1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//! This module implements Dlog-based polynomial commitment schema.
//! The following functionality is implemented
//!
//! 1. Commit to polynomial with its max degree
//! 2. Open polynomial commitment batch at the given evaluation point and
//! scaling factor scalar producing the batched opening proof
//! 3. Verify batch of batched opening proofs

use ark_ec::{
    models::short_weierstrass::Affine as SWJAffine, short_weierstrass::SWCurveConfig, AffineRepr,
    CurveGroup, VariableBaseMSM,
};
use ark_ff::{BigInteger, Field, One, PrimeField, Zero};
use ark_poly::univariate::DensePolynomial;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use groupmap::{BWParameters, GroupMap};
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::{field_helpers::product, ExtendedDensePolynomial as _};
use serde::{de::Visitor, Deserialize, Serialize};
use serde_with::{
    de::DeserializeAsWrap, ser::SerializeAsWrap, serde_as, DeserializeAs, SerializeAs,
};
use std::{
    iter::Iterator,
    marker::PhantomData,
    ops::{Add, AddAssign, Sub},
};

/// Represent a polynomial commitment when the type is instantiated with a
/// curve.
///
/// The structure also handles chunking, i.e. when we aim to handle polynomials
/// whose degree is higher than the SRS size. For this reason, we do use a
/// vector for the field `chunks`.
///
/// Note that the parameter `C` is not constrained to be a curve, therefore in
/// some places in the code, `C` can refer to a scalar field element. For
/// instance, `PolyComm<G::ScalarField>` is used to represent the evaluation of the
/// polynomial bound by a specific commitment, at a particular evaluation point.
#[serde_as]
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq)]
#[serde(bound = "C: CanonicalDeserialize + CanonicalSerialize")]
pub struct PolyComm<C> {
    #[serde_as(as = "Vec<o1_utils::serialization::SerdeAs>")]
    pub chunks: Vec<C>,
}

impl<C> PolyComm<C>
where
    C: CommitmentCurve,
{
    /// Multiplies each commitment chunk of f with powers of zeta^n
    pub fn chunk_commitment(&self, zeta_n: C::ScalarField) -> Self {
        let mut res = C::Group::zero();
        // use Horner's to compute chunk[0] + z^n chunk[1] + z^2n chunk[2] + ...
        // as ( chunk[-1] * z^n + chunk[-2] ) * z^n + chunk[-3]
        // (https://en.wikipedia.org/wiki/Horner%27s_method)
        for chunk in self.chunks.iter().rev() {
            res *= zeta_n;
            res.add_assign(chunk);
        }

        PolyComm {
            chunks: vec![res.into_affine()],
        }
    }
}

impl<F> PolyComm<F>
where
    F: Field,
{
    /// Multiplies each blinding chunk of f with powers of zeta^n
    pub fn chunk_blinding(&self, zeta_n: F) -> F {
        let mut res = F::zero();
        // use Horner's to compute chunk[0] + z^n chunk[1] + z^2n chunk[2] + ...
        // as ( chunk[-1] * z^n + chunk[-2] ) * z^n + chunk[-3]
        // (https://en.wikipedia.org/wiki/Horner%27s_method)
        for chunk in self.chunks.iter().rev() {
            res *= zeta_n;
            res += chunk
        }
        res
    }
}

impl<'a, G> IntoIterator for &'a PolyComm<G> {
    type Item = &'a G;
    type IntoIter = std::slice::Iter<'a, G>;

    fn into_iter(self) -> Self::IntoIter {
        self.chunks.iter()
    }
}

/// A commitment to a polynomial with some blinding factors.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct BlindedCommitment<G>
where
    G: CommitmentCurve,
{
    pub commitment: PolyComm<G>,
    pub blinders: PolyComm<G::ScalarField>,
}

impl<T> PolyComm<T> {
    pub fn new(chunks: Vec<T>) -> Self {
        Self { chunks }
    }
}

impl<T, U> SerializeAs<PolyComm<T>> for PolyComm<U>
where
    U: SerializeAs<T>,
{
    fn serialize_as<S>(source: &PolyComm<T>, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serializer.collect_seq(
            source
                .chunks
                .iter()
                .map(|e| SerializeAsWrap::<T, U>::new(e)),
        )
    }
}

