1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
//! This module defines structures and traits to build and manipulate traces.
//! A trace is a collection of data points that represent the execution of a
//! program.
//! Some trace can be seen as "decomposable" in the sense that they can be
//! divided into sub-traces that share the same columns, and sub-traces can be
//! selected using "selectors".
use crate::{
legacy::{
folding::{BaseField, FoldingInstance, FoldingWitness, ScalarField},
Curve, Pairing,
},
lookups::Lookup,
E,
};
use ark_ff::{One, Zero};
use ark_poly::{Evaluations, Radix2EvaluationDomain as D};
use folding::{expressions::FoldingCompatibleExpr, Alphas, FoldingConfig};
use itertools::Itertools;
use kimchi::circuits::berkeley_columns::BerkeleyChallengeTerm;
use kimchi_msm::{columns::Column, witness::Witness};
use mina_poseidon::sponge::FqSponge;
use poly_commitment::{commitment::absorb_commitment, PolyComm, SRS as _};
use rayon::{iter::ParallelIterator, prelude::IntoParallelIterator};
use std::{collections::BTreeMap, ops::Index};
/// Implement a trace for a single instruction.
// TODO: we should use the generic traits defined in [kimchi_msm].
// For now, we want to have this to be able to test the folding library for a
// single instruction.
// It is not recommended to use this in production and it should not be
// maintained in the long term.
#[derive(Clone)]
pub struct Trace<const N: usize, C: FoldingConfig> {
pub domain_size: usize,
pub witness: Witness<N, Vec<ScalarField<C>>>,
pub constraints: Vec<E<ScalarField<C>>>,
pub lookups: Vec<Lookup<E<ScalarField<C>>>>,
}
/// Struct representing a circuit execution trace which is decomposable in
/// individual sub-circuits sharing the same columns.
/// It is parameterized by
/// - `N`: the total number of columns (constant), it must equal `N_REL + N_DSEL`
/// - `N_REL`: the number of relation columns (constant),
/// - `N_DSEL`: the number of dynamic selector columns (constant),
/// - `Selector`: an enum representing the different gate behaviours,
/// - `F`: the type of the witness data.
#[derive(Clone)]
pub struct DecomposedTrace<const N: usize, C: FoldingConfig> {
/// The domain size of the circuit (should coincide with that of the traces)
pub domain_size: usize,
/// The traces are indexed by the selector
/// Inside the witness of the trace for a given selector,
/// - the last N_SEL columns represent the selector columns
/// and only the one for `Selector` should be all ones (the rest of selector columns should be all zeros)
pub trace: BTreeMap<C::Selector, Trace<N, C>>,
}
// Implementation of [Index] using `C::Selector`` as the index for [DecomposedTrace] to access the trace directly.
impl<const N: usize, C: FoldingConfig> Index<C::Selector> for DecomposedTrace<N, C> {
type Output = Trace<N, C>;
fn index(&self, index: C::Selector) -> &Self::Output {
&self.trace[&index]
}
}
impl<const N: usize, C: FoldingConfig> DecomposedTrace<N, C>
where
usize: From<<C as FoldingConfig>::Selector>,
{
/// Returns the number of rows that have been instantiated for the given
/// selector.
/// It is important that the column used is a relation column because
/// selector columns are only instantiated at the very end, so their length
/// could be zero most times.
/// That is the reason that relation columns are located first.
pub fn number_of_rows(&self, opcode: C::Selector) -> usize {
self[opcode].witness.cols[0].len()
}
/// Returns a boolean indicating whether the witness for the given selector
/// was ever found in the circuit or not.
pub fn in_circuit(&self, opcode: C::Selector) -> bool {
self.number_of_rows(opcode) != 0
}
/// Returns whether the witness for the given selector has achieved a number
/// of rows that is equal to the domain size.
