1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
#![allow(clippy::type_complexity)]
//! Implement a variant of the logarithmic derivative lookups based on the
//! equations described in the paper ["Multivariate lookups based on logarithmic
//! derivatives"](https://eprint.iacr.org/2022/1530.pdf).
//!
//! The variant is mostly based on the observation that the polynomial
//! identities can be verified using the "Idealised low-degree protocols"
//! described in the section 4 of the
//! ["PlonK"](https://eprint.iacr.org/2019/953.pdf) paper and "the quotient
//! polynomial" described in the round 3 of the PlonK protocol, instead of using
//! the sumcheck protocol.
//!
//! The protocol is based on the following observations:
//!
//! The sequence (a_i) is included in (b_i) if and only if the following
//! equation holds:
//! ```text
//! k 1 l m_i
//! ∑ ------- = ∑ ------- (1)
//! i=1 β + a_i i=1 β + b_i
//! ```
//! where m_i is the number of times a_i appears in the sequence b_i.
//!
//! The sequence (b_i) will refer to the table values and the sequence (a_i) the
//! values the prover looks up.
//!
//! For readability, the table values are represented as the evaluations over a
//! subgroup H of the field F of a
//! polynomial t(X), and the looked-up values by the evaluations of a polynomial
//! f(X). If we suppose the subgroup H is defined as {1, ω, ω^2, ..., ω^{n-1}},
//! the equation (1) becomes:
//!
//! ```text
//! n 1 n m(ω^i)
//! ∑ ---------- = ∑ ---------- (2)
//! i=1 β + f(ω^i) i=1 β + t(ω^i)
//! ```
//!
//! In the codebase, the multiplicities m_i are called the "lookup counters".
//!
//! The protocol can be generalized to multiple "looked-up" polynomials f_1,
//! ..., f_k (embedded in the structure `LogupWitness` in the codebase) and the
//! equation (2) becomes:
//!
//! ```text
//! n k 1 n m(ω^i)
//! ∑ ∑ ------------ = ∑ ----------- (3)
//! i=1 j=1 β + f_j(ω^i) i=1 β + t(ω^i)
//! ```
//!
//! which can be rewritten as:
//! ```text
//! n ( k 1 m(ω^i) )
//! ∑ ( ∑ ------------ - ----------- ) = 0 (4)
//! i=1 ( j=1 β + f_j(ω^i) β + t(ω^i) )
//! \ /
//! -----------------------------------
//! "inner sums", h(ω^i)
//! ```
//!
//! The equation says that if we sum/accumulate the "inner sums" (called the
//! "lookup terms" in the codebase) over the
//! subgroup H, we will get a zero value. Note the analogy with the
//! "multiplicative" accumulator used in the lookup argument called
//! ["Plookup"](https://eprint.iacr.org/2020/315.pdf).
//!
//! We will define an accumulator ϕ : H -> F (called the "lookup aggregation" in
//! the codebase) which will contain the "running
//! inner sums" which will be equal to zero to start, and when we finished
//! accumulating, it must equal zero. Note that the initial and final values can
//! be anything. The idea of the equation 4 is that all the values have been
//! read and written to the accumulator the right number of times, with respect
//! to the multiplicities m.
//! More precisely, we will have:
//! ```text
//! - φ(1) = 0
//! h(ω^j)
//! /----------------------------------\
//! ( k 1 m(ω^j) )
//! - φ(ω^{j + 1}) = φ(ω^j) + ( ∑ ------------ - ----------- )
//! ( i=1 β + f_i(ω^j) β + t(ω^j) )
//!
//! - φ(ω^n) = φ(1) = 0
//! ```
//!
//! We will split the inner sums into chunks of size (MAX_SUPPORTED_DEGREE - 2)
//! to avoid having a too large degree for the quotient polynomial.
//! As a reminder, the paper ["Multivariate lookups based on logarithmic
//! derivatives"](https://eprint.iacr.org/2022/1530.pdf) uses the sumcheck
//! protocol to compute the partial sums (equations 16 and 17). However, we use
//! the PlonK polynomial IOP and therefore, we will use the quotient polynomial,
//! and the computation of the partial sums will be translated into a constraint
//! in a new power of alpha.
//!
//! Note that the inner sum h(X) can be constrainted as followed:
//! ```text
//! k k / k \
//! h(X) * ᴨ (β + f_{i}(X)) = ∑ | m_{i}(X) * ᴨ (β + f_{j}(X)) | (5)
//! i=0 i=0 | j=0 |
//! \ j≠i /
//! ```
//! (with m_i(X) being the multiplicities for `i = 0` and `-1` otherwise, and
//! f_0(X) being the table t(X)).
