1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
//! This module defines the Keccak interpreter in charge of triggering the Keccak workflow
use crate::{
interpreters::keccak::{
column::{PAD_BYTES_LEN, PAD_SUFFIX_LEN, ROUND_CONST_LEN},
grid_index,
helpers::{ArithHelpers, BoolHelpers, LogupHelpers},
Absorbs::*,
Constraint::{self, *},
KeccakColumn,
Sponges::*,
Steps::{self, *},
WORDS_IN_HASH,
},
lookups::{Lookup, LookupTableIDs::*},
};
use ark_ff::{One, Zero};
use kimchi::{
auto_clone_array,
circuits::polynomials::keccak::{
constants::{
CHI_SHIFTS_B_LEN, CHI_SHIFTS_SUM_LEN, DIM, PIRHO_DENSE_E_LEN, PIRHO_DENSE_ROT_E_LEN,
PIRHO_EXPAND_ROT_E_LEN, PIRHO_QUOTIENT_E_LEN, PIRHO_REMAINDER_E_LEN,
PIRHO_SHIFTS_E_LEN, QUARTERS, RATE_IN_BYTES, SHIFTS, SHIFTS_LEN, SPONGE_BYTES_LEN,
SPONGE_SHIFTS_LEN, SPONGE_ZEROS_LEN, STATE_LEN, THETA_DENSE_C_LEN,
THETA_DENSE_ROT_C_LEN, THETA_EXPAND_ROT_C_LEN, THETA_QUOTIENT_C_LEN,
THETA_REMAINDER_C_LEN, THETA_SHIFTS_C_LEN, THETA_STATE_A_LEN,
},
OFF,
},
grid,
};
use std::{array, fmt::Debug};
/// This trait includes functionalities needed to obtain the variables of the Keccak circuit needed for constraints and witness
pub trait Interpreter<F: One + Debug + Zero> {
type Variable: std::ops::Mul<Self::Variable, Output = Self::Variable>
+ std::ops::Add<Self::Variable, Output = Self::Variable>
+ std::ops::Sub<Self::Variable, Output = Self::Variable>
+ Clone
+ Debug
+ One
+ Zero;
/// Creates a variable from a constant integer
fn constant(x: u64) -> Self::Variable;
/// Creates a variable from a constant field element
fn constant_field(x: F) -> Self::Variable;
/// Returns the variable corresponding to a given column alias.
fn variable(&self, column: KeccakColumn) -> Self::Variable;
/// Adds one KeccakConstraint to the environment if the selector holds
fn constrain(&mut self, tag: Constraint, if_true: Self::Variable, x: Self::Variable);
/// Adds a given Lookup to the environment if the condition holds
fn add_lookup(&mut self, if_true: Self::Variable, lookup: Lookup<Self::Variable>);
}
pub trait KeccakInterpreter<F: One + Debug + Zero>
where
Self: Interpreter<F> + LogupHelpers<F> + BoolHelpers<F> + ArithHelpers<F>,
{
/// Creates all 879 constraints/checks to the environment:
/// - 733 constraints of degree 1
/// - 146 constraints of degree 2
/// Where:
/// - if Steps::Round(_) -> only 389 constraints added
/// - if Steps::Sponge::Absorb::First -> only 332 constraints added (232 + 100)
/// - if Steps::Sponge::Absorb::Middle -> only 232 constraints added
/// - if Steps::Sponge::Absorb::Last -> only 374 constraints added (232 + 136 + 6)
/// - if Steps::Sponge::Absorb::Only -> only 474 constraints added (232 + 136 + 100 + 6)
/// - if Steps::Sponge::Squeeze -> only 16 constraints added
/// So:
/// - At most, 474 constraints are added per row
/// In particular, after folding:
/// - 136 columns should be added for the degree-2 constraints of the flags
/// - 5 columns should be added for the degree-2 constraints of the round
/// - 10 columns should be added for the degree-2 constraints of the sponge
/// - for each of the 5 constraints, 2 columns are added for block_in_padding
fn constraints(&mut self, step: Steps) {
// CORRECTNESS OF FLAGS: 136 CONSTRAINTS
