1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//! This module implements the KZG protocol described in the paper
//! [Constant-Size Commitments to Polynomials and Their
//! Applications](https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf)
//! by Kate, Zaverucha and Goldberg, often referred to as the KZG10 paper.
//!
//! The protocol requires a structured reference string (SRS) that contains
//! powers of a generator of a group, and a pairing friendly curve.
//!
//! The pairing friendly curve requirement is hidden in the Pairing trait
//! parameter.
use crate::{
commitment::*, ipa::SRS, utils::combine_polys, CommitmentError, PolynomialsToCombine,
SRS as SRSTrait,
};
use ark_ec::{pairing::Pairing, AffineRepr, VariableBaseMSM};
use ark_ff::{One, PrimeField, Zero};
use ark_poly::{
univariate::{DenseOrSparsePolynomial, DensePolynomial},
DenseUVPolynomial, EvaluationDomain, Evaluations, Polynomial, Radix2EvaluationDomain as D,
};
use mina_poseidon::FqSponge;
use rand::thread_rng;
use rand_core::{CryptoRng, RngCore};
use serde::{Deserialize, Serialize};
use serde_with::serde_as;
use std::ops::Neg;
/// Combine the (chunked) evaluations of multiple polynomials.
/// This function returns the accumulation of the evaluations, scaled by
/// `polyscale`.
/// If no evaluation is given, the function returns an empty vector.
/// It does also suppose that for each evaluation, the number of evaluations is
/// the same. It is not constrained yet in the interface, but it should be. If
/// one list has not the same size, it will be shrunk to the size of the first
/// element of the list.
/// For instance, if we have 3 polynomials P1, P2, P3 evaluated at the points
/// ζ and ζω (like in vanilla PlonK), and for each polynomial, we have two
/// chunks, i.e. we have
/// ```text
/// 2 chunks of P1
/// /---------------\
/// E1 = [(P1_1(ζ), P1_2(ζ)), (P1_1(ζω), P1_2(ζω))]
/// E2 = [(P2_1(ζ), P2_2(ζ)), (P2_1(ζω), P2_2(ζω))]
/// E3 = [(P3_1(ζ), P3_2(ζ)), (P3_1(ζω), P3_2(ζω))]
/// ```
/// The output will be a list of 3 elements, equal to:
/// ```text
/// P1_1(ζ) + P1_2(ζ) * polyscale + P1_1(ζω) polyscale^2 + P1_2(ζω) * polyscale^3
/// P2_1(ζ) + P2_2(ζ) * polyscale + P2_1(ζω) polyscale^2 + P2_2(ζω) * polyscale^3
/// ```
pub fn combine_evaluations<G: CommitmentCurve>(
evaluations: &[Evaluation<G>],
polyscale: G::ScalarField,
) -> Vec<G::ScalarField> {
let mut polyscale_i = G::ScalarField::one();
let mut acc = {
let num_evals = if !evaluations.is_empty() {
evaluations[0].evaluations.len()
} else {
0
};
vec![G::ScalarField::zero(); num_evals]
};
for Evaluation { evaluations, .. } in evaluations.iter().filter(|x| !x.commitment.is_empty()) {
// IMPROVEME: we could have a flat array that would contain all the
// evaluations and all the chunks. It would avoid fetching the memory
// and avoid indirection into RAM.
// We could have a single flat array.
// iterating over the polynomial segments
for chunk_idx in 0..evaluations[0].len() {
// supposes that all evaluations are of the same size
for eval_pt_idx in 0..evaluations.len() {
acc[eval_pt_idx] += evaluations[eval_pt_idx][chunk_idx] * polyscale_i;
}
polyscale_i *= polyscale;
}
}
acc
}
#[serde_as]
#[derive(Debug, Serialize, Deserialize)]
#[serde(
bound = "Pair::G1Affine: ark_serialize::CanonicalDeserialize + ark_serialize::CanonicalSerialize"
)]
pub struct KZGProof<Pair: Pairing> {
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub quotient: Pair::G1Affine,
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
/// A blinding factor used to hide the polynomial, if necessary
pub blinding: <Pair::G1Affine as AffineRepr>::ScalarField,
}
impl<Pair: Pairing> Default for KZGProof<Pair> {
fn default() -> Self {
Self {
quotient: Pair::G1Affine::generator(),
blinding: <Pair::G1Affine as AffineRepr>::ScalarField::zero(),
}
}
}
impl<Pair: Pairing> Clone for KZGProof<Pair> {
fn clone(&self) -> Self {
Self {
quotient: self.quotient,
blinding: self.blinding,
}
}
}
#[derive(Debug, PartialEq, Serialize, Deserialize)]
/// Define a structured reference string (i.e. SRS) for the KZG protocol.
