1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
//! This module contains the implementation of the polynomial commitment scheme
//! called the Inner Product Argument (IPA) as described in [Efficient
//! Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log
//! Setting](https://eprint.iacr.org/2016/263)
use crate::{
commitment::{
b_poly, b_poly_coefficients, combine_commitments, shift_scalar, BatchEvaluationProof,
CommitmentCurve, *,
},
error::CommitmentError,
hash_map_cache::HashMapCache,
BlindedCommitment, PolyComm, PolynomialsToCombine, SRS as SRSTrait,
};
use ark_ec::{AffineRepr, CurveGroup, VariableBaseMSM};
use ark_ff::{BigInteger, FftField, Field, One, PrimeField, UniformRand, Zero};
use ark_poly::{
univariate::DensePolynomial, DenseUVPolynomial, EvaluationDomain, Evaluations,
Radix2EvaluationDomain as D,
};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use blake2::{Blake2b512, Digest};
use groupmap::GroupMap;
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::{
field_helpers::{inner_prod, pows},
math, ExtendedDensePolynomial,
};
use rand::{CryptoRng, RngCore};
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use serde_with::serde_as;
use std::{cmp::min, iter::Iterator, ops::AddAssign};
/// A formal sum of the form
/// `s_0 * p_0 + ... s_n * p_n`
/// where each `s_i` is a scalar and each `p_i` is a polynomial.
/// The parameter `P` is expected to be the coefficients of the polynomial
/// `p_i`, even though we could treat it as the evaluations.
///
/// This hypothesis is important if `to_dense_polynomial` is called.
#[derive(Default)]
struct ScaledChunkedPolynomial<F, P>(Vec<(F, P)>);
/// Represent a polynomial either with its coefficients or its evaluations
pub enum DensePolynomialOrEvaluations<'a, F: FftField, D: EvaluationDomain<F>> {
/// Polynomial represented by its coefficients
DensePolynomial(&'a DensePolynomial<F>),
/// Polynomial represented by its evaluations over a domain D
Evaluations(&'a Evaluations<F, D>, D),
}
impl<F, P> ScaledChunkedPolynomial<F, P> {
fn add_poly(&mut self, scale: F, p: P) {
self.0.push((scale, p))
}
}
impl<'a, F: Field> ScaledChunkedPolynomial<F, &'a [F]> {
/// Compute the resulting scaled polynomial.
/// Example:
/// Given the two polynomials `1 + 2X` and `3 + 4X`, and the scaling
/// factors `2` and `3`, the result is the polynomial `11 + 16X`.
/// ```text
/// 2 * [1, 2] + 3 * [3, 4] = [2, 4] + [9, 12] = [11, 16]
/// ```
fn to_dense_polynomial(&self) -> DensePolynomial<F> {
// Note: using a reference to avoid reallocation of the result.
let mut res = DensePolynomial::<F>::zero();
let scaled: Vec<_> = self
.0
.par_iter()
.map(|(scale, segment)| {
let scale = *scale;
// We simply scale each coefficients.
// It is simply because DensePolynomial doesn't have a method
// `scale`.
let v = segment.par_iter().map(|x| scale * *x).collect();
DensePolynomial::from_coefficients_vec(v)
})
.collect();
for p in scaled {
res += &p;
}
res
}
}
/// Combine the polynomials using a scalar (`polyscale`), creating a single
/// unified polynomial to open. This function also accepts polynomials in
/// evaluations form. In this case it applies an IFFT, and, if necessarry,
/// applies chunking to it (ie. split it in multiple polynomials of
/// degree less than the SRS size).
/// Parameters:
/// - plnms: vector of polynomials, either in evaluations or coefficients form.
/// The order of the output follows the order of this structure.
/// - polyscale: scalar to combine the polynomials, which will be scaled based
/// on the number of polynomials to combine.
///
/// Example:
/// Given the three polynomials `p1(X)`, and `p3(X)` in coefficients
/// forms, p2(X) in evaluation form,
/// and the scaling factor `s`, the result will be the polynomial:
///
/// ```text
/// p1(X) + s * i_fft(chunks(p2))(X) + s^2 p3(X)
/// ```
///
/// Additional complexity is added to handle chunks.
// TODO: move into utils? It is useful for multiple PCS
pub fn combine_polys<G: CommitmentCurve, D: EvaluationDomain<G::ScalarField>>(
plnms: PolynomialsToCombine<G, D>,
polyscale: G::ScalarField,
srs_length: usize,
) -> (DensePolynomial<G::ScalarField>, G::ScalarField) {
// Initialising the output for the combined coefficients forms
let mut plnm_coefficients =
ScaledChunkedPolynomial::<G::ScalarField, &[G::ScalarField]>::default();
// Initialising the output for the combined evaluations forms
let mut plnm_evals_part = {
// For now just check that all the evaluation polynomials are the same
// degree so that we can do just a single FFT.