// - 136 constraints of degree 2
// Of which:
// - 136 constraints are added only if is_pad() holds
self.constrain_flags(step);
// SPONGE CONSTRAINTS: 32 + 3*100 + 16 + 6 = 354 CONSTRAINTS
// - 349 of degree 1
// - 5 of degree 2
// Of which:
// - 232 constraints are added only if is_absorb() holds
// - 100 constraints are added only if is_root() holds
// - 6 constraints are added only if is_pad() holds
// - 16 constraints are added only if is_squeeze() holds
self.constrain_sponge(step);
// ROUND CONSTRAINTS: 35 + 150 + 200 + 4 = 389 CONSTRAINTS
// - 384 constraints of degree 1
// - 5 constraints of degree 2
// Of which:
// - 389 constraints are added only if is_round() holds
self.constrain_round(step);
}
/// Constrains 136 checks of correctness of mode flags
/// - 136 constraints of degree 2
/// Of which:
/// - 136 constraints are added only if is_pad() holds
fn constrain_flags(&mut self, step: Steps)
where
Self: Interpreter<F>,
{
// Booleanity of sponge flags:
// - 136 constraints of degree 2
self.constrain_booleanity(step);
}
/// Constrains 136 checks of booleanity for some mode flags.
/// - 136 constraints of degree 2
/// Of which,
/// - 136 constraints are added only if is_pad() holds
fn constrain_booleanity(&mut self, step: Steps)
where
Self: Interpreter<F>,
{
for i in 0..RATE_IN_BYTES {
// Bytes are either involved on padding or not
self.constrain(
BooleanityPadding(i),
self.is_pad(step),
Self::is_boolean(self.in_padding(i)),
);
}
}
/// Constrains 354 checks of sponge steps
/// - 349 of degree 1
/// - 5 of degree 2
/// Of which:
/// - 232 constraints are added only if is_absorb() holds
/// - 100 constraints are added only if is_root() holds
/// - 6 constraints are added only if is_pad() holds
/// - 16 constraints are added only if is_squeeze() holds
fn constrain_sponge(&mut self, step: Steps) {
self.constrain_absorb(step);
self.constrain_padding(step);
self.constrain_squeeze(step);
}
/// Constrains 332 checks of absorb sponges
/// - 332 of degree 1
/// Of which:
/// - 232 constraints are added only if is_absorb() holds
/// - 100 constraints are added only if is_root() holds
fn constrain_absorb(&mut self, step: Steps) {
for (i, zero) in self.sponge_zeros().iter().enumerate() {
// Absorb phase pads with zeros the new state
self.constrain(AbsorbZeroPad(i), self.is_absorb(step), zero.clone());
}
for i in 0..QUARTERS * DIM * DIM {
// In first absorb, root state is all zeros
self.constrain(
AbsorbRootZero(i),
self.is_root(step),
self.old_state(i).clone(),
);
// Absorbs the new block by performing XOR with the old state
self.constrain(
AbsorbXor(i),
self.is_absorb(step),
self.xor_state(i).clone() - (self.old_state(i).clone() + self.new_state(i).clone()),
);
// In absorb, Check shifts correspond to the decomposition of the new state
self.constrain(
AbsorbShifts(i),
self.is_absorb(step),
self.new_state(i).clone()
- Self::from_shifts(&self.vec_sponge_shifts(), Some(i), None, None, None),
);
}
}
/// Constrains 6 checks of padding absorb sponges
/// - 1 of degree 1
/// - 5 of degree 2
/// Of which:
/// - 6 constraints are added only if is_pad() holds
fn constrain_padding(&mut self, step: Steps) {
// Check that the padding is located at the end of the message