pub fn is_full(&self, opcode: C::Selector) -> bool {
self.domain_size == self.number_of_rows(opcode)
}
/// Resets the witness after folding
pub fn reset(&mut self, opcode: C::Selector) {
(self.trace.get_mut(&opcode).unwrap().witness.cols.as_mut())
.iter_mut()
.for_each(Vec::clear);
}
/// Sets the selector column to all ones, and the rest to all zeros
pub fn set_selector_column<const N_REL: usize>(
&mut self,
selector: C::Selector,
number_of_rows: usize,
) {
(N_REL..N).for_each(|i| {
if i == usize::from(selector) {
self.trace.get_mut(&selector).unwrap().witness.cols[i]
.extend((0..number_of_rows).map(|_| ScalarField::<C>::one()))
} else {
self.trace.get_mut(&selector).unwrap().witness.cols[i]
.extend((0..number_of_rows).map(|_| ScalarField::<C>::zero()))
}
});
}
}
/// The trait [Foldable] describes structures that can be folded.
/// For that, it requires to be able to implement a way to return a folding
/// instance and a folding witness.
/// It is specialized for the [DecomposedTrace] struct for now and is expected
/// to fold individual instructions, selected with a specific `C::Selector`.
pub trait Foldable<const N: usize, C: FoldingConfig, Sponge> {
/// Returns the witness for the given selector as a folding witness and
/// folding instance pair.
/// Note that this function will also absorb all commitments to the columns
/// to coin challenges appropriately.
fn to_folding_pair(
&self,
selector: C::Selector,
fq_sponge: &mut Sponge,
domain: D<ScalarField<C>>,
srs: &poly_commitment::kzg::PairingSRS<Pairing>,
) -> (
FoldingInstance<N, C::Curve>,
FoldingWitness<N, ScalarField<C>>,
);
/// Returns a map of constraints that are compatible with folding for each selector
fn folding_constraints(&self) -> BTreeMap<C::Selector, Vec<FoldingCompatibleExpr<C>>>;
}
/// Implement the trait Foldable for the structure [DecomposedTrace]
impl<const N: usize, C: FoldingConfig<Column = Column, Curve = Curve>, Sponge>
Foldable<N, C, Sponge> for DecomposedTrace<N, C>
where
C::Selector: Into<usize>,
Sponge: FqSponge<BaseField<C>, C::Curve, ScalarField<C>>,
<C as FoldingConfig>::Challenge: From<BerkeleyChallengeTerm>,
{
fn to_folding_pair(
&self,
selector: C::Selector,
fq_sponge: &mut Sponge,
domain: D<ScalarField<C>>,
srs: &poly_commitment::kzg::PairingSRS<Pairing>,
) -> (
FoldingInstance<N, C::Curve>,
FoldingWitness<N, ScalarField<C>>,
) {
let folding_witness = FoldingWitness {
witness: (&self[selector].witness)
.into_par_iter()
.map(|w| Evaluations::from_vec_and_domain(w.to_vec(), domain))
.collect(),
};
let commitments: Witness<N, PolyComm<C::Curve>> = (&folding_witness.witness)
.into_par_iter()
.map(|w| srs.commit_evaluations_non_hiding(domain, w))
.collect();
// Absorbing commitments
(&commitments)
.into_iter()
.for_each(|c| absorb_commitment(fq_sponge, c));
let commitments: [C::Curve; N] = commitments
.into_iter()
.map(|c| c.get_first_chunk())
.collect_vec()
.try_into()
.unwrap();
let beta = fq_sponge.challenge();
let gamma = fq_sponge.challenge();
let joint_combiner = fq_sponge.challenge();
let alpha = fq_sponge.challenge();
let challenges = [beta, gamma, joint_combiner];
let alphas = Alphas::new(alpha);
let blinder = ScalarField::<C>::one();
let instance = FoldingInstance {
commitments,
challenges,
alphas,
blinder,
};
(instance, folding_witness)
}
fn folding_constraints(&self) -> BTreeMap<C::Selector, Vec<FoldingCompatibleExpr<C>>> {
self.trace
.iter()
.map(|(k, instr)| {
(
*k,
instr
.constraints
.iter()
.map(|x| FoldingCompatibleExpr::from(x.clone()))
.collect(),
)
})
.collect()
}
}
/// Tracer builds traces for some program executions.
