1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
use crate::{
interpreters::mips::{
column::{
ColumnAlias as MIPSColumn, MIPS_BYTE_COUNTER_OFF, MIPS_CHUNK_BYTES_LEN,
MIPS_END_OF_PREIMAGE_OFF, MIPS_HASH_COUNTER_OFF, MIPS_HAS_N_BYTES_OFF,
MIPS_LENGTH_BYTES_OFF, MIPS_NUM_BYTES_READ_OFF, MIPS_PREIMAGE_BYTES_OFF,
MIPS_PREIMAGE_CHUNK_OFF, MIPS_PREIMAGE_KEY, N_MIPS_REL_COLS,
},
interpreter::InterpreterEnv,
Instruction,
},
lookups::{Lookup, LookupTableIDs},
E,
};
use ark_ff::{Field, One};
use kimchi::circuits::{
expr::{ConstantTerm::Literal, Expr, ExprInner, Operations, Variable},
gate::CurrOrNext,
};
use kimchi_msm::columns::ColumnIndexer as _;
use std::array;
use super::column::N_MIPS_SEL_COLS;
/// The environment keeping the constraints between the different polynomials
pub struct Env<Fp> {
scratch_state_idx: usize,
/// A list of constraints, which are multi-variate polynomials over a field,
/// represented using the expression framework of `kimchi`.
constraints: Vec<E<Fp>>,
lookups: Vec<Lookup<E<Fp>>>,
/// Selector (as expression) for the constraints of the environment.
selector: Option<E<Fp>>,
}
impl<Fp: Field> Default for Env<Fp> {
fn default() -> Self {
Self {
scratch_state_idx: 0,
constraints: Vec::new(),
lookups: Vec::new(),
selector: None,
}
}
}
impl<Fp: Field> InterpreterEnv for Env<Fp> {
/// In the concrete implementation for the constraints, the interpreter will
/// work over columns. The position in this case can be seen as a new
/// variable/input of our circuit.
type Position = MIPSColumn;
// Use one of the available columns. It won't create a new column every time
// this function is called. The number of columns is defined upfront by
// crate::mips::witness::SCRATCH_SIZE.
fn alloc_scratch(&mut self) -> Self::Position {
// All columns are implemented using a simple index, and a name is given
// to the index. See crate::SCRATCH_SIZE for the maximum number of
// columns the circuit can use.
let scratch_idx = self.scratch_state_idx;
self.scratch_state_idx += 1;
MIPSColumn::ScratchState(scratch_idx)
}
type Variable = E<Fp>;
fn variable(&self, column: Self::Position) -> Self::Variable {
Expr::Atom(ExprInner::Cell(Variable {
col: column.to_column(),
row: CurrOrNext::Curr,
}))
}
fn activate_selector(&mut self, selector: Instruction) {
// Sanity check: we only want to activate once per instruction
assert!(self.selector.is_none(), "A selector has been already activated. You might need to reset the environment if you want to start a new instruction.");
let n = usize::from(selector) - N_MIPS_REL_COLS;
self.selector = Some(self.variable(MIPSColumn::Selector(n)))
}
fn add_constraint(&mut self, assert_equals_zero: Self::Variable) {
self.constraints.push(assert_equals_zero)
}
fn check_is_zero(_assert_equals_zero: &Self::Variable) {
// No-op, witness only
}
fn check_equal(_x: &Self::Variable, _y: &Self::Variable) {
// No-op, witness only
}
fn check_boolean(_x: &Self::Variable) {
// No-op, witness only
}
fn add_lookup(&mut self, lookup: Lookup<Self::Variable>) {
self.lookups.push(lookup);
}
fn instruction_counter(&self) -> Self::Variable {
self.variable(MIPSColumn::InstructionCounter)
}
fn increase_instruction_counter(&mut self) {
// No-op, witness only
}
unsafe fn fetch_register(
&mut self,
_idx: &Self::Variable,
output: Self::Position,
) -> Self::Variable {
self.variable(output)
}
unsafe fn push_register_if(
&mut self,
_idx: &Self::Variable,
_value: Self::Variable,
_if_is_true: &Self::Variable,
) {
// No-op, witness only
}
unsafe fn fetch_register_access(
&mut self,
_idx: &Self::Variable,
output: Self::Position,
) -> Self::Variable {
self.variable(output)
}
unsafe fn push_register_access_if(
&mut self,
_idx: &Self::Variable,
_value: Self::Variable,
_if_is_true: &Self::Variable,
) {
// No-op, witness only
}
unsafe fn fetch_memory(
&mut self,
_addr: &Self::Variable,
output: Self::Position,
) -> Self::Variable {
self.variable(output)
}
unsafe fn push_memory(&mut self, _addr: &Self::Variable, _value: Self::Variable) {
// No-op, witness only
}
unsafe fn fetch_memory_access(
&mut self,
_addr: &Self::Variable,