let pad_at_end = (0..RATE_IN_BYTES).fold(Self::zero(), |acc, i| {
acc * Self::two() + self.in_padding(i)
});
self.constrain(
PadAtEnd,
self.is_pad(step),
self.two_to_pad() - Self::one() - pad_at_end,
);
// Check that the padding value is correct
for i in 0..PAD_SUFFIX_LEN {
self.constrain(
PaddingSuffix(i),
self.is_pad(step),
self.block_in_padding(i) - self.pad_suffix(i),
);
}
}
/// Constrains 16 checks of squeeze sponges
/// - 16 of degree 1
/// Of which:
/// - 16 constraints are added only if is_squeeze() holds
fn constrain_squeeze(&mut self, step: Steps) {
let sponge_shifts = self.vec_sponge_shifts();
for i in 0..QUARTERS * WORDS_IN_HASH {
// In squeeze, check shifts correspond to the 256-bit prefix digest of the old state (current)
self.constrain(
SqueezeShifts(i),
self.is_squeeze(step),
self.old_state(i).clone()
- Self::from_shifts(&sponge_shifts, Some(i), None, None, None),
);
}
}
/// Constrains 389 checks of round steps
/// - 384 constraints of degree 1
/// - 5 constraints of degree 2
/// Of which:
/// - 389 constraints are added only if is_round() holds
fn constrain_round(&mut self, step: Steps) {
// STEP theta: 5 * ( 3 + 4 * 1 ) = 35 constraints
// - 30 constraints of degree 1
// - 5 constraints of degree 2
let state_e = self.constrain_theta(step);
// STEP pirho: 5 * 5 * (2 + 4 * 1) = 150 constraints
// - 150 of degree 1
let state_b = self.constrain_pirho(step, state_e);
// STEP chi: 4 * 5 * 5 * 2 = 200 constraints
// - 200 of degree 1
let state_f = self.constrain_chi(step, state_b);
// STEP iota: 4 constraints
// - 4 of degree 1
self.constrain_iota(step, state_f);
}
/// Constrains 35 checks of the theta algorithm in round steps
/// - 30 constraints of degree 1
/// - 5 constraints of degree 2
fn constrain_theta(&mut self, step: Steps) -> Vec<Vec<Vec<Self::Variable>>> {
// Define vectors storing expressions which are not in the witness layout for efficiency
let mut state_c = vec![vec![Self::zero(); QUARTERS]; DIM];
let mut state_d = vec![vec![Self::zero(); QUARTERS]; DIM];
let mut state_e = vec![vec![vec![Self::zero(); QUARTERS]; DIM]; DIM];
for x in 0..DIM {
let word_c = Self::from_quarters(&self.vec_dense_c(), None, x);
let rem_c = Self::from_quarters(&self.vec_remainder_c(), None, x);
let rot_c = Self::from_quarters(&self.vec_dense_rot_c(), None, x);
self.constrain(
ThetaWordC(x),
self.is_round(step),
word_c * Self::two_pow(1)
- (self.quotient_c(x) * Self::two_pow(64) + rem_c.clone()),
);
self.constrain(
ThetaRotatedC(x),
self.is_round(step),
rot_c - (self.quotient_c(x) + rem_c),
);
self.constrain(
ThetaQuotientC(x),
self.is_round(step),
Self::is_boolean(self.quotient_c(x)),
);
for q in 0..QUARTERS {
state_c[x][q] = self.state_a(0, x, q)
+ self.state_a(1, x, q)
+ self.state_a(2, x, q)
+ self.state_a(3, x, q)
+ self.state_a(4, x, q);
self.constrain(
ThetaShiftsC(x, q),
self.is_round(step),
state_c[x][q].clone()
- Self::from_shifts(&self.vec_shifts_c(), None, None, Some(x), Some(q)),
);
state_d[x][q] =
self.shifts_c(0, (x + DIM - 1) % DIM, q) + self.expand_rot_c((x + 1) % DIM, q);
for (y, column_e) in state_e.iter_mut().enumerate() {
column_e[x][q] = self.state_a(y, x, q) + state_d[x][q].clone();
}
}
}
state_e
}