//! More than one "inner sum" can be created in the case that `k + 2` is higher
//! than the maximum degree supported.
//! The quotient polynomial, defined at round 3 of the [PlonK
//! protocol](https://eprint.iacr.org/2019/953.pdf), will be something like:
//!
//! ```text
//! ... + α^i [φ(ω X) - φ(X) - h(X)] + α^(i + 1) (5) + ...
//! t(X) = ------------------------------------------------------
//! Z_H(X)
//! ```
//!
//! `k` can then be seen as the number of lookups we can make per row. The
//! additional cost when we reach the maximum degree supported is to add a new
//! constraint and add a new column.
//! For rows with less than `k` lookups, the prover will add a dummy value,
//! which will be a value known to be in the table, and the multiplicity must be
//! increased appropriately.
//!
//! To handle more than one table, we will use a table ID and transform the
//! single value lookup into a vector lookup, using a random combiner.
//! The protocol can also handle vector lookups, by using the random combiner.
//! The looked-up values therefore become functions f_j: H x H x ... x H -> F
//! and is transformed into a f'_j: H -> F using a random combiner `r`.
//!
//! To summarize, the prover will:
//! - commit to the multiplicities m.
//! - commit to individual looked-up values f (which include the table t) which
//! should be already included in the PlonK protocol as columns.
//! - coin an evaluation point β.
//! - coin a random combiner j (used to aggregate the table ID and concatenate
//! vector lookups, if any).
//! - commit to the inner sums/lookup terms h.
//! - commit to the running sum φ.
//! - add constraints to the quotient polynomial.
//! - evaluate all polynomials at the evaluation points ζ and ζω (because we
//! access the "next" row for the accumulator in the quotient polynomial).
use ark_ff::{Field, PrimeField, Zero};
use kimchi::circuits::{
berkeley_columns::BerkeleyChallengeTerm,
expr::{ConstantExpr, ConstantTerm, Expr, ExprInner},
};
use std::{collections::BTreeMap, hash::Hash};
use crate::{
columns::Column,
expr::{curr_cell, next_cell, E},
MAX_SUPPORTED_DEGREE,
};
/// Generic structure to represent a (vector) lookup the table with ID
/// `table_id`.
///
/// The structure represents the individual fraction of the sum described in the
/// Logup protocol (for instance Eq. 8).
///
/// The table ID is added to the random linear combination formed with the
/// values. The combiner for the random linear combination is coined during the
/// proving phase by the prover.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Logup<F, ID: LookupTableID> {
pub(crate) table_id: ID,
pub(crate) numerator: F,
pub(crate) value: Vec<F>,
}
/// Basic trait for logarithmic lookups.
impl<F, ID> Logup<F, ID>
where
F: Clone,
ID: LookupTableID,
{
/// Creates a new Logup
pub fn new(table_id: ID, numerator: F, value: &[F]) -> Self {
Self {
table_id,
numerator,
value: value.to_vec(),
}
}
}
/// Trait for lookup table variants
pub trait LookupTableID:
Send + Sync + Copy + Hash + Eq + PartialEq + Ord + PartialOrd + core::fmt::Debug
{
/// Assign a unique ID, as a u32 value
fn to_u32(&self) -> u32;
/// Build a value from a u32
fn from_u32(value: u32) -> Self;
/// Assign a unique ID to the lookup tables.
fn to_field<F: Field>(&self) -> F {
F::from(self.to_u32())
}
/// Identify fixed and RAMLookups with a boolean.
/// This can be used to identify the lookups whose table values are fixed,
/// like range checks.
fn is_fixed(&self) -> bool;
/// If a table is runtime table, `true` means we should create an
/// explicit extra column for it to "read" from. `false` means
/// that this table will be reading from some existing (e.g.
/// relation) columns, and no extra columns should be added.
///
/// Panics if the argument is a fixed table.
fn runtime_create_column(&self) -> bool;
/// Assign a unique ID to the lookup tables, as an expression.
fn to_constraint<F: Field>(&self) -> E<F> {
let f = self.to_field();
let f = ConstantExpr::from(ConstantTerm::Literal(f));
E::Atom(ExprInner::Constant(f))
}
/// Returns the length of each table.
fn length(&self) -> usize;
/// Returns None if the table is runtime (and thus mapping value
/// -> ix is not known at compile time.
fn ix_by_value<F: PrimeField>(&self, value: &[F]) -> Option<usize>;
fn all_variants() -> Vec<Self>;
}
/// A table of values that can be used for a lookup, along with the ID for the table.
