1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
// TODO: do we want to be more restrictive and refer to the number of accesses
//       to the SAME register/memory addrss?
use super::{
    column::Column,
    interpreter::{
        self, IInstruction, Instruction, InterpreterEnv, MInstruction, RInstruction, SBInstruction,
        SInstruction, SyscallInstruction, UInstruction, UJInstruction,
    },
    registers::Registers,
    INSTRUCTION_SET_SIZE, SCRATCH_SIZE,
};
use crate::{
    cannon::{State, PAGE_ADDRESS_MASK, PAGE_ADDRESS_SIZE, PAGE_SIZE},
    lookups::Lookup,
};
use ark_ff::Field;
use std::array;

/// Maximum number of register accesses per instruction (based on demo)
// FIXME: can be different
pub const MAX_NB_REG_ACC: u64 = 7;
/// Maximum number of memory accesses per instruction (based on demo)
// FIXME: can be different
pub const MAX_NB_MEM_ACC: u64 = 12;
/// Maximum number of memory or register accesses per instruction
pub const MAX_ACC: u64 = MAX_NB_REG_ACC + MAX_NB_MEM_ACC;

pub const NUM_GLOBAL_LOOKUP_TERMS: usize = 1;
pub const NUM_DECODING_LOOKUP_TERMS: usize = 2;
pub const NUM_INSTRUCTION_LOOKUP_TERMS: usize = 5;
pub const NUM_LOOKUP_TERMS: usize =
    NUM_GLOBAL_LOOKUP_TERMS + NUM_DECODING_LOOKUP_TERMS + NUM_INSTRUCTION_LOOKUP_TERMS;

/// This structure represents the environment the virtual machine state will use
/// to transition. This environment will be used by the interpreter. The virtual
/// machine has access to its internal state and some external memory. In
/// addition to that, it has access to the environment of the Keccak interpreter
/// that is used to verify the preimage requested during the execution.
pub struct Env<Fp> {
    pub instruction_counter: u64,
    pub memory: Vec<(u32, Vec<u8>)>,
    pub last_memory_accesses: [usize; 3],
    pub memory_write_index: Vec<(u32, Vec<u64>)>,
    pub last_memory_write_index_accesses: [usize; 3],
    pub registers: Registers<u32>,
    pub registers_write_index: Registers<u64>,
    pub scratch_state_idx: usize,
    pub scratch_state: [Fp; SCRATCH_SIZE],
    pub halt: bool,
    pub selector: usize,
}

fn fresh_scratch_state<Fp: Field, const N: usize>() -> [Fp; N] {
    array::from_fn(|_| Fp::zero())
}

impl<Fp: Field> InterpreterEnv for Env<Fp> {
    type Position = Column;

    fn alloc_scratch(&mut self) -> Self::Position {
        let scratch_idx = self.scratch_state_idx;
        self.scratch_state_idx += 1;
        Column::ScratchState(scratch_idx)
    }

    type Variable = u64;

    fn variable(&self, _column: Self::Position) -> Self::Variable {
        todo!()
    }

    fn add_constraint(&mut self, _assert_equals_zero: Self::Variable) {
        // No-op for witness
        // Do not assert that _assert_equals_zero is zero here!
        // Some variables may have placeholders that do not faithfully
        // represent the underlying values.
    }

    fn activate_selector(&mut self, instruction: Instruction) {
        self.selector = instruction.into();
    }

    fn check_is_zero(assert_equals_zero: &Self::Variable) {
        assert_eq!(*assert_equals_zero, 0);
    }

    fn check_equal(x: &Self::Variable, y: &Self::Variable) {
        assert_eq!(*x, *y);
    }

    fn assert_boolean(&mut self, x: &Self::Variable) {
        if *x != 0 && *x != 1 {
            panic!("The value {} is not a boolean", *x);
        }
    }

    fn add_lookup(&mut self, _lookup: Lookup<Self::Variable>) {
        // No-op, constraints only
        // TODO: keep track of multiplicities of fixed tables here as in Keccak?
    }

    fn instruction_counter(&self) -> Self::Variable {
        self.instruction_counter
    }

    fn increase_instruction_counter(&mut self) {
        self.instruction_counter += 1;
    }

    unsafe fn fetch_register(
        &mut self,
        idx: &Self::Variable,
        output: Self::Position,
    ) -> Self::Variable {
        let res = self.registers[*idx as usize] as u64;
        self.write_column(output, res);
        res
    }