/// Constrains 150 checks of the pirho algorithm in round steps
/// - 150 of degree 1
fn constrain_pirho(
&mut self,
step: Steps,
state_e: Vec<Vec<Vec<Self::Variable>>>,
) -> Vec<Vec<Vec<Self::Variable>>> {
// Define vectors storing expressions which are not in the witness layout for efficiency
let mut state_b = vec![vec![vec![Self::zero(); QUARTERS]; DIM]; DIM];
for (y, col) in OFF.iter().enumerate() {
for (x, off) in col.iter().enumerate() {
let word_e = Self::from_quarters(&self.vec_dense_e(), Some(y), x);
let quo_e = Self::from_quarters(&self.vec_quotient_e(), Some(y), x);
let rem_e = Self::from_quarters(&self.vec_remainder_e(), Some(y), x);
let rot_e = Self::from_quarters(&self.vec_dense_rot_e(), Some(y), x);
self.constrain(
PiRhoWordE(y, x),
self.is_round(step),
word_e * Self::two_pow(*off)
- (quo_e.clone() * Self::two_pow(64) + rem_e.clone()),
);
self.constrain(
PiRhoRotatedE(y, x),
self.is_round(step),
rot_e - (quo_e.clone() + rem_e),
);
for q in 0..QUARTERS {
self.constrain(
PiRhoShiftsE(y, x, q),
self.is_round(step),
state_e[y][x][q].clone()
- Self::from_shifts(
&self.vec_shifts_e(),
None,
Some(y),
Some(x),
Some(q),
),
);
state_b[(2 * x + 3 * y) % DIM][y][q] = self.expand_rot_e(y, x, q);
}
}
}
state_b
}
/// Constrains 200 checks of the chi algorithm in round steps
/// - 200 of degree 1
fn constrain_chi(
&mut self,
step: Steps,
state_b: Vec<Vec<Vec<Self::Variable>>>,
) -> Vec<Vec<Vec<Self::Variable>>> {
// Define vectors storing expressions which are not in the witness layout for efficiency
let mut state_f = vec![vec![vec![Self::zero(); QUARTERS]; DIM]; DIM];
for q in 0..QUARTERS {
for x in 0..DIM {
for y in 0..DIM {
let not = Self::constant(0x1111111111111111u64)
- self.shifts_b(0, y, (x + 1) % DIM, q);
let sum = not + self.shifts_b(0, y, (x + 2) % DIM, q);
let and = self.shifts_sum(1, y, x, q);
self.constrain(
ChiShiftsB(y, x, q),
self.is_round(step),
state_b[y][x][q].clone()
- Self::from_shifts(
&self.vec_shifts_b(),
None,
Some(y),
Some(x),
Some(q),
),
);
self.constrain(
ChiShiftsSum(y, x, q),
self.is_round(step),
sum - Self::from_shifts(
&self.vec_shifts_sum(),
None,
Some(y),
Some(x),
Some(q),
),
);
state_f[y][x][q] = self.shifts_b(0, y, x, q) + and;
}
}
}
state_f
}
/// Constrains 4 checks of the iota algorithm in round steps
/// - 4 of degree 1
fn constrain_iota(&mut self, step: Steps, state_f: Vec<Vec<Vec<Self::Variable>>>) {
for (q, c) in self.round_constants().to_vec().iter().enumerate() {
self.constrain(
IotaStateG(q),
self.is_round(step),
self.state_g(q).clone() - (state_f[0][0][q].clone() + c.clone()),
);
}
}
////////////////////////
// LOOKUPS OPERATIONS //
////////////////////////
/// Creates all possible lookups to the Keccak constraints environment:
/// - 2225 lookups for the step row
/// - 2 lookups for the inter-step channel
/// - 136 lookups for the syscall channel (preimage bytes)
/// - 1 lookups for the syscall channel (hash)
/// Of which:
/// - 1623 lookups if Step::Round (1621 + 2)
/// - 537 lookups if Step::Absorb::First (400 + 1 + 136)
/// - 538 lookups if Step::Absorb::Middle (400 + 2 + 136)
/// - 539 lookups if Step::Absorb::Last (401 + 2 + 136)
/// - 538 lookups if Step::Absorb::Only (401 + 1 + 136)