output: Self::Position,
) -> Self::Variable {
self.variable(output)
}
unsafe fn push_memory_access(&mut self, _addr: &Self::Variable, _value: Self::Variable) {
// No-op, witness only
}
fn constant(x: u32) -> Self::Variable {
Self::Variable::constant(Operations::from(Literal(Fp::from(x))))
}
unsafe fn bitmask(
&mut self,
_x: &Self::Variable,
_highest_bit: u32,
_lowest_bit: u32,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn shift_left(
&mut self,
_x: &Self::Variable,
_by: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn shift_right(
&mut self,
_x: &Self::Variable,
_by: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn shift_right_arithmetic(
&mut self,
_x: &Self::Variable,
_by: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn test_zero(
&mut self,
_x: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
fn is_zero(&mut self, x: &Self::Variable) -> Self::Variable {
let res = {
let pos = self.alloc_scratch();
unsafe { self.test_zero(x, pos) }
};
let x_inv_or_zero = {
let pos = self.alloc_scratch();
unsafe { self.inverse_or_zero(x, pos) }
};
// If x = 0, then res = 1 and x_inv_or_zero = 0
// If x <> 0, then res = 0 and x_inv_or_zero = x^(-1)
self.add_constraint(x.clone() * x_inv_or_zero.clone() + res.clone() - Self::constant(1));
self.add_constraint(x.clone() * res.clone());
res
}
unsafe fn inverse_or_zero(
&mut self,
_x: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
fn equal(&mut self, x: &Self::Variable, y: &Self::Variable) -> Self::Variable {
self.is_zero(&(x.clone() - y.clone()))
}
unsafe fn test_less_than(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn test_less_than_signed(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn and_witness(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn nor_witness(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn or_witness(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn xor_witness(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn add_witness(
&mut self,
_y: &Self::Variable,
_x: &Self::Variable,
out_position: Self::Position,
overflow_position: Self::Position,
) -> (Self::Variable, Self::Variable) {
(
self.variable(out_position),
self.variable(overflow_position),
)
}
unsafe fn sub_witness(
&mut self,
_y: &Self::Variable,
_x: &Self::Variable,
out_position: Self::Position,
underflow_position: Self::Position,
) -> (Self::Variable, Self::Variable) {
(
self.variable(out_position),
self.variable(underflow_position),
)
}
unsafe fn mul_signed_witness(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn mul_hi_lo_signed(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position_hi: Self::Position,
position_lo: Self::Position,
) -> (Self::Variable, Self::Variable) {
(self.variable(position_hi), self.variable(position_lo))
}
unsafe fn mul_hi_lo(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position_hi: Self::Position,
position_lo: Self::Position,
) -> (Self::Variable, Self::Variable) {
(self.variable(position_hi), self.variable(position_lo))
}
unsafe fn divmod_signed(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position_quotient: Self::Position,
position_remainder: Self::Position,
) -> (Self::Variable, Self::Variable) {
(
self.variable(position_quotient),
self.variable(position_remainder),
)
}
unsafe fn divmod(
&mut self,
_x: &Self::Variable,
_y: &Self::Variable,
position_quotient: Self::Position,
position_remainder: Self::Position,
) -> (Self::Variable, Self::Variable) {
(
self.variable(position_quotient),
self.variable(position_remainder),
)
}
unsafe fn count_leading_zeros(
&mut self,
_x: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
unsafe fn count_leading_ones(
&mut self,
_x: &Self::Variable,
position: Self::Position,
) -> Self::Variable {
self.variable(position)
}
fn copy(&mut self, x: &Self::Variable, position: Self::Position) -> Self::Variable {
let res = self.variable(position);
self.constraints.push(x.clone() - res.clone());
res
}
fn set_halted(&mut self, _flag: Self::Variable) {
// TODO
}
fn report_exit(&mut self, _exit_code: &Self::Variable) {}
/// This function checks that the preimage is read correctly.