    unsafe fn push_register_if(
        &mut self,
        idx: &Self::Variable,
        value: Self::Variable,
        if_is_true: &Self::Variable,
    ) {
        let value: u32 = value.try_into().unwrap();
        if *if_is_true == 1 {
            self.registers[*idx as usize] = value
        } else if *if_is_true == 0 {
            // No-op
        } else {
            panic!("Bad value for flag in push_register: {}", *if_is_true);
        }
    }

    unsafe fn fetch_register_access(
        &mut self,
        idx: &Self::Variable,
        output: Self::Position,
    ) -> Self::Variable {
        let res = self.registers_write_index[*idx as usize];
        self.write_column(output, res);
        res
    }

    unsafe fn push_register_access_if(
        &mut self,
        idx: &Self::Variable,
        value: Self::Variable,
        if_is_true: &Self::Variable,
    ) {
        if *if_is_true == 1 {
            self.registers_write_index[*idx as usize] = value
        } else if *if_is_true == 0 {
            // No-op
        } else {
            panic!("Bad value for flag in push_register: {}", *if_is_true);
        }
    }

    unsafe fn fetch_memory(
        &mut self,
        addr: &Self::Variable,
        output: Self::Position,
    ) -> Self::Variable {
        let addr: u32 = (*addr).try_into().unwrap();
        let page = addr >> PAGE_ADDRESS_SIZE;
        let page_address = (addr & PAGE_ADDRESS_MASK) as usize;
        let memory_page_idx = self.get_memory_page_index(page);
        let value = self.memory[memory_page_idx].1[page_address];
        self.write_column(output, value.into());
        value.into()
    }

    unsafe fn push_memory(&mut self, addr: &Self::Variable, value: Self::Variable) {
        let addr: u32 = (*addr).try_into().unwrap();
        let page = addr >> PAGE_ADDRESS_SIZE;
        let page_address = (addr & PAGE_ADDRESS_MASK) as usize;
        let memory_page_idx = self.get_memory_page_index(page);
        self.memory[memory_page_idx].1[page_address] =
            value.try_into().expect("push_memory values fit in a u8");
    }

    unsafe fn fetch_memory_access(
        &mut self,
        addr: &Self::Variable,
        output: Self::Position,
    ) -> Self::Variable {
        let addr: u32 = (*addr).try_into().unwrap();
        let page = addr >> PAGE_ADDRESS_SIZE;
        let page_address = (addr & PAGE_ADDRESS_MASK) as usize;
        let memory_write_index_page_idx = self.get_memory_access_page_index(page);
        let value = self.memory_write_index[memory_write_index_page_idx].1[page_address];
        self.write_column(output, value);
        value
    }

    unsafe fn push_memory_access(&mut self, addr: &Self::Variable, value: Self::Variable) {
        let addr = *addr as u32;
        let page = addr >> PAGE_ADDRESS_SIZE;
        let page_address = (addr & PAGE_ADDRESS_MASK) as usize;
        let memory_write_index_page_idx = self.get_memory_access_page_index(page);
        self.memory_write_index[memory_write_index_page_idx].1[page_address] = value;
    }

    fn constant(x: u32) -> Self::Variable {
        x as u64
    }

    unsafe fn bitmask(
        &mut self,
        x: &Self::Variable,
        highest_bit: u32,
        lowest_bit: u32,
        position: Self::Position,
    ) -> Self::Variable {
        assert!(
            lowest_bit < highest_bit,
            "The lowest bit must be strictly lower than the highest bit"
        );
        assert!(
            highest_bit <= 32,
            "The interpreter is for a 32bits architecture"
        );
        let x: u32 = (*x).try_into().unwrap();
        let res = (x >> lowest_bit) & ((1 << (highest_bit - lowest_bit)) - 1);
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn shift_left(
        &mut self,
        x: &Self::Variable,
        by: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let by: u32 = (*by).try_into().unwrap();
        let res = x << by;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn shift_right(
        &mut self,
        x: &Self::Variable,
        by: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let by: u32 = (*by).try_into().unwrap();
        let res = x >> by;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn shift_right_arithmetic(
        &mut self,
        x: &Self::Variable,
        by: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let by: u32 = (*by).try_into().unwrap();
        let res = ((x as i32) >> by) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn test_zero(&mut self, x: &Self::Variable, position: Self::Position) -> Self::Variable {
        let res = if *x == 0 { 1 } else { 0 };
        self.write_column(position, res);
        res
    }

