1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
//! The Cairo language works natively for field elements in the finite field with
//! modulus 0x800000000000011000000000000000000000000000000000000000000000001
//! This is the hexadecimal value for 2 ^ 251 + 17 * 2 ^ 192 + 1
//! Our Pallas curves have 255 bits, so Cairo native instructions will fit.
//! This means that our Cairo implementation can admit a larger domain for
//! immediate values than theirs.
use crate::{flags::*, helper::CairoFieldHelpers};
use ark_ff::Field;
use o1_utils::field_helpers::FieldHelpers;
/// A Cairo word for the runner. Some words are instructions (which fit inside a
/// `u64`). Others are immediate values (any `F` element).
#[derive(Clone, Copy)]
pub struct CairoWord<F>(F);
/// Returns an offset of 16 bits to its biased representation in the interval
/// `[-2^15,2^15)` as a field element
pub fn bias<F: Field>(offset: F) -> F {
offset - F::from(2u16.pow(15u32)) // -2^15 + sum_(i=0..15) b_i * 2^i
}
impl<F: Field> CairoWord<F> {
/// Creates a [CairoWord] from a field element
pub fn new(word: F) -> CairoWord<F> {
CairoWord(word)
}
/// Returns the content of the word as a field element
pub fn word(&self) -> F {
self.0
}
/// Returns i-th bit-flag
fn flag_at(&self, pos: usize) -> F {
self.word().to_bits()[POS_FLAGS + pos].into()
}
}
/// This trait contains methods to obtain the offset decomposition of a
/// [CairoWord]
pub trait Offsets<F> {
/// Returns the destination offset in biased representation
fn off_dst(&self) -> F;
/// Returns the first operand offset in biased representation
fn off_op0(&self) -> F;
/// Returns the second operand offset in biased representation
fn off_op1(&self) -> F;
}
/// This trait contains methods that decompose a field element into [CairoWord]
/// flagbits
pub trait FlagBits<F> {
/// Returns bit-flag for destination register as `F`
fn f_dst_fp(&self) -> F;
/// Returns bit-flag for first operand register as `F`
fn f_op0_fp(&self) -> F;
/// Returns bit-flag for immediate value for second register as `F`
fn f_op1_val(&self) -> F;
/// Returns bit-flag for frame pointer for second register as `F`
fn f_op1_fp(&self) -> F;
/// Returns bit-flag for allocation pointer for second regsiter as `F`
fn f_op1_ap(&self) -> F;
/// Returns bit-flag for addition operation in right side as `F`
fn f_res_add(&self) -> F;
/// Returns bit-flag for multiplication operation in right side as `F`
fn f_res_mul(&self) -> F;
/// Returns bit-flag for program counter update being absolute jump as `F`
fn f_pc_abs(&self) -> F;
/// Returns bit-flag for program counter update being relative jump as `F`
fn f_pc_rel(&self) -> F;
/// Returns bit-flag for program counter update being conditional jump as
/// `F`
fn f_pc_jnz(&self) -> F;
/// Returns bit-flag for allocation counter update being a manual addition
/// as `F`
fn f_ap_add(&self) -> F;
/// Returns bit-flag for allocation counter update being a self increment as
/// `F`
fn f_ap_one(&self) -> F;
/// Returns bit-flag for operation being a call as `F`
fn f_opc_call(&self) -> F;
/// Returns bit-flag for operation being a return as `F`
fn f_opc_ret(&self) -> F;
/// Returns bit-flag for operation being an assert-equal as `F`
fn f_opc_aeq(&self) -> F;
/// Returns bit-flag for 16th position
fn f15(&self) -> F;
}
/// This trait contains methods that decompose a field element into [CairoWord]
/// flagsets
pub trait FlagSets<F> {
/// Returns flagset for destination register
fn dst_reg(&self) -> u8;
/// Returns flagset for first operand register
fn op0_reg(&self) -> u8;
/// Returns flagset for second operand register
fn op1_src(&self) -> u8;
/// Returns flagset for result logics
fn res_log(&self) -> u8;
/// Returns flagset for program counter update
fn pc_up(&self) -> u8;
/// Returns flagset for allocation pointer update
fn ap_up(&self) -> u8;
/// Returns flagset for operation code
fn opcode(&self) -> u8;
}
impl<F: Field> Offsets<F> for CairoWord<F> {
fn off_dst(&self) -> F {
// The least significant 16 bits
bias(self.word().u16_chunk(POS_DST))
}
fn off_op0(&self) -> F {
// From the 32nd bit to the 17th
bias(self.word().u16_chunk(POS_OP0))
}
fn off_op1(&self) -> F {
// From the 48th bit to the 33rd
bias(self.word().u16_chunk(POS_OP1))
}
}
impl<F: Field> FlagBits<F> for CairoWord<F> {
fn f_dst_fp(&self) -> F {
self.flag_at(0)
}
fn f_op0_fp(&self) -> F {
self.flag_at(1)
}
fn f_op1_val(&self) -> F {
self.flag_at(2)
}
fn f_op1_fp(&self) -> F {
self.flag_at(3)
}
fn f_op1_ap(&self) -> F {
self.flag_at(4)
}
fn f_res_add(&self) -> F {
self.flag_at(5)
}
fn f_res_mul(&self) -> F {
self.flag_at(6)
}
fn f_pc_abs(&self) -> F {
self.flag_at(7)
}
fn f_pc_rel(&self) -> F {
self.flag_at(8)
}
fn f_pc_jnz(&self) -> F {
self.flag_at(9)
}
fn f_ap_add(&self) -> F {
self.flag_at(10)
}
fn f_ap_one(&self) -> F {
self.flag_at(11)
}
fn f_opc_call(&self) -> F {
self.flag_at(12)
}
fn f_opc_ret(&self) -> F {
self.flag_at(13)
}
fn f_opc_aeq(&self) -> F {
self.flag_at(14)
}
fn f15(&self) -> F {
self.flag_at(15)
}
}
impl<F: Field> FlagSets<F> for CairoWord<F> {
fn dst_reg(&self) -> u8 {
// dst_reg = fDST_REG
self.f_dst_fp().lsb()
}
fn op0_reg(&self) -> u8 {
// op0_reg = fOP0_REG
self.f_op0_fp().lsb()
}
fn op1_src(&self) -> u8 {
// op1_src = 4*fOP1_AP + 2*fOP1_FP + fOP1_VAL
2 * (2 * self.f_op1_ap().lsb() + self.f_op1_fp().lsb()) + self.f_op1_val().lsb()
}
fn res_log(&self) -> u8 {
// res_log = 2*fRES_MUL + fRES_ADD
2 * self.f_res_mul().lsb() + self.f_res_add().lsb()
}
fn pc_up(&self) -> u8 {
// pc_up = 4*fPC_JNZ + 2*fPC_REL + fPC_ABS
2 * (2 * self.f_pc_jnz().lsb() + self.f_pc_rel().lsb()) + self.f_pc_abs().lsb()
}
fn ap_up(&self) -> u8 {
// ap_up = 2*fAP_ONE + fAP_ADD
2 * self.f_ap_one().lsb() + self.f_ap_add().lsb()
}
fn opcode(&self) -> u8 {
// opcode = 4*fOPC_AEQ + 2*fOPC_RET + fOPC_CALL
2 * (2 * self.f_opc_aeq().lsb() + self.f_opc_ret().lsb()) + self.f_opc_call().lsb()
}
}