/// The constant type `N_REL` is defined as the maximum number of relation
/// columns the trace can use per row.
/// The type `C` encodes the folding configuration, from which the selector,
/// which encodes the information of the kind of information the trace encodes,
/// and scalar field are derived. Examples of selectors are:
/// - For Keccak, `Step` encodes the row being performed at a time: round,
/// squeeze, padding, etc...
/// - For MIPS, `Instruction` encodes the CPU instruction being executed: add,
/// sub, load, store, etc...
pub trait Tracer<const N_REL: usize, C: FoldingConfig, Env> {
type Selector;
/// Initialize a new trace with the given domain size, selector, and environment.
fn init(domain_size: usize, selector: C::Selector, env: &mut Env) -> Self;
/// Add a witness row to the circuit (only for relation columns)
fn push_row(&mut self, selector: Self::Selector, row: &[ScalarField<C>; N_REL]);
/// Pad the rows of one opcode with the given row until
/// reaching the domain size if needed.
/// Returns the number of rows that were added.
/// It does not add selector columns.
fn pad_with_row(&mut self, selector: Self::Selector, row: &[ScalarField<C>; N_REL]) -> usize;
/// Pads the rows of one opcode with zero rows until
/// reaching the domain size if needed.
/// Returns the number of rows that were added.
/// It does not add selector columns.
fn pad_with_zeros(&mut self, selector: Self::Selector) -> usize;
/// Pad the rows of one opcode with the first row until
/// reaching the domain size if needed.
/// It only tries to pad witnesses which are non empty.
/// Returns the number of rows that were added.
/// It does not add selector columns.
/// - Use `None` for single traces
/// - Use `Some(selector)` for multi traces
fn pad_dummy(&mut self, selector: Self::Selector) -> usize;
}
/// DecomposableTracer builds traces for some program executions.
/// The constant type `N_REL` is defined as the maximum number of relation
/// columns the trace can use per row.
/// The type `C` encodes the folding configuration, from which the selector,
/// and scalar field are derived. Examples of selectors are:
/// - For Keccak, `Step` encodes the row being performed at a time: round,
/// squeeze, padding, etc...
/// - For MIPS, `Instruction` encodes the CPU instruction being executed: add,
/// sub, load, store, etc...
pub trait DecomposableTracer<Env> {
/// Create a new decomposable trace with the given domain size, and environment.
fn new(domain_size: usize, env: &mut Env) -> Self;
/// Pads the rows of the witnesses until reaching the domain size using the first
/// row repeatedly. It does not add selector columns.
fn pad_witnesses(&mut self);
}
/// Generic implementation of the [Tracer] trait for the [DecomposedTrace] struct.
/// It requires the [DecomposedTrace] to implement the [DecomposableTracer] trait,
/// and the [Trace] struct to implement the [Tracer] trait with Selector set to (),
/// and `usize` to implement the [From] trait with `C::Selector`.
impl<const N: usize, const N_REL: usize, C: FoldingConfig, Env> Tracer<N_REL, C, Env>
for DecomposedTrace<N, C>
where
DecomposedTrace<N, C>: DecomposableTracer<Env>,
Trace<N, C>: Tracer<N_REL, C, Env, Selector = ()>,
usize: From<<C as FoldingConfig>::Selector>,
{
type Selector = C::Selector;
fn init(domain_size: usize, _selector: C::Selector, env: &mut Env) -> Self {
<Self as DecomposableTracer<Env>>::new(domain_size, env)
}
fn push_row(&mut self, selector: Self::Selector, row: &[ScalarField<C>; N_REL]) {
self.trace.get_mut(&selector).unwrap().push_row((), row);
}
fn pad_with_row(&mut self, selector: Self::Selector, row: &[ScalarField<C>; N_REL]) -> usize {
// We only want to pad non-empty witnesses.
if !self.in_circuit(selector) {
0
} else {
self.trace.get_mut(&selector).unwrap().pad_with_row((), row)
}
}
fn pad_with_zeros(&mut self, selector: Self::Selector) -> usize {
// We only want to pad non-empty witnesses.