impl<'de, T, U> DeserializeAs<'de, PolyComm<T>> for PolyComm<U>
where
    U: DeserializeAs<'de, T>,
{
    fn deserialize_as<D>(deserializer: D) -> Result<PolyComm<T>, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        struct SeqVisitor<T, U> {
            marker: PhantomData<(T, U)>,
        }

        impl<'de, T, U> Visitor<'de> for SeqVisitor<T, U>
        where
            U: DeserializeAs<'de, T>,
        {
            type Value = PolyComm<T>;

            fn expecting(&self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
                formatter.write_str("a sequence")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: serde::de::SeqAccess<'de>,
            {
                #[allow(clippy::redundant_closure_call)]
                let mut chunks = vec![];

                while let Some(value) = seq
                    .next_element()?
                    .map(|v: DeserializeAsWrap<T, U>| v.into_inner())
                {
                    chunks.push(value);
                }

                Ok(PolyComm::new(chunks))
            }
        }

        let visitor = SeqVisitor::<T, U> {
            marker: PhantomData,
        };
        deserializer.deserialize_seq(visitor)
    }
}

impl<A: Copy + Clone + CanonicalDeserialize + CanonicalSerialize> PolyComm<A> {
    pub fn map<B, F>(&self, mut f: F) -> PolyComm<B>
    where
        F: FnMut(A) -> B,
        B: CanonicalDeserialize + CanonicalSerialize,
    {
        let chunks = self.chunks.iter().map(|x| f(*x)).collect();
        PolyComm::new(chunks)
    }

    /// Returns the number of chunks.
    pub fn len(&self) -> usize {
        self.chunks.len()
    }

    /// Returns `true` if the commitment is empty.
    pub fn is_empty(&self) -> bool {
        self.chunks.is_empty()
    }

    // TODO: if all callers end up calling unwrap, just call this zip_eq and
    // panic here (and document the panic)
    pub fn zip<B: Copy + CanonicalDeserialize + CanonicalSerialize>(
        &self,
        other: &PolyComm<B>,
    ) -> Option<PolyComm<(A, B)>> {
        if self.chunks.len() != other.chunks.len() {
            return None;
        }
        let chunks = self
            .chunks
            .iter()
            .zip(other.chunks.iter())
            .map(|(x, y)| (*x, *y))
            .collect();
        Some(PolyComm::new(chunks))
    }

    /// Return only the first chunk
    /// Getting this single value is relatively common in the codebase, even
    /// though we should not do this, and abstract the chunks in the structure.
    pub fn get_first_chunk(&self) -> A {
        self.chunks[0]
    }
}

/// Inside the circuit, we have a specialized scalar multiplication which computes
/// either
///
/// ```ignore
/// |g: G, x: G::ScalarField| g.scale(x + 2^n)
/// ```
///
/// if the scalar field of G is greater than the size of the base field
/// and
///
/// ```ignore
/// |g: G, x: G::ScalarField| g.scale(2*x + 2^n)
/// ```
///
/// otherwise. So, if we want to actually scale by `x`, we need to apply the
/// inverse function of `|x| x + 2^n` (or of `|x| 2*x + 2^n` in the other case),
/// before supplying the scalar to our in-circuit scalar-multiplication
/// function. This computes that inverse function.
/// Namely,
///
/// ```ignore
/// |x: G::ScalarField| x - 2^n
/// ```
///
/// when the scalar field is larger than the base field and
///
/// ```ignore
/// |x: G::ScalarField| (x - 2^n) / 2
/// ```
///
/// in the other case.
pub fn shift_scalar<G: AffineRepr>(x: G::ScalarField) -> G::ScalarField
where
    G::BaseField: PrimeField,
{
    let n1 = <G::ScalarField as PrimeField>::MODULUS;
    let n2 = <G::ScalarField as PrimeField>::BigInt::from_bits_le(
        &<G::BaseField as PrimeField>::MODULUS.to_bits_le()[..],
    );
    let two: G::ScalarField = (2u64).into();
    let two_pow = two.pow([<G::ScalarField as PrimeField>::MODULUS_BIT_SIZE as u64]);
    if n1 < n2 {
        (x - (two_pow + G::ScalarField::one())) / two
    } else {
        x - two_pow
    }
}

