1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
use super::registers::{REGISTER_CURRENT_IP, REGISTER_HEAP_POINTER, REGISTER_NEXT_IP};
use crate::lookups::{Lookup, LookupTableIDs};
use ark_ff::{One, Zero};
use strum::{EnumCount, IntoEnumIterator};
use strum_macros::{EnumCount, EnumIter};
#[derive(Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Hash, Ord, PartialOrd)]
pub enum Instruction {
RType(RInstruction),
IType(IInstruction),
SType(SInstruction),
SBType(SBInstruction),
UType(UInstruction),
UJType(UJInstruction),
SyscallType(SyscallInstruction),
}
// See
// https://www.cs.cornell.edu/courses/cs3410/2024fa/assignments/cpusim/riscv-instructions.pdf
// for the order
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum RInstruction {
#[default]
Add, // add
Sub, // sub
ShiftLeftLogical, // sll
SetLessThan, // slt
SetLessThanUnsigned, // sltu
Xor, // xor
ShiftRightLogical, // srl
ShiftRightArithmetic, // sra
Or, // or
And, // and
Fence, // fence
FenceI, // fence.i
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum IInstruction {
#[default]
LoadByte, // lb
LoadHalf, // lh
LoadWord, // lw
LoadByteUnsigned, // lbu
LoadHalfUnsigned, // lhu
ShiftLeftLogicalImmediate, // slli
ShiftRightLogicalImmediate, // srli
ShiftRightArithmeticImmediate, // srai
SetLessThanImmediate, // slti
SetLessThanImmediateUnsigned, // sltiu
AddImmediate, // addi
XorImmediate, // xori
OrImmediate, // ori
AndImmediate, // andi
JumpAndLinkRegister, // jalr
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum SInstruction {
#[default]
StoreByte, // sb
StoreHalf, // sh
StoreWord, // sw
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum SBInstruction {
#[default]
BranchEq, // beq
BranchNeq, // bne
BranchLessThan, // blt
BranchGreaterThanEqual, // bge
BranchLessThanUnsigned, // bltu
BranchGreaterThanEqualUnsigned, // bgeu
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum UInstruction {
#[default]
LoadUpperImmediate, // lui
// Add upper immediate to PC
AddUpperImmediate, // auipc
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum UJInstruction {
#[default]
JumpAndLink, // jal
}
#[derive(
Debug, Clone, Copy, Eq, PartialEq, EnumCount, EnumIter, Default, Hash, Ord, PartialOrd,
)]
pub enum SyscallInstruction {
#[default]
SyscallSuccess,
}
impl IntoIterator for Instruction {
type Item = Instruction;
type IntoIter = std::vec::IntoIter<Instruction>;
fn into_iter(self) -> Self::IntoIter {
match self {
Instruction::RType(_) => {
let mut iter_contents = Vec::with_capacity(RInstruction::COUNT);
for rtype in RInstruction::iter() {
iter_contents.push(Instruction::RType(rtype));
}
iter_contents.into_iter()
}
Instruction::IType(_) => {
let mut iter_contents = Vec::with_capacity(IInstruction::COUNT);
for itype in IInstruction::iter() {
iter_contents.push(Instruction::IType(itype));
}
iter_contents.into_iter()
}
Instruction::SType(_) => {
let mut iter_contents = Vec::with_capacity(SInstruction::COUNT);
for stype in SInstruction::iter() {
iter_contents.push(Instruction::SType(stype));
}
iter_contents.into_iter()
}
Instruction::SBType(_) => {
let mut iter_contents = Vec::with_capacity(SBInstruction::COUNT);
for sbtype in SBInstruction::iter() {
iter_contents.push(Instruction::SBType(sbtype));
}
iter_contents.into_iter()
}
Instruction::UType(_) => {
let mut iter_contents = Vec::with_capacity(UInstruction::COUNT);
for utype in UInstruction::iter() {
iter_contents.push(Instruction::UType(utype));
}
iter_contents.into_iter()
}
Instruction::UJType(_) => {
let mut iter_contents = Vec::with_capacity(UJInstruction::COUNT);
for ujtype in UJInstruction::iter() {
iter_contents.push(Instruction::UJType(ujtype));
}
iter_contents.into_iter()
}
Instruction::SyscallType(_) => {
let mut iter_contents = Vec::with_capacity(SyscallInstruction::COUNT);
for syscall in SyscallInstruction::iter() {
iter_contents.push(Instruction::SyscallType(syscall));
}
iter_contents.into_iter()
}
}
}
}
impl std::fmt::Display for Instruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Instruction::RType(rtype) => write!(f, "{}", rtype),