/// The SRS consists of powers of an element `g^x` for some toxic waste `x`.
///
/// The SRS is formed using what we call a "trusted setup". For now, the setup
/// is created using the method `create_trusted_setup`.
pub struct PairingSRS<Pair: Pairing> {
/// The full SRS is the one used by the prover. Can be seen as the "proving
/// key"/"secret key"
pub full_srs: SRS<Pair::G1Affine>,
/// SRS to be used by the verifier. Can be seen as the "verification
/// key"/"public key".
pub verifier_srs: SRS<Pair::G2Affine>,
}
impl<
F: PrimeField,
G: CommitmentCurve<ScalarField = F>,
G2: CommitmentCurve<ScalarField = F>,
Pair: Pairing<G1Affine = G, G2Affine = G2>,
> PairingSRS<Pair>
{
/// Create a trusted setup for the KZG protocol.
/// The setup is created using a toxic waste `toxic_waste` and a depth
/// `depth`.
pub fn create_trusted_setup(toxic_waste: F, depth: usize) -> Self {
let full_srs = unsafe { SRS::create_trusted_setup(toxic_waste, depth) };
let verifier_srs = unsafe { SRS::create_trusted_setup(toxic_waste, 3) };
Self {
full_srs,
verifier_srs,
}
}
}
impl<Pair: Pairing> Default for PairingSRS<Pair> {
fn default() -> Self {
Self {
full_srs: SRS::default(),
verifier_srs: SRS::default(),
}
}
}
impl<Pair: Pairing> Clone for PairingSRS<Pair> {
fn clone(&self) -> Self {
Self {
full_srs: self.full_srs.clone(),
verifier_srs: self.verifier_srs.clone(),
}
}
}
impl<
F: PrimeField,
G: CommitmentCurve<ScalarField = F>,
G2: CommitmentCurve<ScalarField = F>,
Pair: Pairing<G1Affine = G, G2Affine = G2>,
> crate::OpenProof<G> for KZGProof<Pair>
{
type SRS = PairingSRS<Pair>;
/// Parameters:
/// - `srs`: the structured reference string
/// - `plnms`: vector of polynomials with optional degree bound and
/// commitment randomness
/// - `elm`: vector of evaluation points
/// - `polyscale`: scaling factor for polynoms
/// group_maps, sponge, rng and evalscale are not used. The parameters are
/// kept to fit the trait and to be used generically.
fn open<EFqSponge, RNG, D: EvaluationDomain<F>>(
srs: &Self::SRS,
_group_map: &<G as CommitmentCurve>::Map,
plnms: PolynomialsToCombine<G, D>,
elm: &[<G as AffineRepr>::ScalarField],
polyscale: <G as AffineRepr>::ScalarField,
_evalscale: <G as AffineRepr>::ScalarField,
_sponge: EFqSponge,
_rng: &mut RNG,
) -> Self
where
EFqSponge: Clone + FqSponge<<G as AffineRepr>::BaseField, G, F>,
RNG: RngCore + CryptoRng,
{
KZGProof::create(srs, plnms, elm, polyscale).unwrap()
}
fn verify<EFqSponge, RNG>(
srs: &Self::SRS,
_group_map: &G::Map,
batch: &mut [BatchEvaluationProof<G, EFqSponge, Self>],
_rng: &mut RNG,
) -> bool
where
EFqSponge: FqSponge<G::BaseField, G, F>,
RNG: RngCore + CryptoRng,
{
for BatchEvaluationProof {
sponge: _,
evaluations,
evaluation_points,
polyscale,
evalscale: _,
opening,
combined_inner_product: _,
} in batch.iter()
{
if !opening.verify(srs, evaluations, *polyscale, evaluation_points) {
return false;
}
}
true
}
}
impl<
F: PrimeField,
G: CommitmentCurve<ScalarField = F>,
G2: CommitmentCurve<ScalarField = F>,
Pair: Pairing<G1Affine = G, G2Affine = G2>,
> SRSTrait<G> for PairingSRS<Pair>
{
fn max_poly_size(&self) -> usize {
self.full_srs.max_poly_size()
}
fn get_lagrange_basis(&self, domain: D<G::ScalarField>) -> &Vec<PolyComm<G>> {
self.full_srs.get_lagrange_basis(domain)
}
fn get_lagrange_basis_from_domain_size(&self, domain_size: usize) -> &Vec<PolyComm<G>> {