#[derive(Debug, Clone)]
pub struct LookupTable<F, ID: LookupTableID> {
/// Table ID corresponding to this table
pub table_id: ID,
/// Vector of values inside each entry of the table
pub entries: Vec<Vec<F>>,
}
/// Represents a witness of one instance of the lookup argument
// IMPROVEME: Possible to index by a generic const?
// The parameter N is the number of functions/looked-up values per row. It is
// used by the PlonK polynomial IOP to compute the number of partial sums.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LogupWitness<F, ID: LookupTableID> {
/// A list of functions/looked-up values.
/// Invariant: for fixed lookup tables, the last value of the vector is the
/// lookup table t. The lookup table values must have a negative sign.
/// The values are represented as:
/// [ [f_{1}(1), ..., f_{1}(ω^(n-1)],
/// [f_{2}(1), ..., f_{2}(ω^(n-1)]
/// ...
/// [f_{m}(1), ..., f_{m}(ω^(n-1)]
/// ]
//
// TODO: for efficiency, as we go through columns and after that row, we
// should reorganize this. While working on the interpreter, we might
// change this structure.
//
// TODO: for efficiency, we might want to have a single flat fixed-size
// array
pub f: Vec<Vec<Logup<F, ID>>>,
/// The multiplicity polynomials; by convention, this is a vector
/// of columns, corresponding to the `tail` of `f`. That is,
/// `m[last] ~ f[last]`.
pub m: Vec<Vec<F>>,
}
/// Represents the proof of the lookup argument
/// It is parametrized by the type `T` which can be either:
/// - `Polycomm<G: KimchiCurve>` for the commitments
/// - `F` for the evaluations at ζ (resp. ζω).
// FIXME: We should have a fixed number of m and h. Should we encode that in
// the type?
#[derive(Debug, Clone)]
pub struct LookupProof<T, ID> {
/// The multiplicity polynomials
pub(crate) m: BTreeMap<ID, Vec<T>>,
/// The polynomial keeping the sum of each row
pub(crate) h: BTreeMap<ID, Vec<T>>,
/// The "running-sum" over the rows, coined `φ`
pub(crate) sum: T,
/// All fixed lookup tables values, indexed by their ID
pub(crate) fixed_tables: BTreeMap<ID, T>,
}
/// Iterator implementation to abstract the content of the structure.
/// It can be used to iterate over the commitments (resp. the evaluations)
/// without requiring to have a look at the inner fields.
impl<'lt, G, ID: LookupTableID> IntoIterator for &'lt LookupProof<G, ID> {
type Item = &'lt G;
type IntoIter = std::vec::IntoIter<&'lt G>;
fn into_iter(self) -> Self::IntoIter {
let mut iter_contents = vec![];
// First multiplicities
self.m.values().for_each(|m| iter_contents.extend(m));
self.h.values().for_each(|h| iter_contents.extend(h));
iter_contents.push(&self.sum);
// Fixed tables
self.fixed_tables
.values()
.for_each(|t| iter_contents.push(t));
iter_contents.into_iter()
}
}
/// Compute the following constraint:
/// ```text
/// lhs
/// |------------------------------------------|
/// | denominators |
/// | /--------------\ |
/// column * (\prod_{i = 0}^{N} (β + f_{i}(X))) =
/// \sum_{i = 0}^{N} m_{i} * \prod_{j = 1, j \neq i}^{N} (β + f_{j}(X))
/// | |--------------------------------------------------|
/// | Inner part of rhs |
/// | |
/// | /
/// \ /
/// \ /
/// \---------------------------------------------------------/
/// rhs
/// ```
/// It is because h(X) (column) is defined as:
/// ```text
/// n m_i(X) n 1 m_0(ω^j)
/// h(X) = ∑ ---------- = ∑ ------------ - -----------
/// i=0 β + f_i(X) i=1 β + f_i(ω^j) β + t(ω^j)
///```
/// The first form is generic, the second is concrete with f_0 = t; m_0 = m; m_i = 1 for ≠ 1.
/// We will be thinking in the generic form.