// If/when we change this, we can add more complicated code to handle
// different degrees.
let degree = plnms
.iter()
.fold(None, |acc, (p, _)| match p {
DensePolynomialOrEvaluations::DensePolynomial(_) => acc,
DensePolynomialOrEvaluations::Evaluations(_, d) => {
if let Some(n) = acc {
assert_eq!(n, d.size());
}
Some(d.size())
}
})
.unwrap_or(0);
vec![G::ScalarField::zero(); degree]
};
let mut omega = G::ScalarField::zero();
let mut scale = G::ScalarField::one();
// Iterating over polynomials in the batch.
// Note that `omegas` are given as `PolyComm<G::ScalarField>`. They are
// evaluations.
// We do modify two different structures depending on the form of the
// polynomial we are currently processing: `plnm` and `plnm_evals_part`.
// We do need to treat both forms separately.
for (p_i, omegas) in plnms {
match p_i {
// Here we scale the polynomial in evaluations forms
// Note that based on the check above, sub_domain.size() always give
// the same value
DensePolynomialOrEvaluations::Evaluations(evals_i, sub_domain) => {
let stride = evals_i.evals.len() / sub_domain.size();
let evals = &evals_i.evals;
plnm_evals_part
.par_iter_mut()
.enumerate()
.for_each(|(i, x)| {
*x += scale * evals[i * stride];
});
for chunk in omegas.into_iter() {
omega += &(*chunk * scale);
scale *= &polyscale;
}
}
// Here we scale the polynomial in coefficient forms
DensePolynomialOrEvaluations::DensePolynomial(p_i) => {
let mut offset = 0;
// iterating over chunks of the polynomial
for chunk in omegas.into_iter() {
let segment = &p_i.coeffs[std::cmp::min(offset, p_i.coeffs.len())
..std::cmp::min(offset + srs_length, p_i.coeffs.len())];
plnm_coefficients.add_poly(scale, segment);
omega += &(*chunk * scale);
scale *= &polyscale;
offset += srs_length;
}
}
}
}
// Now, we will combine both evaluations and coefficients forms
// plnm will be our final combined polynomial. We first treat the
// polynomials in coefficients forms, which is simply scaling the
// coefficients and add them.
let mut plnm = plnm_coefficients.to_dense_polynomial();
if !plnm_evals_part.is_empty() {
// n is the number of evaluations, which is a multiple of the
// domain size.
// We treat now each chunk.
let n = plnm_evals_part.len();
let max_poly_size = srs_length;
// equiv to divceil, but unstable in rust < 1.73.
let num_chunks = n / max_poly_size + if n % max_poly_size == 0 { 0 } else { 1 };
// Interpolation on the whole domain, i.e. it can be d2, d4, etc.
plnm += &Evaluations::from_vec_and_domain(plnm_evals_part, D::new(n).unwrap())
.interpolate()
.to_chunked_polynomial(num_chunks, max_poly_size)
.linearize(polyscale);
}
(plnm, omega)
}
#[serde_as]
#[derive(Debug, Clone, Default, Serialize, Deserialize)]
#[serde(bound = "G: CanonicalDeserialize + CanonicalSerialize")]
pub struct SRS<G> {
/// The vector of group elements for committing to polynomials in
/// coefficient form.
#[serde_as(as = "Vec<o1_utils::serialization::SerdeAs>")]
pub g: Vec<G>,
/// A group element used for blinding commitments
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub h: G,
// TODO: the following field should be separated, as they are optimization
// values
/// Commitments to Lagrange bases, per domain size
#[serde(skip)]
pub lagrange_bases: HashMapCache<usize, Vec<PolyComm<G>>>,
}
impl<G> PartialEq for SRS<G>
where
G: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.g == other.g && self.h == other.h
}
}
pub fn endos<G: CommitmentCurve>() -> (G::BaseField, G::ScalarField)
where
G::BaseField: PrimeField,
{
let endo_q: G::BaseField = mina_poseidon::sponge::endo_coefficient();
let endo_r = {
let potential_endo_r: G::ScalarField = mina_poseidon::sponge::endo_coefficient();
let t = G::generator();
let (x, y) = t.to_coordinates().unwrap();
let phi_t = G::of_coordinates(x * endo_q, y);
if t.mul(potential_endo_r) == phi_t.into_group() {
potential_endo_r
} else {
potential_endo_r * potential_endo_r
}
};
(endo_q, endo_r)
}
fn point_of_random_bytes<G: CommitmentCurve>(map: &G::Map, random_bytes: &[u8]) -> G
where
G::BaseField: Field,
{
// packing in bit-representation
const N: usize = 31;
let extension_degree = G::BaseField::extension_degree() as usize;
let mut base_fields = Vec::with_capacity(N * extension_degree);
for base_count in 0..extension_degree {
let mut bits = [false; 8 * N];
let offset = base_count * N;
for i in 0..N {
for j in 0..8 {
bits[8 * i + j] = (random_bytes[offset + i] >> j) & 1 == 1;
}
}
let n =
<<G::BaseField as Field>::BasePrimeField as PrimeField>::BigInt::from_bits_be(&bits);
let t = <<G::BaseField as Field>::BasePrimeField as PrimeField>::from_bigint(n)
.expect("packing code has a bug");
base_fields.push(t)
}
let t = G::BaseField::from_base_prime_field_elems(&base_fields).unwrap();
let (x, y) = map.to_group(t);
G::of_coordinates(x, y).mul_by_cofactor()
}
/// Additional methods for the SRS structure
impl<G: CommitmentCurve> SRS<G> {
/// This function verifies a batch of polynomial commitment opening proofs.