self.full_srs
.get_lagrange_basis_from_domain_size(domain_size)
}
fn blinding_commitment(&self) -> G {
self.full_srs.blinding_commitment()
}
fn mask_custom(
&self,
com: PolyComm<G>,
blinders: &PolyComm<G::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
self.full_srs.mask_custom(com, blinders)
}
fn mask(
&self,
comm: PolyComm<G>,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
self.full_srs.mask(comm, rng)
}
fn commit(
&self,
plnm: &DensePolynomial<F>,
num_chunks: usize,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
self.full_srs.commit(plnm, num_chunks, rng)
}
fn commit_non_hiding(
&self,
plnm: &DensePolynomial<G::ScalarField>,
num_chunks: usize,
) -> PolyComm<G> {
self.full_srs.commit_non_hiding(plnm, num_chunks)
}
fn commit_custom(
&self,
plnm: &DensePolynomial<<G>::ScalarField>,
num_chunks: usize,
blinders: &PolyComm<<G>::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
self.full_srs.commit_custom(plnm, num_chunks, blinders)
}
fn commit_evaluations_non_hiding(
&self,
domain: D<G::ScalarField>,
plnm: &Evaluations<G::ScalarField, D<G::ScalarField>>,
) -> PolyComm<G> {
self.full_srs.commit_evaluations_non_hiding(domain, plnm)
}
fn commit_evaluations(
&self,
domain: D<G::ScalarField>,
plnm: &Evaluations<G::ScalarField, D<G::ScalarField>>,
rng: &mut (impl RngCore + CryptoRng),
) -> BlindedCommitment<G> {
self.full_srs.commit_evaluations(domain, plnm, rng)
}
fn commit_evaluations_custom(
&self,
domain: D<<G>::ScalarField>,
plnm: &Evaluations<<G>::ScalarField, D<<G>::ScalarField>>,
blinders: &PolyComm<<G>::ScalarField>,
) -> Result<BlindedCommitment<G>, CommitmentError> {
self.full_srs
.commit_evaluations_custom(domain, plnm, blinders)
}
fn create(depth: usize) -> Self {
let mut rng = thread_rng();
let toxic_waste = G::ScalarField::rand(&mut rng);
Self::create_trusted_setup(toxic_waste, depth)
}
fn size(&self) -> usize {
self.full_srs.g.len()
}
}
/// The polynomial that evaluates to each of `evals` for the respective `elm`s.
/// For now, only works for 2 evaluations points.
/// `elm` is the vector of evaluation points and `evals` is the vector of
/// evaluations at those points.
fn eval_polynomial<F: PrimeField>(elm: &[F], evals: &[F]) -> DensePolynomial<F> {
assert_eq!(elm.len(), evals.len());
let (zeta, zeta_omega) = if elm.len() == 2 {
(elm[0], elm[1])
} else {
todo!()
};
let (eval_zeta, eval_zeta_omega) = if evals.len() == 2 {
(evals[0], evals[1])
} else {
todo!()
};
// The polynomial that evaluates to `p(ζ)` at `ζ` and `p(ζω)` at
// `ζω`.
// We write `p(x) = a + bx`, which gives
// ```text
// p(ζ) = a + b * ζ
// p(ζω) = a + b * ζω
// ```
// and so
// ```text
// b = (p(ζω) - p(ζ)) / (ζω - ζ)
// a = p(ζ) - b * ζ
// ```
let b = (eval_zeta_omega - eval_zeta) / (zeta_omega - zeta);
let a = eval_zeta - b * zeta;
DensePolynomial::from_coefficients_slice(&[a, b])
}
/// The polynomial that evaluates to `0` at the evaluation points.
fn divisor_polynomial<F: PrimeField>(elm: &[F]) -> DensePolynomial<F> {
elm.iter()
.map(|value| DensePolynomial::from_coefficients_slice(&[-(*value), F::one()]))
.reduce(|poly1, poly2| &poly1 * &poly2)
.unwrap()
}
impl<
F: PrimeField,
G: CommitmentCurve<ScalarField = F>,
G2: CommitmentCurve<ScalarField = F>,
Pair: Pairing<G1Affine = G, G2Affine = G2>,
> KZGProof<Pair>
{
/// Create a KZG proof.