impl<'a, 'b, C: AffineRepr> Add<&'a PolyComm<C>> for &'b PolyComm<C> {
    type Output = PolyComm<C>;

    fn add(self, other: &'a PolyComm<C>) -> PolyComm<C> {
        let mut chunks = vec![];
        let n1 = self.chunks.len();
        let n2 = other.chunks.len();
        for i in 0..std::cmp::max(n1, n2) {
            let pt = if i < n1 && i < n2 {
                (self.chunks[i] + other.chunks[i]).into_affine()
            } else if i < n1 {
                self.chunks[i]
            } else {
                other.chunks[i]
            };
            chunks.push(pt);
        }
        PolyComm::new(chunks)
    }
}

impl<'a, 'b, C: AffineRepr + Sub<Output = C::Group>> Sub<&'a PolyComm<C>> for &'b PolyComm<C> {
    type Output = PolyComm<C>;

    fn sub(self, other: &'a PolyComm<C>) -> PolyComm<C> {
        let mut chunks = vec![];
        let n1 = self.chunks.len();
        let n2 = other.chunks.len();
        for i in 0..std::cmp::max(n1, n2) {
            let pt = if i < n1 && i < n2 {
                (self.chunks[i] - other.chunks[i]).into_affine()
            } else if i < n1 {
                self.chunks[i]
            } else {
                other.chunks[i]
            };
            chunks.push(pt);
        }
        PolyComm::new(chunks)
    }
}

impl<C: AffineRepr> PolyComm<C> {
    pub fn scale(&self, c: C::ScalarField) -> PolyComm<C> {
        PolyComm {
            chunks: self.chunks.iter().map(|g| g.mul(c).into_affine()).collect(),
        }
    }

    /// Performs a multi-scalar multiplication between scalars `elm` and commitments `com`.
    /// If both are empty, returns a commitment of length 1 containing the point at infinity.
    ///
    /// ## Panics
    ///
    /// Panics if `com` and `elm` are not of the same size.
    pub fn multi_scalar_mul(com: &[&PolyComm<C>], elm: &[C::ScalarField]) -> Self {
        assert_eq!(com.len(), elm.len());

        if com.is_empty() || elm.is_empty() {
            return Self::new(vec![C::zero()]);
        }

        let all_scalars: Vec<_> = elm.iter().map(|s| s.into_bigint()).collect();

        let elems_size = Iterator::max(com.iter().map(|c| c.chunks.len())).unwrap();
        let mut chunks = Vec::with_capacity(elems_size);

        for chunk in 0..elems_size {
            let (points, scalars): (Vec<_>, Vec<_>) = com
                .iter()
                .zip(&all_scalars)
                // get rid of scalars that don't have an associated chunk
                .filter_map(|(com, scalar)| com.chunks.get(chunk).map(|c| (c, scalar)))
                .unzip();

            let chunk_msm = C::Group::msm_bigint(&points, &scalars);
            chunks.push(chunk_msm.into_affine());
        }
        Self::new(chunks)
    }
}

/// Returns (1 + chal[-1] x)(1 + chal[-2] x^2)(1 + chal[-3] x^4) ...
/// It's "step 8: Define the univariate polynomial" of
/// appendix A.2 of <https://eprint.iacr.org/2020/499>
pub fn b_poly<F: Field>(chals: &[F], x: F) -> F {
    let k = chals.len();

    let mut pow_twos = vec![x];

    for i in 1..k {
        pow_twos.push(pow_twos[i - 1].square());
    }

    product((0..k).map(|i| (F::one() + (chals[i] * pow_twos[k - 1 - i]))))
}

pub fn b_poly_coefficients<F: Field>(chals: &[F]) -> Vec<F> {
    let rounds = chals.len();
    let s_length = 1 << rounds;
    let mut s = vec![F::one(); s_length];
    let mut k: usize = 0;
    let mut pow: usize = 1;
    for i in 1..s_length {
        k += if i == pow { 1 } else { 0 };
        pow <<= if i == pow { 1 } else { 0 };
        s[i] = s[i - (pow >> 1)] * chals[rounds - 1 - (k - 1)];
    }
    s
}