/// Return `true` if the verification is successful, `false` otherwise.
pub fn verify<EFqSponge, RNG>(
&self,
group_map: &G::Map,
batch: &mut [BatchEvaluationProof<G, EFqSponge, OpeningProof<G>>],
rng: &mut RNG,
) -> bool
where
EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>,
RNG: RngCore + CryptoRng,
G::BaseField: PrimeField,
{
// Verifier checks for all i,
// c_i Q_i + delta_i = z1_i (G_i + b_i U_i) + z2_i H
//
// if we sample evalscale at random, it suffices to check
//
// 0 == sum_i evalscale^i (c_i Q_i + delta_i - ( z1_i (G_i + b_i U_i) + z2_i H ))
//
// and because each G_i is a multiexp on the same array self.g, we
// can batch the multiexp across proofs.
//
// So for each proof in the batch, we add onto our big multiexp the following terms
// evalscale^i c_i Q_i
// evalscale^i delta_i
// - (evalscale^i z1_i) G_i
// - (evalscale^i z2_i) H
// - (evalscale^i z1_i b_i) U_i
// We also check that the sg component of the proof is equal to the polynomial commitment
// to the "s" array
let nonzero_length = self.g.len();
let max_rounds = math::ceil_log2(nonzero_length);
let padded_length = 1 << max_rounds;
let (_, endo_r) = endos::<G>();
// TODO: This will need adjusting
let padding = padded_length - nonzero_length;
let mut points = vec![self.h];
points.extend(self.g.clone());
points.extend(vec![G::zero(); padding]);
let mut scalars = vec![G::ScalarField::zero(); padded_length + 1];
assert_eq!(scalars.len(), points.len());
// sample randomiser to scale the proofs with
let rand_base = G::ScalarField::rand(rng);
let sg_rand_base = G::ScalarField::rand(rng);
let mut rand_base_i = G::ScalarField::one();
let mut sg_rand_base_i = G::ScalarField::one();
for BatchEvaluationProof {
sponge,
evaluation_points,
polyscale,
evalscale,
evaluations,
opening,
combined_inner_product,
} in batch.iter_mut()
{
sponge.absorb_fr(&[shift_scalar::<G>(*combined_inner_product)]);
let t = sponge.challenge_fq();
let u: G = {
let (x, y) = group_map.to_group(t);
G::of_coordinates(x, y)
};
let Challenges { chal, chal_inv } = opening.challenges::<EFqSponge>(&endo_r, sponge);
sponge.absorb_g(&[opening.delta]);
let c = ScalarChallenge(sponge.challenge()).to_field(&endo_r);
// < s, sum_i evalscale^i pows(evaluation_point[i]) >
// ==
// sum_i evalscale^i < s, pows(evaluation_point[i]) >
let b0 = {
let mut scale = G::ScalarField::one();
let mut res = G::ScalarField::zero();
for &e in evaluation_points.iter() {
let term = b_poly(&chal, e);
res += &(scale * term);
scale *= *evalscale;
}
res
};
let s = b_poly_coefficients(&chal);
let neg_rand_base_i = -rand_base_i;
// TERM
// - rand_base_i z1 G
//
// we also add -sg_rand_base_i * G to check correctness of sg.
points.push(opening.sg);
scalars.push(neg_rand_base_i * opening.z1 - sg_rand_base_i);
// Here we add
// sg_rand_base_i * ( < s, self.g > )
// =
// < sg_rand_base_i s, self.g >
//
// to check correctness of the sg component.