///
/// For instance, if N = 2, we have
/// ```text
/// h(X) = m_1(X) / (β + f_1(X)) + m_2(X) / (β + f_{2}(X))
///
/// m_1(X) * (β + f_2(X)) + m_2(X) * (β + f_{1}(X))
/// = ----------------------------------------------
/// (β + f_2(X)) * (β + f_1(X))
/// ```
/// which is equivalent to
/// ```text
/// h(X) * (β + f_2(X)) * (β + f_1(X)) = m_1(X) * (β + f_2(X)) + m_2(X) * (β + f_{1}(X))
/// ```
/// When we have f_1(X) a looked-up value, t(X) a fixed table and m_2(X) being
/// the multiplicities, we have
/// ```text
/// h(X) * (β + t(X)) * (β + f(X)) = (β + t(X)) + m(X) * (β + f(X))
/// ```
pub fn combine_lookups<F: PrimeField, ID: LookupTableID>(
column: Column,
lookups: Vec<Logup<E<F>, ID>>,
) -> E<F> {
let joint_combiner = {
let joint_combiner = ConstantExpr::from(BerkeleyChallengeTerm::JointCombiner);
E::Atom(ExprInner::Constant(joint_combiner))
};
let beta = {
let beta = ConstantExpr::from(BerkeleyChallengeTerm::Beta);
E::Atom(ExprInner::Constant(beta))
};
// Compute (β + f_{i}(X)) for each i.
// Note that f_i(X) = table_id + r * x_{1} + r^2 x_{2} + ... r^{N} x_{N}
let denominators = lookups
.iter()
.map(|x| {
// Compute r * x_{1} + r^2 x_{2} + ... r^{N} x_{N}
let combined_value = x
.value
.iter()
.rev()
.fold(E::zero(), |acc, y| acc * joint_combiner.clone() + y.clone())
* joint_combiner.clone();
// FIXME: sanity check for the domain, we should consider it in prover.rs.
// We do only support degree one constraint in the denominator.
let combined_degree_real = combined_value.degree(1, 0);
assert!(combined_degree_real <= 1, "Only degree zero and one is supported in the denominator of the lookup because of the maximum degree supported (8); got degree {combined_degree_real}",);
// add table id + evaluation point
beta.clone() + combined_value + x.table_id.to_constraint()
})
.collect::<Vec<_>>();
// Compute `column * (\prod_{i = 1}^{N} (β + f_{i}(X)))`
let lhs = denominators
.iter()
.fold(curr_cell(column), |acc, x| acc * x.clone());
// Compute `\sum_{i = 0}^{N} m_{i} * \prod_{j = 1, j \neq i}^{N} (β + f_{j}(X))`
let rhs = lookups
.into_iter()
.enumerate()
.map(|(i, x)| {
denominators.iter().enumerate().fold(
// Compute individual \sum_{j = 1, j \neq i}^{N} (β + f_{j}(X))
// This is the inner part of rhs. It multiplies with m_{i}
x.numerator,
|acc, (j, y)| {
if i == j {
acc
} else {
acc * y.clone()
}
},
)
})
// Individual sums
.reduce(|x, y| x + y)
.unwrap_or(E::zero());
lhs - rhs
}
/// Build the constraints for the lookup protocol.
/// The constraints are the partial sum and the aggregation of the partial sums.
pub fn constraint_lookups<F: PrimeField, ID: LookupTableID>(
lookup_reads: &BTreeMap<ID, Vec<Vec<E<F>>>>,
lookup_writes: &BTreeMap<ID, Vec<Vec<E<F>>>>,
) -> Vec<E<F>> {
let mut constraints: Vec<E<F>> = vec![];
let mut lookup_terms_cols: Vec<Column> = vec![];
lookup_reads.iter().for_each(|(table_id, reads)| {
let mut idx_partial_sum = 0;
let table_id_u32 = table_id.to_u32();
// FIXME: do not clone
let mut lookups: Vec<_> = reads
.clone()
.into_iter()
.map(|value| Logup {
table_id: *table_id,
numerator: Expr::Atom(ExprInner::Constant(ConstantExpr::from(
ConstantTerm::Literal(F::one()),
))),
value,
})
.collect();
if table_id.is_fixed() || table_id.runtime_create_column() {
let table_lookup = Logup {
table_id: *table_id,
numerator: -curr_cell(Column::LookupMultiplicity((table_id_u32, 0))),
value: vec![curr_cell(Column::LookupFixedTable(table_id_u32))],
};
lookups.push(table_lookup);
} else {
lookup_writes
.get(table_id)
.expect("Lookup writes for table_id {table_id:?} not present")
.iter()
.enumerate()
.for_each(|(i, write_columns)| {
lookups.push(Logup {
table_id: *table_id,
numerator: -curr_cell(Column::LookupMultiplicity((table_id_u32, i))),
value: write_columns.clone(),
});
});
}
