use std::array;
use ark_ff::{One, PrimeField, Zero};
use ark_poly::{univariate::DensePolynomial, Evaluations, Polynomial, Radix2EvaluationDomain as D};
use kimchi::{
circuits::{
berkeley_columns::BerkeleyChallenges,
domains::EvaluationDomains,
expr::{l0_1, Constants},
},
curve::KimchiCurve,
groupmap::GroupMap,
plonk_sponge::FrSponge,
proof::PointEvaluations,
};
use log::debug;
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::ExtendedDensePolynomial;
use poly_commitment::{
commitment::{absorb_commitment, PolyComm},
ipa::{DensePolynomialOrEvaluations, OpeningProof, SRS},
OpenProof as _, SRS as _,
};
use rand::{CryptoRng, RngCore};
use rayon::iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};
use super::{
column_env::ColumnEnvironment,
proof::{Proof, ProofInputs, WitnessColumns},
DEGREE_QUOTIENT_POLYNOMIAL,
};
use crate::{interpreters::mips::column::N_MIPS_SEL_COLS, E};
use thiserror::Error;
#[derive(Error, Debug, Clone)]
pub enum ProverError {
#[error("the provided constraint has degree {0} > allowed {1}; expr: {2}")]
ConstraintDegreeTooHigh(u64, u64, String),
}
pub fn prove<
G: KimchiCurve,
EFqSponge: FqSponge<G::BaseField, G, G::ScalarField> + Clone,
EFrSponge: FrSponge<G::ScalarField>,
RNG,
>(
domain: EvaluationDomains<G::ScalarField>,
srs: &SRS<G>,
inputs: ProofInputs<G>,
constraints: &[E<G::ScalarField>],
rng: &mut RNG,
) -> Result<Proof<G>, ProverError>
where
G::BaseField: PrimeField,
RNG: RngCore + CryptoRng,
{
let num_chunks = 1;
let omega = domain.d1.group_gen;
let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());
debug!("Prover: interpolating all columns, including the selectors");
let ProofInputs { evaluations } = inputs;
let polys: WitnessColumns<
DensePolynomial<G::ScalarField>,
[DensePolynomial<G::ScalarField>; N_MIPS_SEL_COLS],
> = {
let WitnessColumns {
scratch,
instruction_counter,
error,
selector,
} = evaluations;
let domain_size = domain.d1.size as usize;
let selector: [Vec<G::ScalarField>; N_MIPS_SEL_COLS] = array::from_fn(|i| {
let mut s_i = Vec::with_capacity(domain_size);
for s in &selector {
s_i.push(if G::ScalarField::from(i as u64) == *s {
G::ScalarField::one()
} else {
G::ScalarField::zero()
})
}
s_i
});
let eval_col = |evals: Vec<G::ScalarField>| {
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(evals, domain.d1)
.interpolate()
};
let scratch = scratch.into_par_iter().map(eval_col).collect::<Vec<_>>();
let selector = selector.into_par_iter().map(eval_col).collect::<Vec<_>>();
WitnessColumns {
scratch: scratch.try_into().unwrap(),
instruction_counter: eval_col(instruction_counter),
error: eval_col(error.clone()),
selector: selector.try_into().unwrap(),
}
};
debug!("Prover: committing to all columns, including the selectors");
let commitments: WitnessColumns<PolyComm<G>, [PolyComm<G>; N_MIPS_SEL_COLS]> = {
let WitnessColumns {
scratch,
instruction_counter,
error,
selector,
} = &polys;
let comm = |poly: &DensePolynomial<G::ScalarField>| {
srs.commit_custom(
poly,
num_chunks,
&PolyComm::new(vec![G::ScalarField::one()]),
)
.unwrap()
.commitment
};
let scratch = scratch.par_iter().map(comm).collect::<Vec<_>>();
let selector = selector.par_iter().map(comm).collect::<Vec<_>>();
WitnessColumns {
scratch: scratch.try_into().unwrap(),
instruction_counter: comm(instruction_counter),
error: comm(error),
selector: selector.try_into().unwrap(),
}
};
debug!("Prover: evaluating all columns, including the selectors, on d8");
let evaluations_d8 = {
let WitnessColumns {
scratch,
instruction_counter,
error,
selector,
} = &polys;
let eval_d8 =
|poly: &DensePolynomial<G::ScalarField>| poly.evaluate_over_domain_by_ref(domain.d8);
let scratch = scratch.into_par_iter().map(eval_d8).collect::<Vec<_>>();
let selector = selector.into_par_iter().map(eval_d8).collect::<Vec<_>>();
WitnessColumns {
scratch: scratch.try_into().unwrap(),
instruction_counter: eval_d8(instruction_counter),
error: eval_d8(error),
selector: selector.try_into().unwrap(),
}
};
for comm in commitments.scratch.iter() {
absorb_commitment(&mut fq_sponge, comm)
}
absorb_commitment(&mut fq_sponge, &commitments.instruction_counter);
absorb_commitment(&mut fq_sponge, &commitments.error);
for comm in commitments.selector.iter() {
absorb_commitment(&mut fq_sponge, comm)
}
let (_, endo_r) = G::endos();
let alpha: G::ScalarField = fq_sponge.challenge();
let zk_rows = 0;
let column_env: ColumnEnvironment<'_, G::ScalarField> = {
let challenges = BerkeleyChallenges {
alpha,
beta: G::ScalarField::zero(),
gamma: G::ScalarField::zero(),