{
let terms: Vec<_> = s.par_iter().map(|s| sg_rand_base_i * s).collect();
for (i, term) in terms.iter().enumerate() {
scalars[i + 1] += term;
}
}
// TERM
// - rand_base_i * z2 * H
scalars[0] -= &(rand_base_i * opening.z2);
// TERM
// -rand_base_i * (z1 * b0 * U)
scalars.push(neg_rand_base_i * (opening.z1 * b0));
points.push(u);
// TERM
// rand_base_i c_i Q_i
// = rand_base_i c_i
// (sum_j (chal_invs[j] L_j + chals[j] R_j) + P_prime)
// where P_prime = combined commitment + combined_inner_product * U
let rand_base_i_c_i = c * rand_base_i;
for ((l, r), (u_inv, u)) in opening.lr.iter().zip(chal_inv.iter().zip(chal.iter())) {
points.push(*l);
scalars.push(rand_base_i_c_i * u_inv);
points.push(*r);
scalars.push(rand_base_i_c_i * u);
}
// TERM
// sum_j evalscale^j (sum_i polyscale^i f_i) (elm_j)
// == sum_j sum_i evalscale^j polyscale^i f_i(elm_j)
// == sum_i polyscale^i sum_j evalscale^j f_i(elm_j)
combine_commitments(
evaluations,
&mut scalars,
&mut points,
*polyscale,
rand_base_i_c_i,
);
scalars.push(rand_base_i_c_i * *combined_inner_product);
points.push(u);
scalars.push(rand_base_i);
points.push(opening.delta);
rand_base_i *= &rand_base;
sg_rand_base_i *= &sg_rand_base;
}
// verify the equation
let scalars: Vec<_> = scalars.iter().map(|x| x.into_bigint()).collect();
G::Group::msm_bigint(&points, &scalars) == G::Group::zero()
}
/// This function creates a trusted-setup SRS instance for circuits with
/// number of rows up to `depth`.
///
/// # Safety
///
/// This function is unsafe because it creates a trusted setup and the toxic
/// waste is passed as a parameter.
pub unsafe fn create_trusted_setup(x: G::ScalarField, depth: usize) -> Self {
let m = G::Map::setup();
let mut x_pow = G::ScalarField::one();
let g: Vec<_> = (0..depth)
.map(|_| {
let res = G::generator().mul(x_pow);
x_pow *= x;
res.into_affine()
})
.collect();
// Compute a blinder
let h = {
let mut h = Blake2b512::new();
h.update("srs_misc".as_bytes());
// FIXME: This is for retrocompatibility with a previous version
// that was using a list initialisation. It is not necessary.
h.update(0_u32.to_be_bytes());
point_of_random_bytes(&m, &h.finalize())
};
Self {
g,
h,
lagrange_bases: HashMapCache::new(),
}
}
}
impl<G: CommitmentCurve> SRS<G>
where
<G as CommitmentCurve>::Map: Sync,
G::BaseField: PrimeField,
{
/// This function creates SRS instance for circuits with number of rows up
/// to `depth`.
pub fn create_parallel(depth: usize) -> Self {
let m = G::Map::setup();
let g: Vec<_> = (0..depth)
.into_par_iter()
.map(|i| {
let mut h = Blake2b512::new();
h.update((i as u32).to_be_bytes());
point_of_random_bytes(&m, &h.finalize())
})
.collect();
// Compute a blinder
let h = {
let mut h = Blake2b512::new();
h.update("srs_misc".as_bytes());
// FIXME: This is for retrocompatibility with a previous version
// that was using a list initialisation. It is not necessary.
h.update(0_u32.to_be_bytes());
point_of_random_bytes(&m, &h.finalize())
};
Self {
g,
h,
lagrange_bases: HashMapCache::new(),
}
}
}
impl<G> SRSTrait<G> for SRS<G>
where
G: CommitmentCurve,
{
/// The maximum polynomial degree that can be committed to
fn max_poly_size(&self) -> usize {
self.g.len()
}
fn blinding_commitment(&self) -> G {
self.h
}
/// Turns a non-hiding polynomial commitment into a hidding polynomial
/// commitment. Transforms each given `<a, G>` into `(<a, G> + wH, w)` with
/// a random `w` per commitment.
fn mask(
&self,
comm: PolyComm<G>,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
let blinders = comm.map(|_| G::ScalarField::rand(rng));
self.mask_custom(comm, &blinders).unwrap()
}
fn mask_custom(
&self,
com: PolyComm<G>,
blinders: &PolyComm<G::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
let commitment = com
.zip(blinders)
.ok_or_else(|| CommitmentError::BlindersDontMatch(blinders.len(), com.len()))?
.map(|(g, b)| {
let mut g_masked = self.h.mul(b);
g_masked.add_assign(&g);
g_masked.into_affine()
});
Ok(BlindedCommitment {
commitment,
blinders: blinders.clone(),
})
}
fn commit_non_hiding(
&self,
plnm: &DensePolynomial<G::ScalarField>,
num_chunks: usize,
) -> PolyComm<G> {
let is_zero = plnm.is_zero();
let coeffs: Vec<_> = plnm.iter().map(|c| c.into_bigint()).collect();
// chunk while commiting
let mut chunks = vec![];
if is_zero {
chunks.push(G::zero());
} else {
coeffs.chunks(self.g.len()).for_each(|coeffs_chunk| {
let chunk = G::Group::msm_bigint(&self.g, coeffs_chunk);
chunks.push(chunk.into_affine());
});
}
for _ in chunks.len()..num_chunks {
chunks.push(G::zero());
}
PolyComm::<G>::new(chunks)
}
fn commit(
&self,
plnm: &DensePolynomial<G::ScalarField>,
num_chunks: usize,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
self.mask(self.commit_non_hiding(plnm, num_chunks), rng)
}
fn commit_custom(
&self,
plnm: &DensePolynomial<G::ScalarField>,
num_chunks: usize,
blinders: &PolyComm<G::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
self.mask_custom(self.commit_non_hiding(plnm, num_chunks), blinders)
}
fn commit_evaluations_non_hiding(
&self,
domain: D<G::ScalarField>,
plnm: &Evaluations<G::ScalarField, D<G::ScalarField>>,
) -> PolyComm<G> {
let basis = self.get_lagrange_basis(domain);
let commit_evaluations = |evals: &Vec<G::ScalarField>, basis: &Vec<PolyComm<G>>| {
PolyComm::<G>::multi_scalar_mul(&basis.iter().collect::<Vec<_>>()[..], &evals[..])