Instruction::IType(itype) => write!(f, "{}", itype),
Instruction::SType(stype) => write!(f, "{}", stype),
Instruction::SBType(sbtype) => write!(f, "{}", sbtype),
Instruction::UType(utype) => write!(f, "{}", utype),
Instruction::UJType(ujtype) => write!(f, "{}", ujtype),
Instruction::SyscallType(_syscall) => write!(f, "ecall"),
}
}
}
impl std::fmt::Display for RInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
RInstruction::Add => write!(f, "add"),
RInstruction::Sub => write!(f, "sub"),
RInstruction::ShiftLeftLogical => write!(f, "sll"),
RInstruction::SetLessThan => write!(f, "slt"),
RInstruction::SetLessThanUnsigned => write!(f, "sltu"),
RInstruction::Xor => write!(f, "xor"),
RInstruction::ShiftRightLogical => write!(f, "srl"),
RInstruction::ShiftRightArithmetic => write!(f, "sra"),
RInstruction::Or => write!(f, "or"),
RInstruction::And => write!(f, "and"),
RInstruction::Fence => write!(f, "fence"),
RInstruction::FenceI => write!(f, "fence.i"),
}
}
}
impl std::fmt::Display for IInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
IInstruction::LoadByte => write!(f, "lb"),
IInstruction::LoadHalf => write!(f, "lh"),
IInstruction::LoadWord => write!(f, "lw"),
IInstruction::LoadByteUnsigned => write!(f, "lbu"),
IInstruction::LoadHalfUnsigned => write!(f, "lhu"),
IInstruction::ShiftLeftLogicalImmediate => write!(f, "slli"),
IInstruction::ShiftRightLogicalImmediate => write!(f, "srli"),
IInstruction::ShiftRightArithmeticImmediate => write!(f, "srai"),
IInstruction::SetLessThanImmediate => write!(f, "slti"),
IInstruction::SetLessThanImmediateUnsigned => write!(f, "sltiu"),
IInstruction::AddImmediate => write!(f, "addi"),
IInstruction::XorImmediate => write!(f, "xori"),
IInstruction::OrImmediate => write!(f, "ori"),
IInstruction::AndImmediate => write!(f, "andi"),
IInstruction::JumpAndLinkRegister => write!(f, "jalr"),
}
}
}
impl std::fmt::Display for SInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SInstruction::StoreByte => write!(f, "sb"),
SInstruction::StoreHalf => write!(f, "sh"),
SInstruction::StoreWord => write!(f, "sw"),
}
}
}
impl std::fmt::Display for SBInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SBInstruction::BranchEq => write!(f, "beq"),
SBInstruction::BranchNeq => write!(f, "bne"),
SBInstruction::BranchLessThan => write!(f, "blt"),
SBInstruction::BranchGreaterThanEqual => write!(f, "bge"),
SBInstruction::BranchLessThanUnsigned => write!(f, "bltu"),
SBInstruction::BranchGreaterThanEqualUnsigned => write!(f, "bgeu"),
}
}
}
impl std::fmt::Display for UInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
UInstruction::LoadUpperImmediate => write!(f, "lui"),
UInstruction::AddUpperImmediate => write!(f, "auipc"),
}
}
}
impl std::fmt::Display for UJInstruction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
UJInstruction::JumpAndLink => write!(f, "jal"),
}
}
}
pub trait InterpreterEnv {
/// A position can be seen as an indexed variable
type Position;
/// Allocate a new abstract variable for the current step.
/// The variable can be used to store temporary values.
/// The variables are "freed" after each step/instruction.
/// The variable allocation can be seen as an allocation on a stack that is
/// popped after each step execution.
/// At the moment, [crate::interpreters::riscv32i::SCRATCH_SIZE]
/// elements can be allocated. If more temporary variables are required for
/// an instruction, increase the value
/// [crate::interpreters::riscv32i::SCRATCH_SIZE]
fn alloc_scratch(&mut self) -> Self::Position;
type Variable: Clone
+ std::ops::Add<Self::Variable, Output = Self::Variable>
+ std::ops::Sub<Self::Variable, Output = Self::Variable>
+ std::ops::Mul<Self::Variable, Output = Self::Variable>
+ std::fmt::Debug
+ Zero
+ One;
// Returns the variable in the current row corresponding to a given column alias.
fn variable(&self, column: Self::Position) -> Self::Variable;
/// Add a constraint to the proof system, asserting that
/// `assert_equals_zero` is 0.