if !self.in_circuit(selector) {
0
} else {
self.trace.get_mut(&selector).unwrap().pad_with_zeros(())
}
}
fn pad_dummy(&mut self, selector: Self::Selector) -> usize {
// We only want to pad non-empty witnesses.
if !self.in_circuit(selector) {
0
} else {
self.trace.get_mut(&selector).unwrap().pad_dummy(())
}
}
}
pub mod keccak {
use std::{array, collections::BTreeMap};
use ark_ff::Zero;
use kimchi_msm::witness::Witness;
use strum::IntoEnumIterator;
use crate::{
interpreters::keccak::{
column::{Steps, N_ZKVM_KECCAK_COLS, N_ZKVM_KECCAK_REL_COLS},
environment::KeccakEnv,
standardize,
},
legacy::{
folding::{keccak::KeccakConfig, ScalarField},
trace::{DecomposableTracer, DecomposedTrace, Trace, Tracer},
},
};
/// A Keccak instruction trace
pub type KeccakTrace = Trace<N_ZKVM_KECCAK_COLS, KeccakConfig>;
/// The Keccak circuit trace
pub type DecomposedKeccakTrace = DecomposedTrace<N_ZKVM_KECCAK_COLS, KeccakConfig>;
impl DecomposableTracer<KeccakEnv<ScalarField<KeccakConfig>>> for DecomposedKeccakTrace {
fn new(domain_size: usize, env: &mut KeccakEnv<ScalarField<KeccakConfig>>) -> Self {
let mut circuit = Self {
domain_size,
trace: BTreeMap::new(),
};
for step in Steps::iter().flat_map(|step| step.into_iter()) {
circuit
.trace
.insert(step, KeccakTrace::init(domain_size, step, env));
}
circuit
}
fn pad_witnesses(&mut self) {
for opcode in Steps::iter().flat_map(|opcode| opcode.into_iter()) {
if self.in_circuit(opcode) {
self.trace.get_mut(&opcode).unwrap().pad_dummy(());
}
}
}
}
impl Tracer<N_ZKVM_KECCAK_REL_COLS, KeccakConfig, KeccakEnv<ScalarField<KeccakConfig>>>
for KeccakTrace
{
type Selector = ();
fn init(
domain_size: usize,
selector: Steps,
_env: &mut KeccakEnv<ScalarField<KeccakConfig>>,
) -> Self {
// Make sure we are using the same round number to refer to round steps
let step = standardize(selector);
Self {
domain_size,
witness: Witness {
cols: Box::new(std::array::from_fn(|_| Vec::with_capacity(domain_size))),
},
constraints: KeccakEnv::constraints_of(step),
lookups: KeccakEnv::lookups_of(step),
}
}
fn push_row(
&mut self,
_selector: Self::Selector,
row: &[ScalarField<KeccakConfig>; N_ZKVM_KECCAK_REL_COLS],
) {
for (i, value) in row.iter().enumerate() {
if self.witness.cols[i].len() < self.witness.cols[i].capacity() {
self.witness.cols[i].push(*value);
}
}
}
fn pad_with_row(
&mut self,
_selector: Self::Selector,
row: &[ScalarField<KeccakConfig>; N_ZKVM_KECCAK_REL_COLS],
) -> usize {
let len = self.witness.cols[0].len();
assert!(len <= self.domain_size);
let rows_to_add = self.domain_size - len;
// When we reach the domain size, we don't need to pad anymore.
for _ in 0..rows_to_add {
self.push_row((), row);
}
rows_to_add
}
fn pad_with_zeros(&mut self, _selector: Self::Selector) -> usize {
let len = self.witness.cols[0].len();
assert!(len <= self.domain_size);
let rows_to_add = self.domain_size - len;
// When we reach the domain size, we don't need to pad anymore.
for col in self.witness.cols.iter_mut() {
col.extend((0..rows_to_add).map(|_| ScalarField::<KeccakConfig>::zero()));
}
rows_to_add
}
fn pad_dummy(&mut self, _selector: Self::Selector) -> usize {
// We keep track of the first row of the non-empty witness, which is a real step witness.