    unsafe fn inverse_or_zero(
        &mut self,
        x: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        if *x == 0 {
            self.write_column(position, 0);
            0
        } else {
            self.write_field_column(position, Fp::from(*x).inverse().unwrap());
            1 // Placeholder value
        }
    }

    fn is_zero(&mut self, x: &Self::Variable) -> Self::Variable {
        // write the result
        let pos = self.alloc_scratch();
        let res = if *x == 0 { 1 } else { 0 };
        self.write_column(pos, res);
        // write the non deterministic advice inv_or_zero
        let pos = self.alloc_scratch();
        let inv_or_zero = if *x == 0 {
            Fp::zero()
        } else {
            Fp::inverse(&Fp::from(*x)).unwrap()
        };
        self.write_field_column(pos, inv_or_zero);
        // return the result
        res
    }

    fn equal(&mut self, x: &Self::Variable, y: &Self::Variable) -> Self::Variable {
        // To avoid subtraction overflow in the witness interpreter for u32
        if x > y {
            self.is_zero(&(*x - *y))
        } else {
            self.is_zero(&(*y - *x))
        }
    }

    unsafe fn test_less_than(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = if x < y { 1 } else { 0 };
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn test_less_than_signed(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = if (x as i32) < (y as i32) { 1 } else { 0 };
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn and_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = x & y;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn nor_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = !(x | y);
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn or_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = x | y;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn xor_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = x ^ y;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn add_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        out_position: Self::Position,
        overflow_position: Self::Position,
    ) -> (Self::Variable, Self::Variable) {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        // https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_add
        let res = x.overflowing_add(y);
        let (res_, overflow) = (res.0 as u64, res.1 as u64);
        self.write_column(out_position, res_);
        self.write_column(overflow_position, overflow);
        (res_, overflow)
    }

    unsafe fn sub_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        out_position: Self::Position,
        underflow_position: Self::Position,
    ) -> (Self::Variable, Self::Variable) {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        // https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_sub
        let res = x.overflowing_sub(y);
        let (res_, underflow) = (res.0 as u64, res.1 as u64);
        self.write_column(out_position, res_);
        self.write_column(underflow_position, underflow);
        (res_, underflow)
    }

    unsafe fn mul_signed_witness(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = ((x as i32) * (y as i32)) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mul_hi_signed(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: i32 = (*x).try_into().unwrap();
        let y: i32 = (*y).try_into().unwrap();
        let res = (x as i64) * (y as i64);
        let res = (res >> 32) as i32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mul_lo_signed(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: i32 = (*x).try_into().unwrap();
        let y: i32 = (*y).try_into().unwrap();
        let res = ((x as i64) * (y as i64)) as u64;
        let res = (res & ((1 << 32) - 1)) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mul_hi(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = (x as u64) * (y as u64);
        let res = (res >> 32) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mul_hi_signed_unsigned(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = (((x as i32) as i64) * (y as i64)) as u64;
        let res = (res >> 32) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn div_signed(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: i32 = (*x).try_into().unwrap();
        let y: i32 = (*y).try_into().unwrap();
        let res = (x / y) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mul_lo(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = (x as u64) * (y as u64);
        let res = (res & ((1 << 32) - 1)) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mod_signed(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: i32 = (*x).try_into().unwrap();
        let y: i32 = (*y).try_into().unwrap();
        let res = (x % y) as u32;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn div(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = x / y;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn mod_unsigned(
        &mut self,
        x: &Self::Variable,
        y: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let y: u32 = (*y).try_into().unwrap();
        let res = x % y;
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn count_leading_zeros(
        &mut self,
        x: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let res = x.leading_zeros();
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    unsafe fn count_leading_ones(
        &mut self,
        x: &Self::Variable,
        position: Self::Position,
    ) -> Self::Variable {
        let x: u32 = (*x).try_into().unwrap();
        let res = x.leading_ones();
        let res = res as u64;
        self.write_column(position, res);
        res
    }

    fn copy(&mut self, x: &Self::Variable, position: Self::Position) -> Self::Variable {
        self.write_column(position, *x);
        *x
    }

    fn set_halted(&mut self, flag: Self::Variable) {
        if flag == 0 {
            self.halt = false
        } else if flag == 1 {
            self.halt = true
        } else {
            panic!("Bad value for flag in set_halted: {}", flag);
        }
    }

    fn report_exit(&mut self, exit_code: &Self::Variable) {
        println!(
            "Exited with code {} at step {}",
            *exit_code,
            self.normalized_instruction_counter()
        );
    }