/// - 602 lookups if Step::Squeeze (600 + 1 + 1)
fn lookups(&mut self, step: Steps) {
// SPONGE LOOKUPS
// -> adds 400 lookups if is_sponge
// -> adds +200 lookups if is_squeeze
// -> adds +1 lookups if is_pad
self.lookups_sponge(step);
// ROUND LOOKUPS
// -> adds 1621 lookups if is_round
{
// THETA LOOKUPS
self.lookups_round_theta(step);
// PIRHO LOOKUPS
self.lookups_round_pirho(step);
// CHI LOOKUPS
self.lookups_round_chi(step);
// IOTA LOOKUPS
self.lookups_round_iota(step);
}
// INTER-STEP CHANNEL
// Write outputs for next step if not a squeeze and read inputs of curr step if not a root
// -> adds 1 lookup if is_root
// -> adds 1 lookup if is_squeeze
// -> adds 2 lookups otherwise
self.lookup_steps(step);
// COMMUNICATION CHANNEL: read bytes of current block
// -> adds 136 lookups if is_absorb
self.lookup_syscall_preimage(step);
// COMMUNICATION CHANNEL: Write hash output
// -> adds 1 lookup if is_squeeze
self.lookup_syscall_hash(step);
}
/// When in Absorb mode, reads Lookups containing the 136 bytes of the block of the preimage
/// - if is_absorb, adds 136 lookups
/// - otherwise, adds 0 lookups
// TODO: optimize this by using a single lookup reusing PadSuffix
fn lookup_syscall_preimage(&mut self, step: Steps) {
for i in 0..RATE_IN_BYTES {
self.read_syscall(
self.is_absorb(step),
vec![
self.hash_index(),
self.block_index() * Self::constant(RATE_IN_BYTES as u64)
+ Self::constant(i as u64),
self.sponge_byte(i),
],
);
}
}
/// When in Squeeze mode, writes a Lookup containing the 31byte output of
/// the hash (excludes the MSB)
/// - if is_squeeze, adds 1 lookup
/// - otherwise, adds 0 lookups
/// NOTE: this is excluding the MSB (which is then substituted with the
/// file descriptor).
fn lookup_syscall_hash(&mut self, step: Steps) {
let bytes31 = (1..32).fold(Self::zero(), |acc, i| {
acc * Self::two_pow(8) + self.sponge_byte(i)
});
self.write_syscall(self.is_squeeze(step), vec![self.hash_index(), bytes31]);
}
/// Reads a Lookup containing the input of a step
/// and writes a Lookup containing the output of the next step
/// - if is_root, only adds 1 lookup
/// - if is_squeeze, only adds 1 lookup
/// - otherwise, adds 2 lookups
fn lookup_steps(&mut self, step: Steps) {
// (if not a root) Output of previous step is input of current step
self.add_lookup(
Self::not(self.is_root(step)),
Lookup::read_one(KeccakStepLookup, self.input_of_step()),
);
// (if not a squeeze) Input for next step is output of current step
self.add_lookup(
Self::not(self.is_squeeze(step)),
Lookup::write_one(KeccakStepLookup, self.output_of_step()),
);
}
/// Adds the 601 lookups required for the sponge
/// - 400 lookups if is_sponge()
/// - 200 extra lookups if is_squeeze()
/// - 1 extra lookup if is_pad()
fn lookups_sponge(&mut self, step: Steps) {
// PADDING LOOKUPS
// Power of two corresponds to 2^pad_length
// Pad suffixes correspond to 10*1 rule
self.lookup_pad(
self.is_pad(step),
vec![
self.pad_length(),
self.two_to_pad(),
self.pad_suffix(0),
self.pad_suffix(1),
self.pad_suffix(2),
self.pad_suffix(3),
self.pad_suffix(4),
],
);
// BYTES LOOKUPS
// Checking the 200 bytes of the absorb phase together with the length
// bytes is performed in the SyscallReadPreimage rows (4 byte lookups
// per row).