/// It adds 13 constraints, and 5 lookups for the communication channel.
/// In particular, at every step it writes the bytes of the preimage into
/// the channel (excluding the length bytes) and it reads the hash digest
/// from the channel when the preimage is fully read.
/// The output is the actual number of bytes that have been read.
fn request_preimage_write(
&mut self,
_addr: &Self::Variable,
len: &Self::Variable,
pos: Self::Position,
) -> Self::Variable {
// How many hashes have been performed so far in the circuit
let hash_counter = self.variable(Self::Position::ScratchState(MIPS_HASH_COUNTER_OFF));
// How many bytes have been read from the preimage so far
let byte_counter = self.variable(Self::Position::ScratchState(MIPS_BYTE_COUNTER_OFF));
// Whether this is the last step of the preimage or not (boolean)
let end_of_preimage = self.variable(Self::Position::ScratchState(MIPS_END_OF_PREIMAGE_OFF));
// How many preimage bytes are being processed in this instruction
// FIXME: need to connect this to REGISTER_PREIMAGE_OFFSET or pos?
let num_preimage_bytes_read =
self.variable(Self::Position::ScratchState(MIPS_NUM_BYTES_READ_OFF));
// The chunk of at most 4 bytes that is being processed from the
// preimage in this instruction
let this_chunk = self.variable(Self::Position::ScratchState(MIPS_PREIMAGE_CHUNK_OFF));
// The preimage key composed of 248 bits
let preimage_key = self.variable(Self::Position::ScratchState(MIPS_PREIMAGE_KEY));
// The (at most) 4 bytes that are being processed from the preimage
let bytes: [_; MIPS_CHUNK_BYTES_LEN] = array::from_fn(|i| {
self.variable(Self::Position::ScratchState(MIPS_PREIMAGE_BYTES_OFF + i))
});
// The (at most) 4 bytes that are being read from the bytelength
let length_bytes: [_; MIPS_CHUNK_BYTES_LEN] = array::from_fn(|i| {
self.variable(Self::Position::ScratchState(MIPS_LENGTH_BYTES_OFF + i))
});
// Whether the preimage chunk read has at least n bytes (1, 2, 3, or 4).
// It will be all zero when the syscall reads the bytelength prefix.
let has_n_bytes: [_; MIPS_CHUNK_BYTES_LEN] = array::from_fn(|i| {
self.variable(Self::Position::ScratchState(MIPS_HAS_N_BYTES_OFF + i))
});
// The actual number of bytes read in this instruction, will be 0 <= x <= len <= 4
let actual_read_bytes = self.variable(pos);
// EXTRA 13 CONSTRAINTS
// 5 Booleanity constraints
{
for var in has_n_bytes.iter() {
self.assert_boolean(var.clone());
}
self.assert_boolean(end_of_preimage.clone());
}
// + 4 constraints
{
// Expressions that are nonzero when the exact corresponding number
// of preimage bytes are read (case 0 bytes used when bytelength is read)
// TODO: embed any more complex logic to know how many bytes are read
// depending on the address and length as in the witness?