pub fn squeeze_prechallenge<Fq: Field, G, Fr: Field, EFqSponge: FqSponge<Fq, G, Fr>>(
    sponge: &mut EFqSponge,
) -> ScalarChallenge<Fr> {
    ScalarChallenge(sponge.challenge())
}

pub fn squeeze_challenge<Fq: Field, G, Fr: PrimeField, EFqSponge: FqSponge<Fq, G, Fr>>(
    endo_r: &Fr,
    sponge: &mut EFqSponge,
) -> Fr {
    squeeze_prechallenge(sponge).to_field(endo_r)
}

pub fn absorb_commitment<Fq: Field, G: Clone, Fr: PrimeField, EFqSponge: FqSponge<Fq, G, Fr>>(
    sponge: &mut EFqSponge,
    commitment: &PolyComm<G>,
) {
    sponge.absorb_g(&commitment.chunks);
}

/// A useful trait extending AffineRepr for commitments.
/// Unfortunately, we can't specify that `AffineRepr<BaseField : PrimeField>`,
/// so usage of this traits must manually bind `G::BaseField: PrimeField`.
pub trait CommitmentCurve: AffineRepr + Sub<Output = Self::Group> {
    type Params: SWCurveConfig;
    type Map: GroupMap<Self::BaseField>;

    fn to_coordinates(&self) -> Option<(Self::BaseField, Self::BaseField)>;
    fn of_coordinates(x: Self::BaseField, y: Self::BaseField) -> Self;
}

/// A trait extending CommitmentCurve for endomorphisms.
/// Unfortunately, we can't specify that `AffineRepr<BaseField : PrimeField>`,
/// so usage of this traits must manually bind `G::BaseField: PrimeField`.
pub trait EndoCurve: CommitmentCurve {
    /// Combine where x1 = one
    fn combine_one(g1: &[Self], g2: &[Self], x2: Self::ScalarField) -> Vec<Self> {
        crate::combine::window_combine(g1, g2, Self::ScalarField::one(), x2)
    }

    /// Combine where x1 = one
    fn combine_one_endo(
        endo_r: Self::ScalarField,
        _endo_q: Self::BaseField,
        g1: &[Self],
        g2: &[Self],
        x2: ScalarChallenge<Self::ScalarField>,
    ) -> Vec<Self> {
        crate::combine::window_combine(g1, g2, Self::ScalarField::one(), x2.to_field(&endo_r))
    }

    fn combine(
        g1: &[Self],
        g2: &[Self],
        x1: Self::ScalarField,
        x2: Self::ScalarField,
    ) -> Vec<Self> {
        crate::combine::window_combine(g1, g2, x1, x2)
    }
}

impl<P: SWCurveConfig + Clone> CommitmentCurve for SWJAffine<P> {
    type Params = P;
    type Map = BWParameters<P>;

    fn to_coordinates(&self) -> Option<(Self::BaseField, Self::BaseField)> {
        if self.infinity {
            None
        } else {
            Some((self.x, self.y))
        }
    }

    fn of_coordinates(x: P::BaseField, y: P::BaseField) -> SWJAffine<P> {
        SWJAffine::<P>::new_unchecked(x, y)
    }
}

impl<P: SWCurveConfig + Clone> EndoCurve for SWJAffine<P> {
    fn combine_one(g1: &[Self], g2: &[Self], x2: Self::ScalarField) -> Vec<Self> {
        crate::combine::affine_window_combine_one(g1, g2, x2)
    }

    fn combine_one_endo(
        _endo_r: Self::ScalarField,
        endo_q: Self::BaseField,
        g1: &[Self],
        g2: &[Self],
        x2: ScalarChallenge<Self::ScalarField>,
    ) -> Vec<Self> {
        crate::combine::affine_window_combine_one_endo(endo_q, g1, g2, x2)
    }

    fn combine(
        g1: &[Self],
        g2: &[Self],
        x1: Self::ScalarField,
        x2: Self::ScalarField,
    ) -> Vec<Self> {
        crate::combine::affine_window_combine(g1, g2, x1, x2)
    }
}