// Here, this only checks the 200 bytes of the squeeze phase (digest)
// TODO: could this be just 32 and we check the shifts only for those?
for i in 0..200 {
// Bytes are <2^8
self.lookup_byte(self.is_squeeze(step), self.sponge_byte(i));
}
// SHIFTS LOOKUPS
for i in 100..SHIFTS_LEN {
// Shifts1, Shifts2, Shifts3 are in the Sparse table
self.lookup_sparse(self.is_sponge(step), self.sponge_shifts(i));
}
for i in 0..STATE_LEN {
// Shifts0 together with Bytes composition by pairs are in the Reset table
let dense = self.sponge_byte(2 * i) + self.sponge_byte(2 * i + 1) * Self::two_pow(8);
self.lookup_reset(self.is_sponge(step), dense, self.sponge_shifts(i));
}
}
/// Adds the 120 lookups required for Theta in the round
fn lookups_round_theta(&mut self, step: Steps) {
for q in 0..QUARTERS {
for x in 0..DIM {
// Check that ThetaRemainderC < 2^64
self.lookup_rc16(self.is_round(step), self.remainder_c(x, q));
// Check ThetaExpandRotC is the expansion of ThetaDenseRotC
self.lookup_reset(
self.is_round(step),
self.dense_rot_c(x, q),
self.expand_rot_c(x, q),
);
// Check ThetaShiftC0 is the expansion of ThetaDenseC
self.lookup_reset(
self.is_round(step),
self.dense_c(x, q),
self.shifts_c(0, x, q),
);
// Check that the rest of ThetaShiftsC are in the Sparse table
for i in 1..SHIFTS {
self.lookup_sparse(self.is_round(step), self.shifts_c(i, x, q));
}
}
}
}
/// Adds the 700 lookups required for PiRho in the round
fn lookups_round_pirho(&mut self, step: Steps) {
for q in 0..QUARTERS {
for x in 0..DIM {
for y in 0..DIM {
// Check that PiRhoRemainderE < 2^64 and PiRhoQuotientE < 2^64
self.lookup_rc16(self.is_round(step), self.remainder_e(y, x, q));
self.lookup_rc16(self.is_round(step), self.quotient_e(y, x, q));
// Check PiRhoExpandRotE is the expansion of PiRhoDenseRotE
self.lookup_reset(
self.is_round(step),
self.dense_rot_e(y, x, q),
self.expand_rot_e(y, x, q),
);
// Check PiRhoShift0E is the expansion of PiRhoDenseE
self.lookup_reset(
self.is_round(step),
self.dense_e(y, x, q),
self.shifts_e(0, y, x, q),
);
// Check that the rest of PiRhoShiftsE are in the Sparse table
for i in 1..SHIFTS {
self.lookup_sparse(self.is_round(step), self.shifts_e(i, y, x, q));
}
}
}
}
}
/// Adds the 800 lookups required for Chi in the round
fn lookups_round_chi(&mut self, step: Steps) {
let shifts_b = self.vec_shifts_b();
let shifts_sum = self.vec_shifts_sum();
for i in 0..SHIFTS_LEN {
// Check ChiShiftsB and ChiShiftsSum are in the Sparse table
self.lookup_sparse(self.is_round(step), shifts_b[i].clone());
self.lookup_sparse(self.is_round(step), shifts_sum[i].clone());
}
}
/// Adds the 1 lookup required for Iota in the round
fn lookups_round_iota(&mut self, step: Steps) {
// Check round constants correspond with the current round
let round_constants = self.round_constants();
self.lookup_round_constants(
self.is_round(step),
vec![
self.round(),
round_constants[3].clone(),
round_constants[2].clone(),
round_constants[1].clone(),
round_constants[0].clone(),
],
);
}
///////////////////////////
/// SELECTOR OPERATIONS ///
///////////////////////////
/// Returns a degree-2 variable that encodes whether the current step is a sponge (1 = yes)
fn is_sponge(&self, step: Steps) -> Self::Variable {