// FIXME: use the lines below when the issue with `equal` is solved
// that will bring the number of constraints from 23 to 31
// (meaning the unit test needs to be manually adapted)
// let preimage_1 = self.equal(&num_preimage_bytes_read, &Expr::from(1));
// let preimage_2 = self.equal(&num_preimage_bytes_read, &Expr::from(2));
// let preimage_3 = self.equal(&num_preimage_bytes_read, &Expr::from(3));
// let preimage_4 = self.equal(&num_preimage_bytes_read, &Expr::from(4));
let preimage_1 = (num_preimage_bytes_read.clone())
* (num_preimage_bytes_read.clone() - Expr::from(2))
* (num_preimage_bytes_read.clone() - Expr::from(3))
* (num_preimage_bytes_read.clone() - Expr::from(4));
let preimage_2 = (num_preimage_bytes_read.clone())
* (num_preimage_bytes_read.clone() - Expr::from(1))
* (num_preimage_bytes_read.clone() - Expr::from(3))
* (num_preimage_bytes_read.clone() - Expr::from(4));
let preimage_3 = (num_preimage_bytes_read.clone())
* (num_preimage_bytes_read.clone() - Expr::from(1))
* (num_preimage_bytes_read.clone() - Expr::from(2))
* (num_preimage_bytes_read.clone() - Expr::from(4));
let preimage_4 = (num_preimage_bytes_read.clone())
* (num_preimage_bytes_read.clone() - Expr::from(1))
* (num_preimage_bytes_read.clone() - Expr::from(2))
* (num_preimage_bytes_read.clone() - Expr::from(3));
// Constrain the byte decomposition of the preimage chunk
// NOTE: these constraints also hold when 0 preimage bytes are read
{
// When only 1 preimage byte is read, the chunk equals byte[0]
self.add_constraint(preimage_1 * (this_chunk.clone() - bytes[0].clone()));
// When 2 bytes are read, the chunk is equal to the
// byte[0] * 2^8 + byte[1]
self.add_constraint(
preimage_2
* (this_chunk.clone()
- (bytes[0].clone() * Expr::from(2u64.pow(8)) + bytes[1].clone())),
);
// When 3 bytes are read, the chunk is equal to
// byte[0] * 2^16 + byte[1] * 2^8 + byte[2]
self.add_constraint(
preimage_3
* (this_chunk.clone()
- (bytes[0].clone() * Expr::from(2u64.pow(16))
+ bytes[1].clone() * Expr::from(2u64.pow(8))
+ bytes[2].clone())),
);
// When all 4 bytes are read, the chunk is equal to
// byte[0] * 2^24 + byte[1] * 2^16 + byte[2] * 2^8 + byte[3]
self.add_constraint(
preimage_4
* (this_chunk.clone()
- (bytes[0].clone() * Expr::from(2u64.pow(24))
+ bytes[1].clone() * Expr::from(2u64.pow(16))
+ bytes[2].clone() * Expr::from(2u64.pow(8))
+ bytes[3].clone())),
);
}
// +4 constraints
// Constrain the bytes flags depending on the number of preimage
// bytes read in this row
{
// When at least has_1_byte, then any number of bytes can be
// read <=> Check that you can only read 1, 2, 3 or 4 bytes
self.add_constraint(
has_n_bytes[0].clone()
* (num_preimage_bytes_read.clone() - Expr::from(1))
* (num_preimage_bytes_read.clone() - Expr::from(2))
* (num_preimage_bytes_read.clone() - Expr::from(3))
* (num_preimage_bytes_read.clone() - Expr::from(4)),
);
// When at least has_2_byte, then any number of bytes can be
// read from the preimage except 1
self.add_constraint(
has_n_bytes[1].clone()
* (num_preimage_bytes_read.clone() - Expr::from(2))
* (num_preimage_bytes_read.clone() - Expr::from(3))
* (num_preimage_bytes_read.clone() - Expr::from(4)),
);
// When at least has_3_byte, then any number of bytes can be
// read from the preimage except 1 nor 2
self.add_constraint(
has_n_bytes[2].clone()
* (num_preimage_bytes_read.clone() - Expr::from(3))
* (num_preimage_bytes_read.clone() - Expr::from(4)),
);
// When has_4_byte, then only can read 4 preimage bytes
self.add_constraint(
has_n_bytes[3].clone() * (num_preimage_bytes_read.clone() - Expr::from(4)),
);
}
}
// FIXED LOOKUPS
// Byte checks with lookups: both preimage and length bytes are checked
// TODO: think of a way to merge these together to perform 4 lookups
// instead of 8 per row
// FIXME: understand if length bytes can ever be read together with
// preimage bytes. If not, then we can merge the lookups and just run
// 4 lookups per row for the byte checks. AKA: does the oracle always
// read the length bytes first and then the preimage bytes, with no
// overlapping?