};
match domain.size.cmp(&plnm.domain().size) {
std::cmp::Ordering::Less => {
let s = (plnm.domain().size / domain.size) as usize;
let v: Vec<_> = (0..(domain.size())).map(|i| plnm.evals[s * i]).collect();
commit_evaluations(&v, basis)
}
std::cmp::Ordering::Equal => commit_evaluations(&plnm.evals, basis),
std::cmp::Ordering::Greater => {
panic!("desired commitment domain size ({}) greater than evaluations' domain size ({}):", domain.size, plnm.domain().size)
}
}
}
fn commit_evaluations(
&self,
domain: D<G::ScalarField>,
plnm: &Evaluations<G::ScalarField, D<G::ScalarField>>,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
self.mask(self.commit_evaluations_non_hiding(domain, plnm), rng)
}
fn commit_evaluations_custom(
&self,
domain: D<G::ScalarField>,
plnm: &Evaluations<G::ScalarField, D<G::ScalarField>>,
blinders: &PolyComm<G::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
self.mask_custom(self.commit_evaluations_non_hiding(domain, plnm), blinders)
}
fn create(depth: usize) -> Self {
let m = G::Map::setup();
let g: Vec<_> = (0..depth)
.map(|i| {
let mut h = Blake2b512::new();
h.update((i as u32).to_be_bytes());
point_of_random_bytes(&m, &h.finalize())
})
.collect();
// Compute a blinder
let h = {
let mut h = Blake2b512::new();
h.update("srs_misc".as_bytes());
// FIXME: This is for retrocompatibility with a previous version
// that was using a list initialisation. It is not necessary.
h.update(0_u32.to_be_bytes());
point_of_random_bytes(&m, &h.finalize())
};
Self {
g,
h,
lagrange_bases: HashMapCache::new(),
}
}
fn get_lagrange_basis_from_domain_size(&self, domain_size: usize) -> &Vec<PolyComm<G>> {
self.lagrange_bases.get_or_generate(domain_size, || {
self.lagrange_basis(D::new(domain_size).unwrap())
})
}
fn get_lagrange_basis(&self, domain: D<G::ScalarField>) -> &Vec<PolyComm<G>> {
self.lagrange_bases
.get_or_generate(domain.size(), || self.lagrange_basis(domain))
}
fn size(&self) -> usize {
self.g.len()
}
}
impl<G: CommitmentCurve> SRS<G> {
#[allow(clippy::type_complexity)]
#[allow(clippy::many_single_char_names)]
// NB: a slight modification to the original protocol is done when absorbing
// the first prover message to improve the efficiency in a recursive
// setting.
pub fn open<EFqSponge, RNG, D: EvaluationDomain<G::ScalarField>>(
&self,
group_map: &G::Map,
plnms: PolynomialsToCombine<G, D>,
elm: &[G::ScalarField],
polyscale: G::ScalarField,
evalscale: G::ScalarField,
mut sponge: EFqSponge,
rng: &mut RNG,
) -> OpeningProof<G>
where
EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
RNG: RngCore + CryptoRng,
G::BaseField: PrimeField,
G: EndoCurve,
{
let (endo_q, endo_r) = endos::<G>();
let rounds = math::ceil_log2(self.g.len());
let padded_length = 1 << rounds;
// TODO: Trim this to the degree of the largest polynomial
// TODO: We do always suppose we have a power of 2 for the SRS in
// practice. Therefore, padding equals zero, and this code can be
// removed. Only a current test case uses a SRS with a non-power of 2.
let padding = padded_length - self.g.len();
let mut g = self.g.clone();
g.extend(vec![G::zero(); padding]);
let (p, blinding_factor) = combine_polys::<G, D>(plnms, polyscale, self.g.len());
// The initial evaluation vector for polynomial commitment b_init is not
// just the powers of a single point as in the original IPA, but rather
// a vector of linearly combined powers with `evalscale` as recombiner.