// We split in chunks of 6 (MAX_SUPPORTED_DEGREE - 2)
lookups.chunks(MAX_SUPPORTED_DEGREE - 2).for_each(|chunk| {
let col = Column::LookupPartialSum((table_id_u32, idx_partial_sum));
lookup_terms_cols.push(col);
constraints.push(combine_lookups(col, chunk.to_vec()));
idx_partial_sum += 1;
});
});
// Generic code over the partial sum
// Compute φ(ωX) - φ(X) - \sum_{i = 1}^{N} h_i(X)
{
let constraint =
next_cell(Column::LookupAggregation) - curr_cell(Column::LookupAggregation);
let constraint = lookup_terms_cols
.into_iter()
.fold(constraint, |acc, col| acc - curr_cell(col));
constraints.push(constraint);
}
constraints
}
pub mod prover {
use crate::{
logup::{Logup, LogupWitness, LookupTableID},
MAX_SUPPORTED_DEGREE,
};
use ark_ff::{FftField, Zero};
use ark_poly::{univariate::DensePolynomial, Evaluations, Radix2EvaluationDomain as D};
use kimchi::{circuits::domains::EvaluationDomains, curve::KimchiCurve};
use mina_poseidon::FqSponge;
use poly_commitment::{
commitment::{absorb_commitment, PolyComm},
OpenProof, SRS as _,
};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use std::collections::BTreeMap;
/// The structure used by the prover the compute the quotient polynomial.
/// The structure contains the evaluations of the inner sums, the
/// multiplicities, the aggregation and the fixed tables, over the domain d8.
pub struct QuotientPolynomialEnvironment<'a, F: FftField, ID: LookupTableID> {
/// The evaluations of the partial sums, over d8.
pub lookup_terms_evals_d8: &'a BTreeMap<ID, Vec<Evaluations<F, D<F>>>>,
/// The evaluations of the aggregation, over d8.
pub lookup_aggregation_evals_d8: &'a Evaluations<F, D<F>>,
/// The evaluations of the multiplicities, over d8, indexed by the table ID.
pub lookup_counters_evals_d8: &'a BTreeMap<ID, Vec<Evaluations<F, D<F>>>>,
/// The evaluations of the fixed tables, over d8, indexed by the table ID.
pub fixed_tables_evals_d8: &'a BTreeMap<ID, Evaluations<F, D<F>>>,
}
/// Represents the environment for the logup argument.
pub struct Env<G: KimchiCurve, ID: LookupTableID> {
/// The polynomial of the multiplicities, indexed by the table ID.
pub lookup_counters_poly_d1: BTreeMap<ID, Vec<DensePolynomial<G::ScalarField>>>,
/// The commitments to the multiplicities, indexed by the table ID.
pub lookup_counters_comm_d1: BTreeMap<ID, Vec<PolyComm<G>>>,
/// The polynomials of the inner sums.
pub lookup_terms_poly_d1: BTreeMap<ID, Vec<DensePolynomial<G::ScalarField>>>,
/// The commitments of the inner sums.
pub lookup_terms_comms_d1: BTreeMap<ID, Vec<PolyComm<G>>>,
/// The aggregation polynomial.
pub lookup_aggregation_poly_d1: DensePolynomial<G::ScalarField>,
/// The commitment to the aggregation polynomial.
pub lookup_aggregation_comm_d1: PolyComm<G>,
// Evaluating over d8 for the quotient polynomial
#[allow(clippy::type_complexity)]
pub lookup_counters_evals_d8:
BTreeMap<ID, Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>>,
#[allow(clippy::type_complexity)]
pub lookup_terms_evals_d8:
BTreeMap<ID, Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>>,
pub lookup_aggregation_evals_d8: Evaluations<G::ScalarField, D<G::ScalarField>>,
pub fixed_lookup_tables_poly_d1: BTreeMap<ID, DensePolynomial<G::ScalarField>>,
pub fixed_lookup_tables_comms_d1: BTreeMap<ID, PolyComm<G>>,
pub fixed_lookup_tables_evals_d8:
BTreeMap<ID, Evaluations<G::ScalarField, D<G::ScalarField>>>,
/// The combiner used for vector lookups
pub joint_combiner: G::ScalarField,
/// The evaluation point used for the lookup polynomials.
pub beta: G::ScalarField,
}
impl<G: KimchiCurve, ID: LookupTableID> Env<G, ID> {
/// Create an environment for the prover to create a proof for the Logup protocol.
/// The protocol does suppose that the individual lookup terms are
/// committed as part of the columns.