fn add_constraint(&mut self, assert_equals_zero: Self::Variable);
/// Activate the selector for the given instruction.
fn activate_selector(&mut self, selector: Instruction);
/// Check that the witness value in `assert_equals_zero` is 0; otherwise abort.
fn check_is_zero(assert_equals_zero: &Self::Variable);
/// Assert that the value `assert_equals_zero` is 0, and add a constraint in the proof system.
fn assert_is_zero(&mut self, assert_equals_zero: Self::Variable) {
Self::check_is_zero(&assert_equals_zero);
self.add_constraint(assert_equals_zero);
}
/// Check that the witness values in `x` and `y` are equal; otherwise abort.
fn check_equal(x: &Self::Variable, y: &Self::Variable);
/// Assert that the values `x` and `y` are equal, and add a constraint in the proof system.
fn assert_equal(&mut self, x: Self::Variable, y: Self::Variable) {
// NB: We use a different function to give a better error message for debugging.
Self::check_equal(&x, &y);
self.add_constraint(x - y);
}
/// Check that the witness value `x` is a boolean (`0` or `1`); otherwise abort.
fn check_boolean(x: &Self::Variable);
/// Assert that the value `x` is boolean, and add a constraint in the proof system.
fn assert_boolean(&mut self, x: Self::Variable) {
Self::check_boolean(&x);
self.add_constraint(x.clone() * x.clone() - x);
}
fn add_lookup(&mut self, lookup: Lookup<Self::Variable>);
fn instruction_counter(&self) -> Self::Variable;
fn increase_instruction_counter(&mut self);
/// Fetch the value of the general purpose register with index `idx` and store it in local
/// position `output`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn fetch_register(
&mut self,
idx: &Self::Variable,
output: Self::Position,
) -> Self::Variable;
/// Set the general purpose register with index `idx` to `value` if `if_is_true` is true.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn push_register_if(
&mut self,
idx: &Self::Variable,
value: Self::Variable,
if_is_true: &Self::Variable,
);
/// Set the general purpose register with index `idx` to `value`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn push_register(&mut self, idx: &Self::Variable, value: Self::Variable) {
self.push_register_if(idx, value, &Self::constant(1))
}
/// Fetch the last 'access index' for the general purpose register with index `idx`, and store
/// it in local position `output`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn fetch_register_access(
&mut self,
idx: &Self::Variable,
output: Self::Position,
) -> Self::Variable;
/// Set the last 'access index' for the general purpose register with index `idx` to `value` if
/// `if_is_true` is true.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn push_register_access_if(
&mut self,
idx: &Self::Variable,
value: Self::Variable,
if_is_true: &Self::Variable,
);
/// Set the last 'access index' for the general purpose register with index `idx` to `value`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this operation.
unsafe fn push_register_access(&mut self, idx: &Self::Variable, value: Self::Variable) {
self.push_register_access_if(idx, value, &Self::constant(1))
}
/// Access the general purpose register with index `idx`, adding constraints asserting that the
/// old value was `old_value` and that the new value will be `new_value`, if `if_is_true` is
/// true.
///
/// # Safety
///
/// Callers of this function must manually update the registers if required, this function will
/// only update the access counter.
unsafe fn access_register_if(
&mut self,
idx: &Self::Variable,
old_value: &Self::Variable,
new_value: &Self::Variable,
if_is_true: &Self::Variable,
) {
let last_accessed = {
let last_accessed_location = self.alloc_scratch();
unsafe { self.fetch_register_access(idx, last_accessed_location) }
};
let instruction_counter = self.instruction_counter();
let elapsed_time = instruction_counter.clone() - last_accessed.clone();
let new_accessed = {
// Here, we write as if the register had been written *at the start of the next
// instruction*. This ensures that we can't 'time travel' within this
// instruction, and claim to read the value that we're about to write!
instruction_counter + Self::constant(1)
// A register should allow multiple accesses to the same register within the same instruction.
// In order to allow this, we always increase the instruction counter by 1.
};
unsafe { self.push_register_access_if(idx, new_accessed.clone(), if_is_true) };
self.add_lookup(Lookup::write_if(
if_is_true.clone(),
LookupTableIDs::RegisterLookup,
vec![idx.clone(), last_accessed, old_value.clone()],
));
self.add_lookup(Lookup::read_if(
if_is_true.clone(),
LookupTableIDs::RegisterLookup,
vec![idx.clone(), new_accessed, new_value.clone()],
));
self.range_check64(&elapsed_time);
// Update instruction counter after accessing a register.
self.increase_instruction_counter();
}
fn read_register(&mut self, idx: &Self::Variable) -> Self::Variable {
let value = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_register(idx, value_location) }
};
unsafe {
self.access_register(idx, &value, &value);
};
value
}
/// Access the general purpose register with index `idx`, adding constraints asserting that the
/// old value was `old_value` and that the new value will be `new_value`.
