pub struct Environment<'a, F: FftField> {
pub witness: &'a [Evaluations<F, Radix2EvaluationDomain<F>>; 15],
pub coefficient: &'a [Evaluations<F, Radix2EvaluationDomain<F>>; 15],
pub vanishes_on_zero_knowledge_and_previous_rows: &'a Evaluations<F, Radix2EvaluationDomain<F>>,
pub z: &'a Evaluations<F, Radix2EvaluationDomain<F>>,
pub index: HashMap<GateType, &'a Evaluations<F, Radix2EvaluationDomain<F>>>,
pub l0_1: F,
pub constants: Constants<F>,
pub challenges: BerkeleyChallenges<F>,
pub domain: EvaluationDomains<F>,
pub lookup: Option<LookupEnvironment<'a, F>>,
}
Expand description
The collection of polynomials (all in evaluation form) and constants required to evaluate an expression as a polynomial.
All are evaluations.
Fields§
§witness: &'a [Evaluations<F, Radix2EvaluationDomain<F>>; 15]
The witness column polynomials
coefficient: &'a [Evaluations<F, Radix2EvaluationDomain<F>>; 15]
The coefficient column polynomials
vanishes_on_zero_knowledge_and_previous_rows: &'a Evaluations<F, Radix2EvaluationDomain<F>>
The polynomial that vanishes on the zero-knowledge rows and the row before.
z: &'a Evaluations<F, Radix2EvaluationDomain<F>>
The permutation aggregation polynomial.
index: HashMap<GateType, &'a Evaluations<F, Radix2EvaluationDomain<F>>>
The index selector polynomials.
l0_1: F
The value prod_{j != 1} (1 - omega^j)
, used for efficiently
computing the evaluations of the unnormalized Lagrange basis polynomials.
constants: Constants<F>
Constant values required
challenges: BerkeleyChallenges<F>
Challenges from the IOP.
domain: EvaluationDomains<F>
The domains used in the PLONK argument.
lookup: Option<LookupEnvironment<'a, F>>
Lookup specific polynomials
Trait Implementations§
Source§impl<'a, F: FftField> ColumnEnvironment<'a, F, BerkeleyChallengeTerm, BerkeleyChallenges<F>> for Environment<'a, F>
impl<'a, F: FftField> ColumnEnvironment<'a, F, BerkeleyChallengeTerm, BerkeleyChallenges<F>> for Environment<'a, F>
Source§type Column = Column
type Column = Column
The generic type of column the environment can use.
In other words, with the multi-variate polynomial analogy, it is the
variables the multi-variate polynomials are defined upon.
i.e. for a polynomial
P(X, Y, Z)
, the type will represent the variable
X
, Y
and Z
.Source§fn get_column(&self, col: &Self::Column) -> Option<&'a Evaluations<F, D<F>>>
fn get_column(&self, col: &Self::Column) -> Option<&'a Evaluations<F, D<F>>>
Return the evaluation of the given column, over the domain.
fn get_domain(&self, d: Domain) -> D<F>
Source§fn column_domain(&self, col: &Self::Column) -> Domain
fn column_domain(&self, col: &Self::Column) -> Domain
Defines the domain over which the column is evaluated
Source§fn get_constants(&self) -> &Constants<F>
fn get_constants(&self) -> &Constants<F>
Return the constants parameters that the expression might use.
For instance, it can be the matrix used by the linear layer in the
permutation.
Source§fn get_challenges(&self) -> &BerkeleyChallenges<F>
fn get_challenges(&self) -> &BerkeleyChallenges<F>
Return the challenges, coined by the verifier.
fn vanishes_on_zero_knowledge_and_previous_rows( &self, ) -> &'a Evaluations<F, D<F>>
Auto Trait Implementations§
impl<'a, F> Freeze for Environment<'a, F>where
F: Freeze,
impl<'a, F> RefUnwindSafe for Environment<'a, F>where
F: RefUnwindSafe,
impl<'a, F> Send for Environment<'a, F>
impl<'a, F> Sync for Environment<'a, F>
impl<'a, F> Unpin for Environment<'a, F>where
F: Unpin,
impl<'a, F> UnwindSafe for Environment<'a, F>where
F: UnwindSafe + RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more