for byte in bytes.iter() {
self.add_lookup(Lookup::read_one(
LookupTableIDs::ByteLookup,
vec![byte.clone()],
));
}
for b in length_bytes.iter() {
self.add_lookup(Lookup::read_one(
LookupTableIDs::ByteLookup,
vec![b.clone()],
));
}
// Check that 0 <= preimage read <= actual read <= len <= 4
self.lookup_2bits(len);
self.lookup_2bits(&actual_read_bytes);
self.lookup_2bits(&num_preimage_bytes_read);
self.lookup_2bits(&(len.clone() - actual_read_bytes.clone()));
self.lookup_2bits(&(actual_read_bytes.clone() - num_preimage_bytes_read.clone()));
// COMMUNICATION CHANNEL: Write preimage chunk (1, 2, 3, or 4 bytes)
for i in 0..MIPS_CHUNK_BYTES_LEN {
self.add_lookup(Lookup::write_if(
has_n_bytes[i].clone(),
LookupTableIDs::SyscallLookup,
vec![
hash_counter.clone(),
byte_counter.clone() + Expr::from(i as u64),
bytes[i].clone(),
],
));
}
// COMMUNICATION CHANNEL: Read hash output
// If no more bytes left to be read, then the end of the preimage is
// true.
// TODO: keep track of counter to diminish the number of bytes at
// each step and check it is zero at the end?
self.add_lookup(Lookup::read_if(
end_of_preimage,
LookupTableIDs::SyscallLookup,
vec![hash_counter.clone(), preimage_key],
));
// Return actual length read as variable, stored in `pos`
actual_read_bytes
}
fn request_hint_write(&mut self, _addr: &Self::Variable, _len: &Self::Variable) {
// No-op, witness only
}
fn reset(&mut self) {
self.scratch_state_idx = 0;
self.constraints.clear();
self.lookups.clear();
self.selector = None;
}
}
impl<Fp: Field> Env<Fp> {
/// Return the constraints for the selector.
/// Each selector must be a boolean.
pub fn get_selector_constraints(&self) -> Vec<E<Fp>> {
let one = <Self as InterpreterEnv>::Variable::one();
let mut enforce_bool: Vec<E<Fp>> = (0..N_MIPS_SEL_COLS)
.map(|i| {
let var = self.variable(MIPSColumn::Selector(i));
(var.clone() - one.clone()) * var.clone()
})
.collect();
let enforce_one_activation = (0..N_MIPS_SEL_COLS).fold(E::<Fp>::one(), |res, i| {
let var = self.variable(MIPSColumn::Selector(i));
res - var.clone()
});
enforce_bool.push(enforce_one_activation);
enforce_bool
}
pub fn get_selector(&self) -> E<Fp> {
self.selector
.clone()
.unwrap_or_else(|| panic!("Selector is not set"))
}
/// Return the constraints for the current instruction, without the selector
pub fn get_constraints(&self) -> Vec<E<Fp>> {
self.constraints.clone()
}
pub fn get_lookups(&self) -> Vec<Lookup<E<Fp>>> {
self.lookups.clone()
}
}