Function kimchi_msm::logup::combine_lookups
source · pub fn combine_lookups<F: PrimeField, ID: LookupTableID>(
column: Column<usize>,
lookups: Vec<Logup<E<F>, ID>>
) -> E<F>
Expand description
Compute the following constraint:
lhs
|------------------------------------------|
| denominators |
| /--------------\ |
column * (\prod_{i = 0}^{N} (β + f_{i}(X))) =
\sum_{i = 0}^{N} m_{i} * \prod_{j = 1, j \neq i}^{N} (β + f_{j}(X))
| |--------------------------------------------------|
| Inner part of rhs |
| |
| /
\ /
\ /
\---------------------------------------------------------/
rhs
It is because h(X) (column) is defined as:
n m_i(X) n 1 m_0(ω^j)
h(X) = ∑ ---------- = ∑ ------------ - -----------
i=0 β + f_i(X) i=1 β + f_i(ω^j) β + t(ω^j)
The first form is generic, the second is concrete with f_0 = t; m_0 = m; m_i = 1 for ≠ 1. We will be thinking in the generic form.
For instance, if N = 2, we have
h(X) = m_1(X) / (β + f_1(X)) + m_2(X) / (β + f_{2}(X))
m_1(X) * (β + f_2(X)) + m_2(X) * (β + f_{1}(X))
= ----------------------------------------------
(β + f_2(X)) * (β + f_1(X))
which is equivalent to
h(X) * (β + f_2(X)) * (β + f_1(X)) = m_1(X) * (β + f_2(X)) + m_2(X) * (β + f_{1}(X))
When we have f_1(X) a looked-up value, t(X) a fixed table and m_2(X) being the multiplicities, we have
h(X) * (β + t(X)) * (β + f(X)) = (β + t(X)) + m(X) * (β + f(X))