///
/// # Safety
///
/// Callers of this function must manually update the registers if required, this function will
/// only update the access counter.
unsafe fn access_register(
&mut self,
idx: &Self::Variable,
old_value: &Self::Variable,
new_value: &Self::Variable,
) {
self.access_register_if(idx, old_value, new_value, &Self::constant(1))
}
fn write_register_if(
&mut self,
idx: &Self::Variable,
new_value: Self::Variable,
if_is_true: &Self::Variable,
) {
let old_value = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_register(idx, value_location) }
};
// Ensure that we only write 0 to the 0 register.
let actual_new_value = {
let idx_is_zero = self.is_zero(idx);
let pos = self.alloc_scratch();
self.copy(&((Self::constant(1) - idx_is_zero) * new_value), pos)
};
unsafe {
self.access_register_if(idx, &old_value, &actual_new_value, if_is_true);
};
unsafe {
self.push_register_if(idx, actual_new_value, if_is_true);
};
}
fn write_register(&mut self, idx: &Self::Variable, new_value: Self::Variable) {
self.write_register_if(idx, new_value, &Self::constant(1))
}
/// Fetch the memory value at address `addr` and store it in local position `output`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this memory operation.
unsafe fn fetch_memory(
&mut self,
addr: &Self::Variable,
output: Self::Position,
) -> Self::Variable;
/// Set the memory value at address `addr` to `value`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this memory operation.
unsafe fn push_memory(&mut self, addr: &Self::Variable, value: Self::Variable);
/// Fetch the last 'access index' that the memory at address `addr` was written at, and store
/// it in local position `output`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this memory operation.
unsafe fn fetch_memory_access(
&mut self,
addr: &Self::Variable,
output: Self::Position,
) -> Self::Variable;
/// Set the last 'access index' for the memory at address `addr` to `value`.
///
/// # Safety
///
/// No lookups or other constraints are added as part of this operation. The caller must
/// manually add the lookups for this memory operation.
unsafe fn push_memory_access(&mut self, addr: &Self::Variable, value: Self::Variable);
/// Access the memory address `addr`, adding constraints asserting that the old value was
/// `old_value` and that the new value will be `new_value`.
///
/// # Safety
///
/// Callers of this function must manually update the memory if required, this function will
/// only update the access counter.
unsafe fn access_memory(
&mut self,
addr: &Self::Variable,
old_value: &Self::Variable,
new_value: &Self::Variable,
) {
let last_accessed = {
let last_accessed_location = self.alloc_scratch();
unsafe { self.fetch_memory_access(addr, last_accessed_location) }
};
let instruction_counter = self.instruction_counter();
let elapsed_time = instruction_counter.clone() - last_accessed.clone();
let new_accessed = {
// Here, we write as if the memory had been written *at the start of the next
// instruction*. This ensures that we can't 'time travel' within this
// instruction, and claim to read the value that we're about to write!
instruction_counter + Self::constant(1)
};
unsafe { self.push_memory_access(addr, new_accessed.clone()) };
self.add_lookup(Lookup::write_one(
LookupTableIDs::MemoryLookup,
vec![addr.clone(), last_accessed, old_value.clone()],
));
self.add_lookup(Lookup::read_one(
LookupTableIDs::MemoryLookup,
vec![addr.clone(), new_accessed, new_value.clone()],
));
self.range_check64(&elapsed_time);
// Update instruction counter after accessing a memory address.
self.increase_instruction_counter();
}
fn read_memory(&mut self, addr: &Self::Variable) -> Self::Variable {
let value = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_memory(addr, value_location) }
};
unsafe {
self.access_memory(addr, &value, &value);
};
value
}
fn write_memory(&mut self, addr: &Self::Variable, new_value: Self::Variable) {
let old_value = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_memory(addr, value_location) }
};
unsafe {
self.access_memory(addr, &old_value, &new_value);
};
unsafe {
self.push_memory(addr, new_value);
};
}
/// Adds a lookup to the RangeCheck16Lookup table
fn lookup_16bits(&mut self, value: &Self::Variable) {
self.add_lookup(Lookup::read_one(
LookupTableIDs::RangeCheck16Lookup,
vec![value.clone()],
));
}
/// Range checks with 2 lookups to the RangeCheck16Lookup table that a value
/// is at most 2^`bits`-1 (bits <= 16).