/// Therefore, the protocol only focus on commiting to the "grand
/// product sum" and the "row-accumulated" values.
pub fn create<
OpeningProof: OpenProof<G>,
Sponge: FqSponge<G::BaseField, G, G::ScalarField>,
>(
lookups: BTreeMap<ID, LogupWitness<G::ScalarField, ID>>,
domain: EvaluationDomains<G::ScalarField>,
fq_sponge: &mut Sponge,
srs: &OpeningProof::SRS,
) -> Self
where
OpeningProof::SRS: Sync,
{
// Use parallel iterators where possible.
// Polynomial m(X)
// FIXME/IMPROVEME: m(X) is only for fixed table
let lookup_counters_evals_d1: BTreeMap<
ID,
Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>,
> = {
lookups
.clone()
.into_par_iter()
.map(|(table_id, logup_witness)| {
(
table_id,
logup_witness.m.into_iter().map(|m|
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
m.to_vec(),
domain.d1,
)
).collect()
)
})
.collect()
};
let lookup_counters_poly_d1: BTreeMap<ID, Vec<DensePolynomial<G::ScalarField>>> =
(&lookup_counters_evals_d1)
.into_par_iter()
.map(|(id, evals)| {
(*id, evals.iter().map(|e| e.interpolate_by_ref()).collect())
})
.collect();
let lookup_counters_evals_d8: BTreeMap<
ID,
Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>,
> = (&lookup_counters_poly_d1)
.into_par_iter()
.map(|(id, lookup)| {
(
*id,
lookup
.iter()
.map(|l| l.evaluate_over_domain_by_ref(domain.d8))
.collect(),
)
})
.collect();
let lookup_counters_comm_d1: BTreeMap<ID, Vec<PolyComm<G>>> =
(&lookup_counters_evals_d1)
.into_par_iter()
.map(|(id, polys)| {
(
*id,
polys
.iter()
.map(|poly| srs.commit_evaluations_non_hiding(domain.d1, poly))
.collect(),
)
})
.collect();
lookup_counters_comm_d1.values().for_each(|comms| {
comms
.iter()
.for_each(|comm| absorb_commitment(fq_sponge, comm))
});
// -- end of m(X)
// -- start computing the row sums h(X)
// It will be used to compute the running sum in lookup_aggregation
// Coin a combiner to perform vector lookup.
// The row sums h are defined as
// -- n 1 1
// h(ω^i) = ∑ -------------------- - --------------
// j = 0 (β + f_{j}(ω^i)) (β + t(ω^i))
let vector_lookup_combiner = fq_sponge.challenge();
// Coin an evaluation point for the rational functions
let beta = fq_sponge.challenge();
//
// @volhovm TODO make sure this is h_i. It looks like f_i for fixed tables.
// It is an actual fixed column containing "fixed lookup data".
//
// Contain the evalations of the h_i. We divide the looked-up values
// in chunks of (MAX_SUPPORTED_DEGREE - 2)
let mut fixed_lookup_tables: BTreeMap<ID, Vec<G::ScalarField>> = BTreeMap::new();
// @volhovm TODO These are h_i related chunks!
//
// We keep the lookup terms in a map, to process them in order in the constraints.
let mut lookup_terms_map: BTreeMap<ID, Vec<Vec<G::ScalarField>>> = BTreeMap::new();
// Where are commitments to the last element are made? First "read" columns we don't commit to, right?..
lookups.into_iter().for_each(|(table_id, logup_witness)| {
let LogupWitness { f, m: _ } = logup_witness;
// The number of functions to look up, including the fixed table.
let n = f.len();
let n_partial_sums = if n % (MAX_SUPPORTED_DEGREE - 2) == 0 {
n / (MAX_SUPPORTED_DEGREE - 2)
} else {
n / (MAX_SUPPORTED_DEGREE - 2) + 1
};
let mut partial_sums =
vec![
Vec::<G::ScalarField>::with_capacity(domain.d1.size as usize);
n_partial_sums
];
// We compute first the denominators of all f_i and t. We gather them in
// a vector to perform a batch inversion.
let mut denominators = Vec::with_capacity(n * domain.d1.size as usize);
// Iterate over the rows
for j in 0..domain.d1.size {
// Iterate over individual columns (i.e. f_i and t)
for (i, f_i) in f.iter().enumerate() {
let Logup {
numerator: _,
table_id,
value,
} = &f_i[j as usize];
// Compute x_{1} + r x_{2} + ... r^{N-1} x_{N}
// This is what we actually put into the `fixed_lookup_tables`.
let combined_value_pow0: G::ScalarField =
value.iter().rev().fold(G::ScalarField::zero(), |acc, y| {
acc * vector_lookup_combiner + y
});
// Compute r * x_{1} + r^2 x_{2} + ... r^{N} x_{N}
let combined_value: G::ScalarField =
combined_value_pow0 * vector_lookup_combiner;
// add table id
let combined_value = combined_value + table_id.to_field::<G::ScalarField>();
// If last element and fixed lookup tables, we keep
// the *combined* value of the table.