/// Computes the linearization of the evaluations of a (potentially
/// split) polynomial.
///
/// Each polynomial in `polys` is represented by a matrix where the
/// rows correspond to evaluated points, and the columns represent
/// potential segments (if a polynomial was split in several parts).
///
/// Elements in `evaluation_points` are several discrete points on which
/// we evaluate polynomials, e.g. `[zeta,zeta*w]`. See `PointEvaluations`.
///
/// Note that if one of the polynomial comes specified with a degree
/// bound, the evaluation for the last segment is potentially shifted
/// to meet the proof.
///
/// Returns
/// ```text
/// |polys| |segments[k]|
///    Σ         Σ         polyscale^{k*n+i} (Σ polys[k][j][i] * evalscale^j)
///  k = 1     i = 1                          j
/// ```
#[allow(clippy::type_complexity)]
pub fn combined_inner_product<F: PrimeField>(
    polyscale: &F,
    evalscale: &F,
    // TODO(mimoo): needs a type that can get you evaluations or segments
    polys: &[Vec<Vec<F>>],
) -> F {
    // final combined evaluation result
    let mut res = F::zero();
    // polyscale^i
    let mut polyscale_i = F::one();

    for evals_tr in polys.iter().filter(|evals_tr| !evals_tr[0].is_empty()) {
        // Transpose the evaluations.
        // evals[i] = {evals_tr[j][i]}_j now corresponds to a column in evals_tr,
        // representing a segment.
        let evals: Vec<_> = (0..evals_tr[0].len())
            .map(|i| evals_tr.iter().map(|v| v[i]).collect::<Vec<_>>())
            .collect();

        // Iterating over the polynomial segments.
        // Each segment gets its own polyscale^i, each segment element j is multiplied by evalscale^j.
        // Given that polyscale_i = polyscale^i0 at this point, after this loop we have:
        //
        //    res += Σ polyscale^{i0+i} ( Σ evals_tr[j][i] * evalscale^j )
        //           i                    j
        //
        for eval in &evals {
            // p_i(evalscale)
            let term = DensePolynomial::<F>::eval_polynomial(eval, *evalscale);
            res += &(polyscale_i * term);
            polyscale_i *= polyscale;
        }
    }
    res
}

/// Contains the evaluation of a polynomial commitment at a set of points.
pub struct Evaluation<G>
where
    G: AffineRepr,
{
    /// The commitment of the polynomial being evaluated.
    /// Note that PolyComm contains a vector of commitments, which handles the
    /// case when chunking is used, i.e. when the polynomial degree is higher
    /// than the SRS size.
    pub commitment: PolyComm<G>,

    /// Contains an evaluation table. For instance, for vanilla PlonK, it
    /// would be a vector of (chunked) evaluations at ζ and ζω.
    /// The outer vector would be the evaluations at the different points (e.g.
    /// ζ and ζω for vanilla PlonK) and the inner vector would be the chunks of
    /// the polynomial.
    pub evaluations: Vec<Vec<G::ScalarField>>,
}

/// Contains the batch evaluation
pub struct BatchEvaluationProof<'a, G, EFqSponge, OpeningProof>
where
    G: AffineRepr,
    EFqSponge: FqSponge<G::BaseField, G, G::ScalarField>,
{
    /// Sponge used to coin and absorb values and simulate
    /// non-interactivity using the Fiat-Shamir transformation.
    pub sponge: EFqSponge,
    /// A list of evaluations, each supposed to correspond to a different
    /// polynomial.
    pub evaluations: Vec<Evaluation<G>>,
    /// The actual evaluation points. Each field `evaluations` of each structure
    /// of `Evaluation` should have the same (outer) length.
    pub evaluation_points: Vec<G::ScalarField>,
    /// A challenge to combine polynomials. Powers of this point will be used,
    /// hence the name.
    pub polyscale: G::ScalarField,
    /// A challenge to aggregate multiple evaluation points.
    pub evalscale: G::ScalarField,
    /// The opening proof.
    pub opening: &'a OpeningProof,
    pub combined_inner_product: G::ScalarField,
}