fn range_check16(&mut self, value: &Self::Variable, bits: u32) {
assert!(bits <= 16);
// 0 <= value < 2^bits
// First, check lowerbound: 0 <= value < 2^16
self.lookup_16bits(value);
// Second, check upperbound: value + 2^16 - 2^bits < 2^16
self.lookup_16bits(&(value.clone() + Self::constant(1 << 16) - Self::constant(1 << bits)));
}
/// Adds a lookup to the ByteLookup table
fn lookup_8bits(&mut self, value: &Self::Variable) {
self.add_lookup(Lookup::read_one(
LookupTableIDs::ByteLookup,
vec![value.clone()],
));
}
/// Range checks with 2 lookups to the ByteLookup table that a value
/// is at most 2^`bits`-1 (bits <= 8).
fn range_check8(&mut self, value: &Self::Variable, bits: u32) {
assert!(bits <= 8);
// 0 <= value < 2^bits
// First, check lowerbound: 0 <= value < 2^8
self.lookup_8bits(value);
// Second, check upperbound: value + 2^8 - 2^bits < 2^8
self.lookup_8bits(&(value.clone() + Self::constant(1 << 8) - Self::constant(1 << bits)));
}
/// Adds a lookup to the AtMost4Lookup table
fn lookup_2bits(&mut self, value: &Self::Variable) {
self.add_lookup(Lookup::read_one(
LookupTableIDs::AtMost4Lookup,
vec![value.clone()],
));
}
fn range_check64(&mut self, _value: &Self::Variable) {
// TODO
}
fn set_instruction_pointer(&mut self, ip: Self::Variable) {
let idx = Self::constant(REGISTER_CURRENT_IP as u32);
let new_accessed = self.instruction_counter() + Self::constant(1);
unsafe {
self.push_register_access(&idx, new_accessed.clone());
}
unsafe {
self.push_register(&idx, ip.clone());
}
self.add_lookup(Lookup::read_one(
LookupTableIDs::RegisterLookup,
vec![idx, new_accessed, ip],
));
}
fn get_instruction_pointer(&mut self) -> Self::Variable {
let idx = Self::constant(REGISTER_CURRENT_IP as u32);
let ip = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_register(&idx, value_location) }
};
self.add_lookup(Lookup::write_one(
LookupTableIDs::RegisterLookup,
vec![idx, self.instruction_counter(), ip.clone()],
));
ip
}
fn set_next_instruction_pointer(&mut self, ip: Self::Variable) {
let idx = Self::constant(REGISTER_NEXT_IP as u32);
let new_accessed = self.instruction_counter() + Self::constant(1);
unsafe {
self.push_register_access(&idx, new_accessed.clone());
}
unsafe {
self.push_register(&idx, ip.clone());
}
self.add_lookup(Lookup::read_one(
LookupTableIDs::RegisterLookup,
vec![idx, new_accessed, ip],
));
}
fn get_next_instruction_pointer(&mut self) -> Self::Variable {
let idx = Self::constant(REGISTER_NEXT_IP as u32);
let ip = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_register(&idx, value_location) }
};
self.add_lookup(Lookup::write_one(
LookupTableIDs::RegisterLookup,
vec![idx, self.instruction_counter(), ip.clone()],
));
ip
}
fn constant(x: u32) -> Self::Variable;
/// Extract the bits from the variable `x` between `highest_bit` and `lowest_bit`, and store
/// the result in `position`.
/// `lowest_bit` becomes the least-significant bit of the resulting value.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// the source variable `x` and that the returned value fits in `highest_bit - lowest_bit`
/// bits.
///
/// Do not call this function with highest_bit - lowest_bit >= 32.
// TODO: embed the range check in the function when highest_bit - lowest_bit <= 16?
unsafe fn bitmask(
&mut self,
x: &Self::Variable,
highest_bit: u32,
lowest_bit: u32,
position: Self::Position,
) -> Self::Variable;
/// Return the result of shifting `x` by `by`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// the source variable `x` and the shift amount `by`.
unsafe fn shift_left(
&mut self,
x: &Self::Variable,
by: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Return the result of shifting `x` by `by`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// the source variable `x` and the shift amount `by`.
unsafe fn shift_right(
&mut self,
x: &Self::Variable,
by: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Return the result of shifting `x` by `by`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// the source variable `x` and the shift amount `by`.
unsafe fn shift_right_arithmetic(
&mut self,
x: &Self::Variable,
by: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns 1 if `x` is 0, or 0 otherwise, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// `x`.
unsafe fn test_zero(&mut self, x: &Self::Variable, position: Self::Position) -> Self::Variable;
/// Returns `x^(-1)`, or `0` if `x` is `0`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert the relationship with
/// `x`.