//
// Otherwise we're processing a runtime table
// with explicit writes, so we don't need to
// create any extra columns.
if (table_id.is_fixed() || table_id.runtime_create_column()) && i == (n - 1)
{
fixed_lookup_tables
.entry(*table_id)
.or_insert_with(Vec::new)
.push(combined_value_pow0);
}
// β + a_{i}
let lookup_denominator = beta + combined_value;
denominators.push(lookup_denominator);
}
}
assert!(denominators.len() == n * domain.d1.size as usize);
// Given a vector {β + a_i}, computes a vector {1/(β + a_i)}
ark_ff::fields::batch_inversion(&mut denominators);
// Evals is the sum on the individual columns for each row
let mut denominator_index = 0;
// We only need to add the numerator now
for j in 0..domain.d1.size {
let mut partial_sum_idx = 0;
let mut row_acc = G::ScalarField::zero();
for (i, f_i) in f.iter().enumerate() {
let Logup {
numerator,
table_id: _,
value: _,
} = &f_i[j as usize];
row_acc += *numerator * denominators[denominator_index];
denominator_index += 1;
// We split in chunks of (MAX_SUPPORTED_DEGREE - 2)
// We reset the accumulator for the current partial
// sum after keeping it.
if (i + 1) % (MAX_SUPPORTED_DEGREE - 2) == 0 {
partial_sums[partial_sum_idx].push(row_acc);
row_acc = G::ScalarField::zero();
partial_sum_idx += 1;
}
}
// Whatever leftover in `row_acc` left in the end of the iteration, we write it into
// `partial_sums` too. This is only done in case `n % (MAX_SUPPORTED_DEGREE - 2) != 0`
// which means that the similar addition to `partial_sums` a few lines above won't be triggered.
// So we have this wrapping up call instead.
if n % (MAX_SUPPORTED_DEGREE - 2) != 0 {
partial_sums[partial_sum_idx].push(row_acc);
}
}
lookup_terms_map.insert(table_id, partial_sums);
});
// Sanity check to verify that the number of evaluations is correct
lookup_terms_map.values().for_each(|evals| {
evals
.iter()
.for_each(|eval| assert_eq!(eval.len(), domain.d1.size as usize))
});
// Sanity check to verify that we have all the evaluations for the fixed lookup tables
fixed_lookup_tables
.values()
.for_each(|evals| assert_eq!(evals.len(), domain.d1.size as usize));
#[allow(clippy::type_complexity)]
let lookup_terms_evals_d1: BTreeMap<
ID,
Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>,
> =
(&lookup_terms_map)
.into_par_iter()
.map(|(id, lookup_terms)| {
let lookup_terms = lookup_terms.into_par_iter().map(|lookup_term| {
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
lookup_term.to_vec(), domain.d1,
)}).collect::<Vec<_>>();
(*id, lookup_terms)
})
.collect();
let fixed_lookup_tables_evals_d1: BTreeMap<
ID,
Evaluations<G::ScalarField, D<G::ScalarField>>,
> = fixed_lookup_tables
.into_iter()
.map(|(id, evals)| {
(
id,
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
evals, domain.d1,
),
)
})
.collect();
let lookup_terms_poly_d1: BTreeMap<ID, Vec<DensePolynomial<G::ScalarField>>> =
(&lookup_terms_evals_d1)
.into_par_iter()
.map(|(id, lookup_terms)| {
let lookup_terms: Vec<DensePolynomial<G::ScalarField>> = lookup_terms
.into_par_iter()
.map(|evals| evals.interpolate_by_ref())
.collect();
(*id, lookup_terms)
})
.collect();
let fixed_lookup_tables_poly_d1: BTreeMap<ID, DensePolynomial<G::ScalarField>> =
(&fixed_lookup_tables_evals_d1)
.into_par_iter()
.map(|(id, evals)| (*id, evals.interpolate_by_ref()))
.collect();
#[allow(clippy::type_complexity)]
let lookup_terms_evals_d8: BTreeMap<