//
// b_init[j] = Σ_i evalscale^i elm_i^j
// = ζ^j + evalscale * ζ^j ω^j (in the specific case of opening)
let b_init = {
// randomise/scale the eval powers
let mut scale = G::ScalarField::one();
let mut res: Vec<G::ScalarField> =
(0..padded_length).map(|_| G::ScalarField::zero()).collect();
for e in elm {
for (i, t) in pows(padded_length, *e).iter().enumerate() {
res[i] += &(scale * t);
}
scale *= &evalscale;
}
res
};
// Combined polynomial p, evaluated at the combined point b_init.
let combined_inner_product = p
.coeffs
.iter()
.zip(b_init.iter())
.map(|(a, b)| *a * b)
.fold(G::ScalarField::zero(), |acc, x| acc + x);
// Usually, the prover sends `combined_inner_product`` to the verifier
// So we should absorb `combined_inner_product``
// However it is more efficient in the recursion circuit
// to absorb a slightly modified version of it.
// As a reminder, in a recursive setting, the challenges are given as a public input
// and verified in the next iteration.
// See the `shift_scalar`` doc.
sponge.absorb_fr(&[shift_scalar::<G>(combined_inner_product)]);
let t = sponge.challenge_fq();
let u: G = {
let (x, y) = group_map.to_group(t);
G::of_coordinates(x, y)
};
let mut a = p.coeffs;
assert!(padded_length >= a.len());
a.extend(vec![G::ScalarField::zero(); padded_length - a.len()]);
let mut b = b_init;
let mut lr = vec![];
let mut blinders = vec![];
let mut chals = vec![];
let mut chal_invs = vec![];
// The main IPA folding loop that has log iterations.
for _ in 0..rounds {
let n = g.len() / 2;
// Pedersen bases
let (g_lo, g_hi) = (&g[0..n], &g[n..]);
// Polynomial coefficients
let (a_lo, a_hi) = (&a[0..n], &a[n..]);
// Evaluation points
let (b_lo, b_hi) = (&b[0..n], &b[n..]);
// Blinders for L/R
let rand_l = <G::ScalarField as UniformRand>::rand(rng);
let rand_r = <G::ScalarField as UniformRand>::rand(rng);
// Pedersen commitment to a_lo,rand_l,<a_hi,b_lo>
let l = G::Group::msm_bigint(
&[g_lo, &[self.h, u]].concat(),
&[a_hi, &[rand_l, inner_prod(a_hi, b_lo)]]
.concat()
.iter()
.map(|x| x.into_bigint())
.collect::<Vec<_>>(),
)
.into_affine();
let r = G::Group::msm_bigint(
&[g_hi, &[self.h, u]].concat(),
&[a_lo, &[rand_r, inner_prod(a_lo, b_hi)]]
.concat()
.iter()
.map(|x| x.into_bigint())
.collect::<Vec<_>>(),
)
.into_affine();
lr.push((l, r));
blinders.push((rand_l, rand_r));
sponge.absorb_g(&[l]);
sponge.absorb_g(&[r]);
// Round #i challenges
let u_pre = squeeze_prechallenge(&mut sponge);
let u = u_pre.to_field(&endo_r);
let u_inv = u.inverse().unwrap();
chals.push(u);
chal_invs.push(u_inv);
// IPA-folding polynomial coefficients
a = a_hi
.par_iter()
.zip(a_lo)
.map(|(&hi, &lo)| {
// lo + u_inv * hi
let mut res = hi;
res *= u_inv;
res += &lo;
res
})
.collect();
// IPA-folding evaluation points
b = b_lo
.par_iter()
.zip(b_hi)
.map(|(&lo, &hi)| {
// lo + u * hi
let mut res = hi;
res *= u;
res += &lo;
res
})
.collect();
// IPA-folding bases
g = G::combine_one_endo(endo_r, endo_q, g_lo, g_hi, u_pre);
}
assert!(
g.len() == 1 && a.len() == 1 && b.len() == 1,
"IPA commitment folding must produce single elements after log rounds"
);
let a0 = a[0];
let b0 = b[0];
let g0 = g[0];
// Schnorr/Sigma-protocol part
// r_prime = blinding_factor + \sum_i (rand_l[i] * (u[i]^{-1}) + rand_r * u[i])
// where u is a vector of folding challenges, and rand_l/rand_r are
// intermediate L/R blinders
let r_prime = blinders
.iter()
.zip(chals.iter().zip(chal_invs.iter()))
.map(|((rand_l, rand_r), (u, u_inv))| ((*rand_l) * u_inv) + (*rand_r * u))
.fold(blinding_factor, |acc, x| acc + x);
let d = <G::ScalarField as UniformRand>::rand(rng);
let r_delta = <G::ScalarField as UniformRand>::rand(rng);
// delta = (g0 + u*b0)*d + h*r_delta
let delta = ((g0.into_group() + (u.mul(b0))).into_affine().mul(d) + self.h.mul(r_delta))
.into_affine();
sponge.absorb_g(&[delta]);
let c = ScalarChallenge(sponge.challenge()).to_field(&endo_r);
let z1 = a0 * c + d;
let z2 = r_prime * c + r_delta;
OpeningProof {
delta,
lr,
z1,
z2,
sg: g0,
}
}
fn lagrange_basis(&self, domain: D<G::ScalarField>) -> Vec<PolyComm<G>> {
let n = domain.size();
// Let V be a vector space over the field F.
