhere
EFqSponge: Clone + FqSponge<<G as AffineRepr>::BaseField, G, <G as AffineRepr>::ScalarField>,
RNG: RngCore + CryptoRng,
fn open<EFqSponge, RNG, D: EvaluationDomain<<G as AffineRepr>::ScalarField>>( srs: &Self::SRS, group_map: &<G as CommitmentCurve>::Map, plnms: &'_ [(DensePolynomialOrEvaluations<'_, G::ScalarField, D>, PolyComm<G::ScalarField>)], elm: &[<G as AffineRepr>::ScalarField], polyscale: <G as AffineRepr>::ScalarField, evalscale: <G as AffineRepr>::ScalarField, sponge: EFqSponge, rng: &mut RNG ) -> Selfwhere EFqSponge: Clone + FqSponge<<G as AffineRepr>::BaseField, G, <G as AffineRepr>::ScalarField>, RNG: RngCore + CryptoRng,
Create an opening proof for a batch of polynomials. The parameters are
the following: Read more
source§impl<G: PartialEq + AffineRepr> PartialEq<OpeningProof<G>> for OpeningProof<G>where
G::ScalarField: PartialEq,
impl<G: PartialEq + AffineRepr> PartialEq<OpeningProof<G>> for OpeningProof<G>where G::ScalarField: PartialEq,
source§fn eq(&self, other: &OpeningProof<G>) -> bool
fn eq(&self, other: &OpeningProof<G>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.source§impl<G> Serialize for OpeningProof<G>where
G: CanonicalDeserialize + CanonicalSerialize + AffineRepr,
impl<G> Serialize for OpeningProof<G>where G: CanonicalDeserialize + CanonicalSerialize + AffineRepr,
impl<G: AffineRepr> StructuralPartialEq for OpeningProof<G>
Auto Trait Implementations§
impl<G> RefUnwindSafe for OpeningProof<G>where G: RefUnwindSafe, <G as AffineRepr>::ScalarField: RefUnwindSafe,
impl<G> Send for OpeningProof<G>
impl<G> Sync for OpeningProof<G>
impl<G> Unpin for OpeningProof<G>where G: Unpin, <G as AffineRepr>::ScalarField: Unpin,
impl<G> UnwindSafe for OpeningProof<G>where G: UnwindSafe, <G as AffineRepr>::ScalarField: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more