///
/// The value returned may be a placeholder; callers should be careful not to depend directly
/// on the value stored in the variable.
unsafe fn inverse_or_zero(
&mut self,
x: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
fn is_zero(&mut self, x: &Self::Variable) -> Self::Variable;
/// Returns 1 if `x` is equal to `y`, or 0 otherwise, storing the result in `position`.
fn equal(&mut self, x: &Self::Variable, y: &Self::Variable) -> Self::Variable;
/// Returns 1 if `x < y` as unsigned integers, or 0 otherwise, storing the result in
/// `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert that the value
/// correctly represents the relationship between `x` and `y`
unsafe fn test_less_than(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns 1 if `x < y` as signed integers, or 0 otherwise, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must assert that the value
/// correctly represents the relationship between `x` and `y`
unsafe fn test_less_than_signed(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `x or y`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn and_witness(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `x or y`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn or_witness(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `x nor y`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn nor_witness(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `x xor y`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn xor_witness(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `x + y` and the overflow bit, storing the results in `position_out` and
/// `position_overflow` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that they are correctly constructed.
unsafe fn add_witness(
&mut self,
y: &Self::Variable,
x: &Self::Variable,
out_position: Self::Position,
overflow_position: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns `x + y` and the underflow bit, storing the results in `position_out` and
/// `position_underflow` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that they are correctly constructed.
unsafe fn sub_witness(
&mut self,
y: &Self::Variable,
x: &Self::Variable,
out_position: Self::Position,
underflow_position: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns `x * y`, where `x` and `y` are treated as integers, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn mul_signed_witness(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns `((x * y) >> 32, (x * y) & ((1 << 32) - 1))`, storing the results in `position_hi`
/// and `position_lo` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that the pair of returned values correspond to the given values `x` and `y`, and
/// that they fall within the desired range.
unsafe fn mul_hi_lo_signed(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position_hi: Self::Position,
position_lo: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns `((x * y) >> 32, (x * y) & ((1 << 32) - 1))`, storing the results in `position_hi`
/// and `position_lo` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that the pair of returned values correspond to the given values `x` and `y`, and
/// that they fall within the desired range.
unsafe fn mul_hi_lo(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position_hi: Self::Position,
position_lo: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns `(x / y, x % y)`, storing the results in `position_quotient` and
/// `position_remainder` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that the pair of returned values correspond to the given values `x` and `y`, and
/// that they fall within the desired range.
unsafe fn divmod_signed(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position_quotient: Self::Position,
position_remainder: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns `(x / y, x % y)`, storing the results in `position_quotient` and
/// `position_remainder` respectively.
///
/// # Safety
///
/// There are no constraints on the returned values; callers must manually add constraints to
/// ensure that the pair of returned values correspond to the given values `x` and `y`, and
/// that they fall within the desired range.
unsafe fn divmod(
&mut self,
x: &Self::Variable,
y: &Self::Variable,
position_quotient: Self::Position,
position_remainder: Self::Position,
) -> (Self::Variable, Self::Variable);
/// Returns the number of leading 0s in `x`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn count_leading_zeros(
&mut self,
x: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
/// Returns the number of leading 1s in `x`, storing the result in `position`.
///
/// # Safety
///
/// There are no constraints on the returned value; callers must manually add constraints to
/// ensure that it is correctly constructed.
unsafe fn count_leading_ones(
&mut self,
x: &Self::Variable,
position: Self::Position,
) -> Self::Variable;
fn copy(&mut self, x: &Self::Variable, position: Self::Position) -> Self::Variable;
/// Increases the heap pointer by `by_amount` if `if_is_true` is `1`, and returns the previous
/// value of the heap pointer.
fn increase_heap_pointer(
&mut self,
by_amount: &Self::Variable,
if_is_true: &Self::Variable,
) -> Self::Variable {
let idx = Self::constant(REGISTER_HEAP_POINTER as u32);
let old_ptr = {
let value_location = self.alloc_scratch();
unsafe { self.fetch_register(&idx, value_location) }
};
let new_ptr = old_ptr.clone() + by_amount.clone();
unsafe {
self.access_register_if(&idx, &old_ptr, &new_ptr, if_is_true);
};
unsafe {
self.push_register_if(&idx, new_ptr, if_is_true);
};
old_ptr
}
fn set_halted(&mut self, flag: Self::Variable);
/// Given a variable `x`, this function extends it to a signed integer of
/// `bitlength` bits.