let row = array::from_fn(|i| self.witness.cols[i][0]);
self.pad_with_row(_selector, &row)
}
}
}
pub mod mips {
use crate::{
interpreters::mips::{
column::{N_MIPS_COLS, N_MIPS_REL_COLS},
constraints::Env,
interpreter::{interpret_instruction, Instruction, InterpreterEnv},
},
legacy::{
folding::{mips::DecomposableMIPSFoldingConfig, ScalarField},
trace::{DecomposableTracer, DecomposedTrace, Trace, Tracer},
},
};
use ark_ff::Zero;
use kimchi_msm::witness::Witness;
use std::{array, collections::BTreeMap};
use strum::IntoEnumIterator;
/// The MIPS instruction trace
pub type MIPSTrace = Trace<N_MIPS_COLS, DecomposableMIPSFoldingConfig>;
/// The MIPS circuit trace
pub type DecomposedMIPSTrace = DecomposedTrace<N_MIPS_COLS, DecomposableMIPSFoldingConfig>;
impl DecomposableTracer<Env<ScalarField<DecomposableMIPSFoldingConfig>>> for DecomposedMIPSTrace {
fn new(
domain_size: usize,
env: &mut Env<ScalarField<DecomposableMIPSFoldingConfig>>,
) -> Self {
let mut circuit = Self {
domain_size,
trace: BTreeMap::new(),
};
for instr in Instruction::iter().flat_map(|step| step.into_iter()) {
circuit
.trace
.insert(instr, <MIPSTrace>::init(domain_size, instr, env));
}
circuit
}
fn pad_witnesses(&mut self) {
for opcode in Instruction::iter().flat_map(|opcode| opcode.into_iter()) {
self.trace.get_mut(&opcode).unwrap().pad_dummy(());
}
}
}
impl
Tracer<
N_MIPS_REL_COLS,
DecomposableMIPSFoldingConfig,
Env<ScalarField<DecomposableMIPSFoldingConfig>>,
> for MIPSTrace
{
type Selector = ();
fn init(
domain_size: usize,
instr: Instruction,
env: &mut Env<ScalarField<DecomposableMIPSFoldingConfig>>,
) -> Self {
interpret_instruction(env, instr);
let trace = Self {
domain_size,
witness: Witness {
cols: Box::new(std::array::from_fn(|_| Vec::with_capacity(domain_size))),
},
constraints: env.get_constraints(),
lookups: env.get_lookups(),
};
// Clear for the next instruction
env.reset();
trace
}
fn push_row(
&mut self,
_selector: Self::Selector,
row: &[ScalarField<DecomposableMIPSFoldingConfig>; N_MIPS_REL_COLS],
) {
for (i, value) in row.iter().enumerate() {
if self.witness.cols[i].len() < self.witness.cols[i].capacity() {
self.witness.cols[i].push(*value);
}
}
}
fn pad_with_row(
&mut self,
_selector: Self::Selector,
row: &[ScalarField<DecomposableMIPSFoldingConfig>; N_MIPS_REL_COLS],
) -> usize {
let len = self.witness.cols[0].len();
assert!(len <= self.domain_size);
let rows_to_add = self.domain_size - len;
// When we reach the domain size, we don't need to pad anymore.
for _ in 0..rows_to_add {
self.push_row(_selector, row);
}
rows_to_add
}
fn pad_with_zeros(&mut self, _selector: Self::Selector) -> usize {
let len = self.witness.cols[0].len();
assert!(len <= self.domain_size);
let rows_to_add = self.domain_size - len;
// When we reach the domain size, we don't need to pad anymore.
for col in self.witness.cols.iter_mut() {
col.extend(
(0..rows_to_add).map(|_| ScalarField::<DecomposableMIPSFoldingConfig>::zero()),
);
}
rows_to_add
}
fn pad_dummy(&mut self, _selector: Self::Selector) -> usize {
// We keep track of the first row of the non-empty witness, which is a real step witness.
let row = array::from_fn(|i| self.witness.cols[i][0]);
self.pad_with_row(_selector, &row)
}
}
}