ID,
Vec<Evaluations<G::ScalarField, D<G::ScalarField>>>,
> = (&lookup_terms_poly_d1)
.into_par_iter()
.map(|(id, lookup_terms)| {
let lookup_terms: Vec<Evaluations<G::ScalarField, D<G::ScalarField>>> =
lookup_terms
.into_par_iter()
.map(|lookup_term| lookup_term.evaluate_over_domain_by_ref(domain.d8))
.collect();
(*id, lookup_terms)
})
.collect();
let fixed_lookup_tables_evals_d8: BTreeMap<
ID,
Evaluations<G::ScalarField, D<G::ScalarField>>,
> = (&fixed_lookup_tables_poly_d1)
.into_par_iter()
.map(|(id, poly)| (*id, poly.evaluate_over_domain_by_ref(domain.d8)))
.collect();
let lookup_terms_comms_d1: BTreeMap<ID, Vec<PolyComm<G>>> = lookup_terms_evals_d1
.iter()
.map(|(id, lookup_terms)| {
let lookup_terms = lookup_terms
.into_par_iter()
.map(|lookup_term| {
srs.commit_evaluations_non_hiding(domain.d1, lookup_term)
})
.collect();
(*id, lookup_terms)
})
.collect();
let fixed_lookup_tables_comms_d1: BTreeMap<ID, PolyComm<G>> =
(&fixed_lookup_tables_evals_d1)
.into_par_iter()
.map(|(id, evals)| (*id, srs.commit_evaluations_non_hiding(domain.d1, evals)))
.collect();
lookup_terms_comms_d1.values().for_each(|comms| {
comms
.iter()
.for_each(|comm| absorb_commitment(fq_sponge, comm))
});
fixed_lookup_tables_comms_d1
.values()
.for_each(|comm| absorb_commitment(fq_sponge, comm));
// -- end computing the row sums h
// -- start computing the running sum in lookup_aggregation
// The running sum, φ, is defined recursively over the subgroup as followed:
// - φ(1) = 0
// - φ(ω^{j + 1}) = φ(ω^j) + \
// \sum_{i = 1}^{n} (1 / (β + f_i(ω^{j + 1}))) - \
// (m(ω^{j + 1}) / (β + t(ω^{j + 1})))
// - φ(ω^n) = 0
let lookup_aggregation_evals_d1 = {
{
for table_id in ID::all_variants().into_iter() {
let mut acc = G::ScalarField::zero();
for i in 0..domain.d1.size as usize {
// φ(1) = 0
let lookup_terms = lookup_terms_evals_d1.get(&table_id).unwrap();
acc = lookup_terms.iter().fold(acc, |acc, lte| acc + lte[i]);
}
// Sanity check to verify that the accumulator ends up being zero.
assert_eq!(
acc,
G::ScalarField::zero(),
"Logup accumulator for table {table_id:?} must be zero"
);
}
}
let mut evals = Vec::with_capacity(domain.d1.size as usize);
{
let mut acc = G::ScalarField::zero();
for i in 0..domain.d1.size as usize {
// φ(1) = 0
evals.push(acc);
lookup_terms_evals_d1.iter().for_each(|(_, lookup_terms)| {
acc = lookup_terms.iter().fold(acc, |acc, lte| acc + lte[i]);
})
}
// Sanity check to verify that the accumulator ends up being zero.
assert_eq!(
acc,
G::ScalarField::zero(),
"Logup accumulator must be zero"
);
}
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
evals, domain.d1,
)
};
let lookup_aggregation_poly_d1 = lookup_aggregation_evals_d1.interpolate_by_ref();
let lookup_aggregation_evals_d8 =
lookup_aggregation_poly_d1.evaluate_over_domain_by_ref(domain.d8);
let lookup_aggregation_comm_d1 =
srs.commit_evaluations_non_hiding(domain.d1, &lookup_aggregation_evals_d1);
absorb_commitment(fq_sponge, &lookup_aggregation_comm_d1);
Self {
lookup_counters_poly_d1,
lookup_counters_comm_d1,
lookup_terms_poly_d1,
lookup_terms_comms_d1,
lookup_aggregation_poly_d1,
lookup_aggregation_comm_d1,
lookup_counters_evals_d8,
lookup_terms_evals_d8,
lookup_aggregation_evals_d8,
fixed_lookup_tables_poly_d1,
fixed_lookup_tables_comms_d1,
fixed_lookup_tables_evals_d8,
joint_combiner: vector_lookup_combiner,
beta,
}
}
}
}