joint_combiner: G::ScalarField::zero(),
};
ColumnEnvironment {
constants: Constants {
endo_coefficient: *endo_r,
mds: &G::sponge_params().mds,
zk_rows,
},
challenges,
witness: &evaluations_d8,
l0_1: l0_1(domain.d1),
domain,
}
};
debug!("Prover: computing the quotient polynomial");
let quotient_poly: DensePolynomial<G::ScalarField> = {
let combined_expr =
E::combine_constraints(0..(constraints.len() as u32), (constraints).to_vec());
let expr_evaluation: Evaluations<G::ScalarField, D<G::ScalarField>> =
combined_expr.evaluations(&column_env);
let expr_evaluation_interpolated = expr_evaluation.interpolate();
let fail_final_q_division = || panic!("Fail division by vanishing poly");
let fail_remainder_not_zero =
|| panic!("The constraints are not satisifed since the remainder is not zero");
let (quotient, rem) = expr_evaluation_interpolated
.divide_by_vanishing_poly(domain.d1)
.unwrap_or_else(fail_final_q_division);
if !rem.is_zero() {
fail_remainder_not_zero();
}
quotient
};
let quotient_commitment = srs
.commit_custom(
"ient_poly,
DEGREE_QUOTIENT_POLYNOMIAL as usize,
&PolyComm::new(vec![
G::ScalarField::one();
DEGREE_QUOTIENT_POLYNOMIAL as usize
]),
)
.unwrap();
absorb_commitment(&mut fq_sponge, "ient_commitment.commitment);
debug!("Prover: evaluating all columns, including the selectors, at ζ and ζω");
let zeta_chal = ScalarChallenge(fq_sponge.challenge());
let zeta = zeta_chal.to_field(endo_r);
let zeta_omega = zeta * omega;
let evals = |point| {
let WitnessColumns {
scratch,
instruction_counter,
error,
selector,
} = &polys;
let eval = |poly: &DensePolynomial<G::ScalarField>| poly.evaluate(point);
let scratch = scratch.par_iter().map(eval).collect::<Vec<_>>();
let selector = selector.par_iter().map(eval).collect::<Vec<_>>();
WitnessColumns {
scratch: scratch.try_into().unwrap(),
instruction_counter: eval(instruction_counter),
error: eval(error),
selector: selector.try_into().unwrap(),
}
};
let zeta_evaluations: WitnessColumns<G::ScalarField, [G::ScalarField; N_MIPS_SEL_COLS]> =
evals(&zeta);
let zeta_omega_evaluations: WitnessColumns<G::ScalarField, [G::ScalarField; N_MIPS_SEL_COLS]> =
evals(&zeta_omega);
let chunked_quotient = quotient_poly
.to_chunked_polynomial(DEGREE_QUOTIENT_POLYNOMIAL as usize, domain.d1.size as usize);
let quotient_evaluations = PointEvaluations {
zeta: chunked_quotient
.polys
.iter()
.map(|p| p.evaluate(&zeta))
.collect::<Vec<_>>(),
zeta_omega: chunked_quotient
.polys
.iter()
.map(|p| p.evaluate(&zeta_omega))
.collect(),
};
let fq_sponge_before_evaluations = fq_sponge.clone();
let mut fr_sponge = EFrSponge::new(G::sponge_params());
fr_sponge.absorb(&fq_sponge.digest());
for (zeta_eval, zeta_omega_eval) in zeta_evaluations
.scratch
.iter()
.zip(zeta_omega_evaluations.scratch.iter())
{
fr_sponge.absorb(zeta_eval);
fr_sponge.absorb(zeta_omega_eval);
}
fr_sponge.absorb(&zeta_evaluations.instruction_counter);
fr_sponge.absorb(&zeta_omega_evaluations.instruction_counter);
fr_sponge.absorb(&zeta_evaluations.error);
fr_sponge.absorb(&zeta_omega_evaluations.error);
for (zeta_eval, zeta_omega_eval) in zeta_evaluations
.selector
.iter()
.zip(zeta_omega_evaluations.selector.iter())
{
fr_sponge.absorb(zeta_eval);
fr_sponge.absorb(zeta_omega_eval);
}
for (quotient_zeta_eval, quotient_zeta_omega_eval) in quotient_evaluations
.zeta
.iter()
.zip(quotient_evaluations.zeta_omega.iter())
{
fr_sponge.absorb(quotient_zeta_eval);
fr_sponge.absorb(quotient_zeta_omega_eval);
}
let mut polynomials: Vec<_> = polys.scratch.into_iter().collect();
polynomials.push(polys.instruction_counter);
polynomials.push(polys.error);
polynomials.extend(polys.selector);
let mut polynomials: Vec<_> = polynomials
.iter()
.map(|poly| {
(
DensePolynomialOrEvaluations::DensePolynomial(poly),
PolyComm::new(vec![G::ScalarField::one()]),
)
})
.collect();
polynomials.push((
DensePolynomialOrEvaluations::DensePolynomial("ient_poly),
quotient_commitment.blinders,
));
let v_chal = fr_sponge.challenge();
let v = v_chal.to_field(endo_r);
let u_chal = fr_sponge.challenge();
let u = u_chal.to_field(endo_r);
let group_map = G::Map::setup();
debug!("Prover: computing the (batched) opening proof using the IPA PCS");
let opening_proof = OpeningProof::open::<_, _, D<G::ScalarField>>(
srs,
&group_map,
polynomials.as_slice(),
&[zeta, zeta_omega],
v,
u,
fq_sponge_before_evaluations,
rng,
);
Ok(Proof {
commitments,
zeta_evaluations,
zeta_omega_evaluations,
quotient_commitment: quotient_commitment.commitment,
quotient_evaluations,
opening_proof,
})
}