//
// Given
// - a domain [ 1, w, w^2, ..., w^{n - 1} ]
// - a vector v := [ v_0, ..., v_{n - 1} ] in V^n
//
// the FFT algorithm computes the matrix application
//
// u = M(w) * v
//
// where
// M(w) =
// 1 1 1 ... 1
// 1 w w^2 ... w^{n-1}
// ...
// 1 w^{n-1} (w^2)^{n-1} ... (w^{n-1})^{n-1}
//
// The IFFT algorithm computes
//
// v = M(w)^{-1} * u
//
// Let's see how we can use this algorithm to compute the lagrange basis
// commitments.
//
// Let V be the vector space F[x] of polynomials in x over F.
// Let v in V be the vector [ L_0, ..., L_{n - 1} ] where L_i is the i^{th}
// normalized Lagrange polynomial (where L_i(w^j) = j == i ? 1 : 0).
//
// Consider the rows of M(w) * v. Let me write out the matrix and vector so you
// can see more easily.
//
// | 1 1 1 ... 1 | | L_0 |
// | 1 w w^2 ... w^{n-1} | * | L_1 |
// | ... | | ... |
// | 1 w^{n-1} (w^2)^{n-1} ... (w^{n-1})^{n-1} | | L_{n-1} |
//
// The 0th row is L_0 + L1 + ... + L_{n - 1}. So, it's the polynomial
// that has the value 1 on every element of the domain.
// In other words, it's the polynomial 1.
//
// The 1st row is L_0 + w L_1 + ... + w^{n - 1} L_{n - 1}. So, it's the
// polynomial which has value w^i on w^i.
// In other words, it's the polynomial x.
//
// In general, you can see that row i is in fact the polynomial x^i.
//
// Thus, M(w) * v is the vector u, where u = [ 1, x, x^2, ..., x^n ]
//
// Therefore, the IFFT algorithm, when applied to the vector u (the standard
// monomial basis) will yield the vector v of the (normalized) Lagrange polynomials.
//
// Now, because the polynomial commitment scheme is additively homomorphic, and
// because the commitment to the polynomial x^i is just self.g[i], we can obtain
// commitments to the normalized Lagrange polynomials by applying IFFT to the
// vector self.g[0..n].
//
//
// Further still, we can do the same trick for 'chunked' polynomials.
//
// Recall that a chunked polynomial is some f of degree k*n - 1 with
// f(x) = f_0(x) + x^n f_1(x) + ... + x^{(k-1) n} f_{k-1}(x)
// where each f_i has degree n-1.
//
// In the above, if we set u = [ 1, x^2, ... x^{n-1}, 0, 0, .., 0 ]
// then we effectively 'zero out' any polynomial terms higher than x^{n-1}, leaving
// us with the 'partial Lagrange polynomials' that contribute to f_0.
//
// Similarly, u = [ 0, 0, ..., 0, 1, x^2, ..., x^{n-1}, 0, 0, ..., 0] with n leading
// zeros 'zeroes out' all terms except the 'partial Lagrange polynomials' that
// contribute to f_1, and likewise for each f_i.
//
// By computing each of these, and recollecting the terms as a vector of polynomial
// commitments, we obtain a chunked commitment to the L_i polynomials.