fn sign_extend(&mut self, x: &Self::Variable, bitlength: u32) -> Self::Variable {
// FIXME: Constrain `high_bit`
let high_bit = {
let pos = self.alloc_scratch();
unsafe { self.bitmask(x, bitlength, bitlength - 1, pos) }
};
high_bit * Self::constant(((1 << (32 - bitlength)) - 1) << bitlength) + x.clone()
}
fn report_exit(&mut self, exit_code: &Self::Variable);
fn reset(&mut self);
}
pub fn interpret_instruction<Env: InterpreterEnv>(env: &mut Env, instr: Instruction) {
env.activate_selector(instr);
match instr {
Instruction::RType(rtype) => interpret_rtype(env, rtype),
Instruction::IType(itype) => interpret_itype(env, itype),
Instruction::SType(stype) => interpret_stype(env, stype),
Instruction::SBType(sbtype) => interpret_sbtype(env, sbtype),
Instruction::UType(utype) => interpret_utype(env, utype),
Instruction::UJType(ujtype) => interpret_ujtype(env, ujtype),
Instruction::SyscallType(syscall) => interpret_syscall(env, syscall),
}
}
pub fn interpret_rtype<Env: InterpreterEnv>(_env: &mut Env, _instr: RInstruction) {
unimplemented!("TODO")
}
pub fn interpret_itype<Env: InterpreterEnv>(env: &mut Env, instr: IInstruction) {
/* fetch instruction pointer from the program state */
let instruction_pointer = env.get_instruction_pointer();
/* compute the next instruction ptr and add one, as well record raml lookup */
let next_instruction_pointer = env.get_next_instruction_pointer();
/* read instruction from ip address */
let instruction = {
let v0 = env.read_memory(&instruction_pointer);
let v1 = env.read_memory(&(instruction_pointer.clone() + Env::constant(1)));
let v2 = env.read_memory(&(instruction_pointer.clone() + Env::constant(2)));
let v3 = env.read_memory(&(instruction_pointer.clone() + Env::constant(3)));
(v3 * Env::constant(1 << 24))
+ (v2 * Env::constant(1 << 16))
+ (v1 * Env::constant(1 << 8))
+ v0
};
/* fetch opcode from instruction bit 0 - 6 for a total len of 7 */
let opcode = {
let pos = env.alloc_scratch();
unsafe { env.bitmask(&instruction, 7, 0, pos) }
};
/* verify opcode is 7 bits */
env.range_check8(&opcode, 7);
/* decode and parse bits from the full 32 bits instruction in accordance with the Rtype riscV spec
https://www.cs.cornell.edu/courses/cs3410/2024fa/assignments/cpusim/riscv-instructions.pdf
*/
let rd = {
let pos = env.alloc_scratch();
unsafe { env.bitmask(&instruction, 12, 7, pos) }
};
env.range_check8(&rd, 5);
let funct3 = {
let pos = env.alloc_scratch();
unsafe { env.bitmask(&instruction, 15, 12, pos) }
};
env.range_check8(&funct3, 3);
let rs1 = {
let pos = env.alloc_scratch();
unsafe { env.bitmask(&instruction, 20, 15, pos) }
};
env.range_check8(&rs1, 5);
let imm = {
let pos = env.alloc_scratch();
unsafe { env.bitmask(&instruction, 32, 20, pos) }
};
env.range_check16(&imm, 12);
// check correctness of decomposition of I type function
// TODO add decoding constraint checking
match instr {
IInstruction::LoadWord => {
// lw: x[rd] = sext(M[x[rs1] + sext(offset)][31:0])
let base = env.read_register(&rs1);
let offset = env.sign_extend(&imm, 12);
let address = {
let address_scratch = env.alloc_scratch();
let overflow_scratch = env.alloc_scratch();
let (address, _overflow) =
unsafe { env.add_witness(&base, &offset, address_scratch, overflow_scratch) };
address
};
// Add a range check here for address
let v0 = env.read_memory(&address);
let v1 = env.read_memory(&(address.clone() + Env::constant(1)));
let v2 = env.read_memory(&(address.clone() + Env::constant(2)));
let v3 = env.read_memory(&(address.clone() + Env::constant(3)));
let value = (v0 * Env::constant(1 << 24))