    fn reset(&mut self) {
        self.scratch_state_idx = 0;
        self.scratch_state = fresh_scratch_state();
        self.selector = INSTRUCTION_SET_SIZE;
    }
}

impl<Fp: Field> Env<Fp> {
    pub fn create(page_size: usize, state: State) -> Self {
        let initial_instruction_pointer = state.pc;
        let next_instruction_pointer = state.next_pc;

        let selector = INSTRUCTION_SET_SIZE;

        let mut initial_memory: Vec<(u32, Vec<u8>)> = state
            .memory
            .into_iter()
            // Check that the conversion from page data is correct
            .map(|page| (page.index, page.data))
            .collect();

        for (_address, initial_memory) in initial_memory.iter_mut() {
            initial_memory.extend((0..(page_size - initial_memory.len())).map(|_| 0u8));
            assert_eq!(initial_memory.len(), page_size);
        }

        let memory_offsets = initial_memory
            .iter()
            .map(|(offset, _)| *offset)
            .collect::<Vec<_>>();

        let initial_registers = {
            Registers {
                general_purpose: state.registers,
                current_instruction_pointer: initial_instruction_pointer,
                next_instruction_pointer,
                heap_pointer: state.heap,
            }
        };

        let mut registers = initial_registers.clone();
        registers[2] = 0x408004f0;
        // set the stack pointer to the top of the stack

        Env {
            instruction_counter: state.step,
            memory: initial_memory.clone(),
            last_memory_accesses: [0usize; 3],
            memory_write_index: memory_offsets
                .iter()
                .map(|offset| (*offset, vec![0u64; page_size]))
                .collect(),
            last_memory_write_index_accesses: [0usize; 3],
            registers,
            registers_write_index: Registers::default(),
            scratch_state_idx: 0,
            scratch_state: fresh_scratch_state(),
            halt: state.exited,
            selector,
        }
    }

    pub fn next_instruction_counter(&self) -> u64 {
        (self.normalized_instruction_counter() + 1) * MAX_ACC
    }