let srs_size = self.g.len();
let num_elems = (n + srs_size - 1) / srs_size;
let mut chunks = Vec::with_capacity(num_elems);
// For each chunk
for i in 0..num_elems {
// Initialize the vector with zero curve points
let mut lg: Vec<<G as AffineRepr>::Group> = vec![<G as AffineRepr>::Group::zero(); n];
// Overwrite the terms corresponding to that chunk with the SRS curve points
let start_offset = i * srs_size;
let num_terms = min((i + 1) * srs_size, n) - start_offset;
for j in 0..num_terms {
lg[start_offset + j] = self.g[j].into_group()
}
// Apply the IFFT
domain.ifft_in_place(&mut lg);
// Append the 'partial Langrange polynomials' to the vector of elems chunks
chunks.push(<G as AffineRepr>::Group::normalize_batch(lg.as_mut_slice()));
}
(0..n)
.map(|i| PolyComm {
chunks: chunks.iter().map(|v| v[i]).collect(),
})
.collect()
}
}
#[serde_as]
#[derive(Clone, Debug, Serialize, Deserialize, Default, PartialEq)]
#[serde(bound = "G: ark_serialize::CanonicalDeserialize + ark_serialize::CanonicalSerialize")]
pub struct OpeningProof<G: AffineRepr> {
/// Vector of rounds of L & R commitments
#[serde_as(as = "Vec<(o1_utils::serialization::SerdeAs, o1_utils::serialization::SerdeAs)>")]
pub lr: Vec<(G, G)>,
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub delta: G,
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub z1: G::ScalarField,
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub z2: G::ScalarField,
/// A final folded commitment base
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub sg: G,
}
impl<BaseField: PrimeField, G: AffineRepr<BaseField = BaseField> + CommitmentCurve + EndoCurve>
crate::OpenProof<G> for OpeningProof<G>
{
type SRS = SRS<G>;
fn open<EFqSponge, RNG, D: EvaluationDomain<<G as AffineRepr>::ScalarField>>(
srs: &Self::SRS,
group_map: &<G as CommitmentCurve>::Map,
plnms: PolynomialsToCombine<G, D>,
elm: &[<G as AffineRepr>::ScalarField], // vector of evaluation points
polyscale: <G as AffineRepr>::ScalarField, // scaling factor for polynoms
evalscale: <G as AffineRepr>::ScalarField, // scaling factor for evaluation point powers
sponge: EFqSponge, // sponge
rng: &mut RNG,
) -> Self
where
EFqSponge:
Clone + FqSponge<<G as AffineRepr>::BaseField, G, <G as AffineRepr>::ScalarField>,
RNG: RngCore + CryptoRng,
{
srs.open(group_map, plnms, elm, polyscale, evalscale, sponge, rng)
}
fn verify<EFqSponge, RNG>(
srs: &Self::SRS,
group_map: &G::Map,
batch: &mut [BatchEvaluationProof<G, EFqSponge, Self>],
rng: &mut RNG,
) -> bool
where
EFqSponge: FqSponge<<G as AffineRepr>::BaseField, G, <G as AffineRepr>::ScalarField>,
RNG: RngCore + CryptoRng,
{
srs.verify(group_map, batch, rng)
}
}
/// Commitment round challenges (endo mapped) and their inverses.
pub struct Challenges<F> {
pub chal: Vec<F>,
pub chal_inv: Vec<F>,
}
impl<G: AffineRepr> OpeningProof<G> {
/// Computes a log-sized vector of scalar challenges for
/// recombining elements inside the IPA.
pub fn prechallenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>(
&self,
sponge: &mut EFqSponge,
) -> Vec<ScalarChallenge<G::ScalarField>> {
let _t = sponge.challenge_fq();
self.lr
.iter()
.map(|(l, r)| {
sponge.absorb_g(&[*l]);
sponge.absorb_g(&[*r]);
squeeze_prechallenge(sponge)
})
.collect()
}
/// Same as `prechallenges`, but maps scalar challenges using the
/// provided endomorphism, and computes their inverses.
pub fn challenges<EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>>(
&self,
endo_r: &G::ScalarField,
sponge: &mut EFqSponge,
) -> Challenges<G::ScalarField> {
let chal: Vec<_> = self
.lr
.iter()
.map(|(l, r)| {
sponge.absorb_g(&[*l]);
sponge.absorb_g(&[*r]);
squeeze_challenge(endo_r, sponge)
})
.collect();
let chal_inv = {
let mut cs = chal.clone();
ark_ff::batch_inversion(&mut cs);
cs
};
Challenges { chal, chal_inv }
}
}
#[cfg(feature = "ocaml_types")]
pub mod caml {
use super::OpeningProof;
use ark_ec::AffineRepr;
use ocaml;
#[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlOpeningProof<G, F> {
/// vector of rounds of L & R commitments
pub lr: Vec<(G, G)>,
pub delta: G,
pub z1: F,
pub z2: F,
pub sg: G,
}
impl<G, CamlF, CamlG> From<OpeningProof<G>> for CamlOpeningProof<CamlG, CamlF>
where
G: AffineRepr,
CamlG: From<G>,
CamlF: From<G::ScalarField>,
{
fn from(opening_proof: OpeningProof<G>) -> Self {
Self {
lr: opening_proof
.lr
.into_iter()
.map(|(g1, g2)| (CamlG::from(g1), CamlG::from(g2)))
.collect(),
delta: CamlG::from(opening_proof.delta),
z1: opening_proof.z1.into(),
z2: opening_proof.z2.into(),
sg: CamlG::from(opening_proof.sg),
}
}
}
impl<G, CamlF, CamlG> From<CamlOpeningProof<CamlG, CamlF>> for OpeningProof<G>
where
G: AffineRepr,
CamlG: Into<G>,
CamlF: Into<G::ScalarField>,
{
fn from(caml: CamlOpeningProof<CamlG, CamlF>) -> Self {
Self {
lr: caml
.lr
.into_iter()
.map(|(g1, g2)| (g1.into(), g2.into()))
.collect(),
delta: caml.delta.into(),
z1: caml.z1.into(),
z2: caml.z2.into(),
sg: caml.sg.into(),
}
}
}
}