+ (v1 * Env::constant(1 << 16))
+ (v2 * Env::constant(1 << 8))
+ v3;
let value = env.sign_extend(&value, 32);
env.write_register(&rd, value);
env.set_instruction_pointer(next_instruction_pointer.clone());
env.set_next_instruction_pointer(next_instruction_pointer + Env::constant(4u32));
}
IInstruction::AddImmediate => {
// addi: x[rd] = x[rs1] + sext(immediate)
let local_rs1 = env.read_register(&(rs1.clone()));
let local_imm = env.sign_extend(&imm, 12);
let overflow_scratch = env.alloc_scratch();
let rd_scratch = env.alloc_scratch();
let local_rd = unsafe {
let (local_rd, _overflow) =
env.add_witness(&local_rs1, &local_imm, rd_scratch, overflow_scratch);
local_rd
};
env.write_register(&rd, local_rd);
env.set_instruction_pointer(next_instruction_pointer.clone());
env.set_next_instruction_pointer(next_instruction_pointer + Env::constant(4u32));
}
IInstruction::XorImmediate => {
// xori: x[rd] = x[rs1] ^ sext(immediate)
let local_rs1 = env.read_register(&rs1);
let local_imm = env.sign_extend(&imm, 12);
let rd_scratch = env.alloc_scratch();
let local_rd = unsafe { env.xor_witness(&local_rs1, &local_imm, rd_scratch) };
env.write_register(&rd, local_rd);
env.set_instruction_pointer(next_instruction_pointer.clone());
env.set_next_instruction_pointer(next_instruction_pointer + Env::constant(4u32));
}
IInstruction::OrImmediate => {
// ori: x[rd] = x[rs1] | sext(immediate)
let local_rs1 = env.read_register(&rs1);
let local_imm = env.sign_extend(&imm, 12);
let rd_scratch = env.alloc_scratch();
let local_rd = unsafe { env.or_witness(&local_rs1, &local_imm, rd_scratch) };
env.write_register(&rd, local_rd);
env.set_instruction_pointer(next_instruction_pointer.clone());
env.set_next_instruction_pointer(next_instruction_pointer + Env::constant(4u32));
}
IInstruction::AndImmediate => {
// andi: x[rd] = x[rs1] & sext(immediate)
let local_rs1 = env.read_register(&rs1);
let local_imm = env.sign_extend(&imm, 12);
let rd_scratch = env.alloc_scratch();
let local_rd = unsafe { env.and_witness(&local_rs1, &local_imm, rd_scratch) };
env.write_register(&rd, local_rd);
env.set_instruction_pointer(next_instruction_pointer.clone());
env.set_next_instruction_pointer(next_instruction_pointer + Env::constant(4u32));
}
IInstruction::JumpAndLinkRegister => {
let addr = env.read_register(&rs1);
// jalr:
// t = pc+4;
// pc = (x[rs1] + sext(offset)) & ∼1; <- NOT NOW
// pc = (x[rs1] + sext(offset)); <- PLEASE FIXME
// x[rd] = t
let offset = env.sign_extend(&imm, 12);
let new_addr = {
let res_scratch = env.alloc_scratch();
let overflow_scratch = env.alloc_scratch();
let (res, _overflow) =
unsafe { env.add_witness(&addr, &offset, res_scratch, overflow_scratch) };
res
};
env.write_register(&rd, next_instruction_pointer.clone());
env.set_instruction_pointer(new_addr.clone());
env.set_next_instruction_pointer(new_addr.clone() + Env::constant(4u32));
}
_ => {
panic!("Unimplemented instruction: {:?}", instr);
}
};
}
pub fn interpret_stype<Env: InterpreterEnv>(_env: &mut Env, _instr: SInstruction) {
unimplemented!("TODO")
}
pub fn interpret_sbtype<Env: InterpreterEnv>(_env: &mut Env, _instr: SBInstruction) {
unimplemented!("TODO")
}
pub fn interpret_utype<Env: InterpreterEnv>(_env: &mut Env, _instr: UInstruction) {
unimplemented!("TODO")
}
pub fn interpret_ujtype<Env: InterpreterEnv>(_env: &mut Env, _instr: UJInstruction) {
unimplemented!("TODO")
}
pub fn interpret_syscall<Env: InterpreterEnv>(env: &mut Env, _instr: SyscallInstruction) {
// FIXME: check if it is syscall success. There is only one syscall atm
env.set_halted(Env::constant(1));
}