/// Parameters:
/// - `srs`: the structured reference string used to commit
/// to the polynomials
/// - `plnms`: the list of polynomials to open.
/// The type is simply an alias to handle the polynomials in evaluations or
/// coefficients forms.
/// - `elm`: vector of evaluation points. Note that it only works for two
/// elements for now.
/// - `polyscale`: a challenge to batch the polynomials.
pub fn create<D: EvaluationDomain<F>>(
srs: &PairingSRS<Pair>,
plnms: PolynomialsToCombine<G, D>,
elm: &[F],
polyscale: F,
) -> Option<Self> {
let (p, blinding_factor) = combine_polys::<G, D>(plnms, polyscale, srs.full_srs.g.len());
let evals: Vec<_> = elm.iter().map(|pt| p.evaluate(pt)).collect();
let quotient_poly = {
// This is where the condition on two points is enforced.
let eval_polynomial = eval_polynomial(elm, &evals);
let divisor_polynomial = divisor_polynomial(elm);
let numerator_polynomial = &p - &eval_polynomial;
let (quotient, remainder) = DenseOrSparsePolynomial::divide_with_q_and_r(
&numerator_polynomial.into(),
&divisor_polynomial.into(),
)?;
if !remainder.is_zero() {
return None;
}
quotient
};
let quotient = srs
.full_srs
.commit_non_hiding("ient_poly, 1)
.get_first_chunk();
Some(KZGProof {
quotient,
blinding: blinding_factor,
})
}
/// Verify a proof. Note that it only works for two elements for now, i.e.
/// elm must be of size 2.
/// Also, chunking is not supported.
pub fn verify(
&self,
srs: &PairingSRS<Pair>, // SRS
evaluations: &[Evaluation<G>], // commitments to the polynomials
polyscale: F, // scaling factor for polynoms
elm: &[F], // vector of evaluation points
) -> bool {
let poly_commitment: G::Group = {
let mut scalars: Vec<F> = Vec::new();
let mut points = Vec::new();
combine_commitments(
evaluations,
&mut scalars,
&mut points,
polyscale,
F::one(), /* TODO: This is inefficient */
);
let scalars: Vec<_> = scalars.iter().map(|x| x.into_bigint()).collect();
G::Group::msm_bigint(&points, &scalars)
};
// IMPROVEME: we could have a single flat array for all evaluations, see
// same comment in combine_evaluations
let evals = combine_evaluations(evaluations, polyscale);
let blinding_commitment = srs.full_srs.h.mul(self.blinding);
// Taking the first element of the commitment, i.e. no support for chunking.
let divisor_commitment = srs
.verifier_srs
.commit_non_hiding(&divisor_polynomial(elm), 1)
.get_first_chunk();
// Taking the first element of the commitment, i.e. no support for chunking.
let eval_commitment = srs
.full_srs
.commit_non_hiding(&eval_polynomial(elm, &evals), 1)
.get_first_chunk()
.into_group();
let numerator_commitment = { poly_commitment - eval_commitment - blinding_commitment };
// We compute the result of the multiplication of two miller loop,
// to apply only one final exponentation
let to_loop_left = [
ark_ec::pairing::prepare_g1::<Pair>(numerator_commitment),
// Note that we do a neagtion here, to put everything on the same side
ark_ec::pairing::prepare_g1::<Pair>(self.quotient.into_group().neg()),
];
let to_loop_right = [
ark_ec::pairing::prepare_g2::<Pair>(Pair::G2Affine::generator()),
ark_ec::pairing::prepare_g2::<Pair>(divisor_commitment),
];
// the result here is numerator_commitment * 1 - quotient * divisor_commitment
// Note that the unwrap cannot fail as the output of a miller loop is non zero
let res = Pair::multi_pairing(to_loop_left, to_loop_right);
res.is_zero()
}
}