/// This function populates the parameters `scalars` and `points`.
/// It iterates over the evaluations and adds each commitment to the
/// vector `points`.
/// The parameter `scalars` is populated with the values:
/// `rand_base * polyscale^i` for each commitment.
/// For instance, if we have 3 commitments, the `scalars` vector will
/// contain the values
/// ```text
/// [rand_base, rand_base * polyscale, rand_base * polyscale^2]`
/// ```
/// and the vector `points` will contain the commitments.
///
/// Note that the function skips the commitments that are empty.
///
/// If more than one commitment is present in a single evaluation (i.e. if
/// `elems` is larger than one), it means that probably chunking was used (i.e.
/// it is a commitment to a polynomial larger than the SRS).
pub fn combine_commitments<G: CommitmentCurve>(
    evaluations: &[Evaluation<G>],
    scalars: &mut Vec<G::ScalarField>,
    points: &mut Vec<G>,
    polyscale: G::ScalarField,
    rand_base: G::ScalarField,
) {
    // will contain the power of polyscale
    let mut polyscale_i = G::ScalarField::one();

    for Evaluation { commitment, .. } in evaluations.iter().filter(|x| !x.commitment.is_empty()) {
        // iterating over the polynomial segments
        for comm_ch in &commitment.chunks {
            scalars.push(rand_base * polyscale_i);
            points.push(*comm_ch);

            // compute next power of polyscale
            polyscale_i *= polyscale;
        }
    }
}

#[cfg(feature = "ocaml_types")]
pub mod caml {
    // polynomial commitment
    use super::PolyComm;
    use ark_ec::AffineRepr;

    #[derive(Clone, Debug, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlPolyComm<CamlG> {
        pub unshifted: Vec<CamlG>,
        pub shifted: Option<CamlG>,
    }

    // handy conversions

    impl<G, CamlG> From<PolyComm<G>> for CamlPolyComm<CamlG>
    where
        G: AffineRepr,
        CamlG: From<G>,
    {
        fn from(polycomm: PolyComm<G>) -> Self {
            Self {
                unshifted: polycomm.chunks.into_iter().map(CamlG::from).collect(),
                shifted: None,
            }
        }
    }

    impl<'a, G, CamlG> From<&'a PolyComm<G>> for CamlPolyComm<CamlG>
    where
        G: AffineRepr,
        CamlG: From<G> + From<&'a G>,
    {
        fn from(polycomm: &'a PolyComm<G>) -> Self {
            Self {
                unshifted: polycomm.chunks.iter().map(Into::<CamlG>::into).collect(),
                shifted: None,
            }
        }
    }

    impl<G, CamlG> From<CamlPolyComm<CamlG>> for PolyComm<G>
    where
        G: AffineRepr + From<CamlG>,
    {
        fn from(camlpolycomm: CamlPolyComm<CamlG>) -> PolyComm<G> {
            assert!(
                camlpolycomm.shifted.is_none(),
                "mina#14628: Shifted commitments are deprecated and must not be used"
            );
            PolyComm {
                chunks: camlpolycomm
                    .unshifted
                    .into_iter()
                    .map(Into::<G>::into)
                    .collect(),
            }
        }
    }

    impl<'a, G, CamlG> From<&'a CamlPolyComm<CamlG>> for PolyComm<G>
    where
        G: AffineRepr + From<&'a CamlG> + From<CamlG>,
    {
        fn from(camlpolycomm: &'a CamlPolyComm<CamlG>) -> PolyComm<G> {
            assert!(
                camlpolycomm.shifted.is_none(),
                "mina#14628: Shifted commitments are deprecated and must not be used"
            );
            PolyComm {
                //FIXME something with as_ref()
                chunks: camlpolycomm.unshifted.iter().map(Into::into).collect(),
            }
        }
    }
}