    pub fn decode_instruction(&mut self) -> (Instruction, u32) {
        /* https://www.cs.cornell.edu/courses/cs3410/2024fa/assignments/cpusim/riscv-instructions.pdf */
        let instruction =
            ((self.get_memory_direct(self.registers.current_instruction_pointer) as u32) << 24)
                | ((self.get_memory_direct(self.registers.current_instruction_pointer + 1) as u32)
                    << 16)
                | ((self.get_memory_direct(self.registers.current_instruction_pointer + 2) as u32)
                    << 8)
                | (self.get_memory_direct(self.registers.current_instruction_pointer + 3) as u32);
        let instruction = instruction.to_be(); // convert to big endian for more straightforward decoding
        let opcode = {
            match instruction & 0b1111111 // bits 0-6
            {
                0b0110111 => Instruction::UType(UInstruction::LoadUpperImmediate),
                0b0010111 => Instruction::UType(UInstruction::AddUpperImmediate),
                0b1101111 => Instruction::UJType(UJInstruction::JumpAndLink),
                0b1100011 =>
                match (instruction >> 12) & 0x7 // bits 12-14 for func3
                {
                    0b000 => Instruction::SBType(SBInstruction::BranchEq),
                    0b001 => Instruction::SBType(SBInstruction::BranchNeq),
                    0b100 => Instruction::SBType(SBInstruction::BranchLessThan),
                    0b101 => Instruction::SBType(SBInstruction::BranchGreaterThanEqual),
                    0b110 => Instruction::SBType(SBInstruction::BranchLessThanUnsigned),
                    0b111 => Instruction::SBType(SBInstruction::BranchGreaterThanEqualUnsigned),
                    _ => panic!("Unknown SBType instruction with full inst {}", instruction),
                },
                0b1100111 => Instruction::IType(IInstruction::JumpAndLinkRegister),
                0b0000011 =>
                match (instruction >> 12) & 0x7 // bits 12-14 for func3
                {
                    0b000 => Instruction::IType(IInstruction::LoadByte),
                    0b001 => Instruction::IType(IInstruction::LoadHalf),
                    0b010 => Instruction::IType(IInstruction::LoadWord),
                    0b100 => Instruction::IType(IInstruction::LoadByteUnsigned),
                    0b101 => Instruction::IType(IInstruction::LoadHalfUnsigned),
                    _ => panic!("Unknown IType instruction with full inst {}", instruction),
                },
                0b0100011 =>
                match (instruction >> 12) & 0x7 // bits 12-14 for func3
                {
                    0b000 => Instruction::SType(SInstruction::StoreByte),
                    0b001 => Instruction::SType(SInstruction::StoreHalf),
                    0b010 => Instruction::SType(SInstruction::StoreWord),
                    _ => panic!("Unknown SType instruction with full inst {}", instruction),
                },
                0b0010011 =>
                match (instruction >> 12) & 0x7 // bits 12-14 for func3
                {
                    0b000 => Instruction::IType(IInstruction::AddImmediate),
                    0b010 => Instruction::IType(IInstruction::SetLessThanImmediate),
                    0b011 => Instruction::IType(IInstruction::SetLessThanImmediateUnsigned),
                    0b100 => Instruction::IType(IInstruction::XorImmediate),
                    0b110 => Instruction::IType(IInstruction::OrImmediate),
                    0b111 => Instruction::IType(IInstruction::AndImmediate),
                    0b001 => Instruction::IType(IInstruction::ShiftLeftLogicalImmediate),
                    0b101 =>
                    match (instruction >> 30) & 0x1 // bit 30 in simm component of IType
                    {
                    0b0 => Instruction::IType(IInstruction::ShiftRightLogicalImmediate),
                    0b1 => Instruction::IType(IInstruction::ShiftRightArithmeticImmediate),
                    _ => panic!("Unknown IType in shift right instructions with full inst {}", instruction),
                    },
                    _ => panic!("Unknown IType instruction with full inst {}", instruction),
                },
                0b0110011 => {
                    let funct5 = instruction >> 27 & 0x1F; // bits 27-31 for funct5
                    let funct2 = instruction >> 25 & 0x3; // bits 25-26 for func2
                    let funct3 = instruction >> 12 & 0x7; // bits 12-14 for func3
                    match funct2 {
                        // These are the instructions for the base integer set
                        0b00 => {
                            // The integer set have two sets of instructions
                            // using a different funct5 value
                            match funct5 {
                                0b00000 => {
                                    // Note: all possible values are handled here
                                    match funct3 {
                                        0b000 => Instruction::RType(RInstruction::Add),
                                        0b001 => Instruction::RType(RInstruction::ShiftLeftLogical),
                                        0b010 => Instruction::RType(RInstruction::SetLessThan),
                                        0b011 => Instruction::RType(RInstruction::SetLessThanUnsigned),
                                        0b100 => Instruction::RType(RInstruction::Xor),
                                        0b101 => Instruction::RType(RInstruction::ShiftRightLogical),
                                        0b110 => Instruction::RType(RInstruction::Or),
                                        0b111 => Instruction::RType(RInstruction::And),
                                        _ => panic!("This case should never happen as funct3 is 8 bits long and all possible case are implemented. However, we still have an unknown opcode 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                                    }
                                },
                                // Note that there are still some values unhandled here.
                                0b01000 => {
                                    // Note that there are still 6 values unhandled here.
                                    match funct3 {
                                        0b000 => Instruction::RType(RInstruction::Sub),
                                        0b101 => Instruction::RType(RInstruction::ShiftRightArithmetic),
                                        _ => panic!("Unknown opcode 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                                    }
                                },
                                // All the unhandled cases
                                1_u32..=7_u32 | 9_u32..=u32::MAX =>
                                    panic!("Unknown opcode 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                            }
                        },
                        // These are the instructions for the M type
                        0b01 => {
                            match funct5 {
                                // All instructions for the M type have the same
                                // funct5 value. Still catching it here to be
                                // sure we do not misinterpret an instruction
                                0b00000 => {
                                    match funct3 {
                                        0b000 => Instruction::MType(MInstruction::Mul),
                                        0b001 => Instruction::MType(MInstruction::Mulh),
                                        0b010 => Instruction::MType(MInstruction::Mulhsu),
                                        0b011 => Instruction::MType(MInstruction::Mulhu),
                                        0b100 => Instruction::MType(MInstruction::Div),
                                        0b101 => Instruction::MType(MInstruction::Divu),
                                        0b110 => Instruction::MType(MInstruction::Rem),
                                        0b111 => Instruction::MType(MInstruction::Remu),
                                        _ => panic!("This case should never happen as funct3 is 8 bits long and all possible case are implemented. However, we still have an unknown opcode 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                                    }
                                },
                                // Note that there are still some values unhandled here.
                                1_u32..=u32::MAX => panic!("Unknown 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                            }
                        },
                        _ => panic!("Unknown RType 0110011 instruction with full inst {} (funct5 = {}, funct2 = {}, funct3 = {})", instruction, funct5, funct2, funct3),
                    }
                }
                0b0001111 =>
                match (instruction >> 12) & 0x7 // bits 12-14 for func3
                {
                    0b000 => Instruction::RType(RInstruction::Fence),
                    0b001 => Instruction::RType(RInstruction::FenceI),
                    _ => panic!("Unknown RType 0001111 (Fence) instruction with full inst {}", instruction),
                },
                // FIXME: we should implement more syscalls here, and check the register state.
                // Even better, only one constructor call ecall, and in the
                // interpreter, we do the action depending on it
                0b1110011 => Instruction::SyscallType(SyscallInstruction::SyscallSuccess),
                _ => panic!("Unknown instruction with full inst {:b}, and opcode {:b}", instruction, instruction & 0b1111111),
            }
        };
        (opcode, instruction)
    }

    /// Execute a single step in the RISCV32i program
    pub fn step(&mut self) -> Instruction {
        self.reset_scratch_state();
        let (opcode, _instruction) = self.decode_instruction();

        interpreter::interpret_instruction(self, opcode);

        self.instruction_counter = self.next_instruction_counter();

        // Integer division by MAX_ACC to obtain the actual instruction count
        if self.halt {
            println!(
                "Halted at step={} instruction={:?}",
                self.normalized_instruction_counter(),
                opcode
            );
        }
        opcode
    }

    pub fn reset_scratch_state(&mut self) {
        self.scratch_state_idx = 0;
        self.scratch_state = fresh_scratch_state();
        self.selector = INSTRUCTION_SET_SIZE;
    }

    pub fn write_column(&mut self, column: Column, value: u64) {
        self.write_field_column(column, value.into())
    }

    pub fn write_field_column(&mut self, column: Column, value: Fp) {
        match column {
            Column::ScratchState(idx) => self.scratch_state[idx] = value,
            Column::InstructionCounter => panic!("Cannot overwrite the column {:?}", column),
            Column::Selector(s) => self.selector = s,
        }
    }

    pub fn update_last_memory_access(&mut self, i: usize) {
        let [i_0, i_1, _] = self.last_memory_accesses;
        self.last_memory_accesses = [i, i_0, i_1]
    }

    pub fn get_memory_page_index(&mut self, page: u32) -> usize {
        for &i in self.last_memory_accesses.iter() {
            if self.memory_write_index[i].0 == page {
                return i;
            }
        }
        for (i, (page_index, _memory)) in self.memory.iter_mut().enumerate() {
            if *page_index == page {
                self.update_last_memory_access(i);
                return i;
            }
        }

        // Memory not found; dynamically allocate
        let memory = vec![0u8; PAGE_SIZE as usize];
        self.memory.push((page, memory));
        let i = self.memory.len() - 1;
        self.update_last_memory_access(i);
        i
    }

    pub fn update_last_memory_write_index_access(&mut self, i: usize) {
        let [i_0, i_1, _] = self.last_memory_write_index_accesses;
        self.last_memory_write_index_accesses = [i, i_0, i_1]
    }

    pub fn get_memory_access_page_index(&mut self, page: u32) -> usize {
        for &i in self.last_memory_write_index_accesses.iter() {
            if self.memory_write_index[i].0 == page {
                return i;
            }
        }
        for (i, (page_index, _memory_write_index)) in self.memory_write_index.iter_mut().enumerate()
        {
            if *page_index == page {
                self.update_last_memory_write_index_access(i);
                return i;
            }
        }

        // Memory not found; dynamically allocate
        let memory_write_index = vec![0u64; PAGE_SIZE as usize];
        self.memory_write_index.push((page, memory_write_index));
        let i = self.memory_write_index.len() - 1;
        self.update_last_memory_write_index_access(i);
        i
    }

    pub fn get_memory_direct(&mut self, addr: u32) -> u8 {
        let page = addr >> PAGE_ADDRESS_SIZE;
        let page_address = (addr & PAGE_ADDRESS_MASK) as usize;
        let memory_idx = self.get_memory_page_index(page);
        self.memory[memory_idx].1[page_address]
    }

    /// The actual number of instructions executed results from dividing the
    /// instruction counter by MAX_ACC (floor).
    ///
    /// NOTE: actually, in practice it will be less than that, as there is no
    ///       single instruction that performs all of them.
    pub fn normalized_instruction_counter(&self) -> u64 {
        self.instruction_counter / MAX_ACC
    }
}