Self::xor(self.is_absorb(step), self.is_squeeze(step))
}
/// Returns a variable that encodes whether the current step is an absorb sponge (1 = yes)
fn is_absorb(&self, step: Steps) -> Self::Variable {
Self::or(
Self::or(self.mode_root(step), self.mode_rootpad(step)),
Self::or(self.mode_pad(step), self.mode_absorb(step)),
)
}
/// Returns a variable that encodes whether the current step is a squeeze sponge (1 = yes)
fn is_squeeze(&self, step: Steps) -> Self::Variable {
self.mode_squeeze(step)
}
/// Returns a variable that encodes whether the current step is the first absorb sponge (1 = yes)
fn is_root(&self, step: Steps) -> Self::Variable {
Self::or(self.mode_root(step), self.mode_rootpad(step))
}
/// Returns a degree-1 variable that encodes whether the current step is the last absorb sponge (1 = yes)
fn is_pad(&self, step: Steps) -> Self::Variable {
Self::or(self.mode_pad(step), self.mode_rootpad(step))
}
/// Returns a variable that encodes whether the current step is a permutation round (1 = yes)
fn is_round(&self, step: Steps) -> Self::Variable {
self.mode_round(step)
}
/// Returns a variable that encodes whether the current step is an absorb sponge (1 = yes)
fn mode_absorb(&self, step: Steps) -> Self::Variable {
match step {
Sponge(Absorb(Middle)) => Self::one(),
_ => Self::zero(),
}
}
/// Returns a variable that encodes whether the current step is a squeeze sponge (1 = yes)
fn mode_squeeze(&self, step: Steps) -> Self::Variable {
match step {
Sponge(Squeeze) => Self::one(),
_ => Self::zero(),
}
}
/// Returns a variable that encodes whether the current step is the first absorb sponge (1 = yes)
fn mode_root(&self, step: Steps) -> Self::Variable {
match step {
Sponge(Absorb(First)) => Self::one(),
_ => Self::zero(),
}
}
/// Returns a degree-1 variable that encodes whether the current step is the last absorb sponge (1 = yes)
fn mode_pad(&self, step: Steps) -> Self::Variable {
match step {
Sponge(Absorb(Last)) => Self::one(),
_ => Self::zero(),
}
}
/// Returns a degree-1 variable that encodes whether the current step is the first and last absorb sponge (1 = yes)
fn mode_rootpad(&self, step: Steps) -> Self::Variable {
match step {
Sponge(Absorb(Only)) => Self::one(),
_ => Self::zero(),
}
}
/// Returns a variable that encodes whether the current step is a permutation round (1 = yes)
fn mode_round(&self, step: Steps) -> Self::Variable {
// The actual round number in the selector carries no information for witness nor constraints
// because in the witness, any usize is mapped to the same index inside the mode flags
match step {
Round(_) => Self::one(),
_ => Self::zero(),
}
}
/////////////////////////
/// COLUMN OPERATIONS ///
/////////////////////////
/// This function returns the composed sparse variable from shifts of any correct length:
/// - When the length is 400, two index configurations are possible:
/// - If `i` is `Some`, then this sole index could range between [0..400)
/// - If `i` is `None`, then `y`, `x` and `q` must be `Some` and
/// - `y` must range between [0..5)
/// - `x` must range between [0..5)
/// - `q` must range between [0..4)
/// - When the length is 80, both `i` and `y` should be `None`, and `x` and `q` must be `Some` with:
/// - `x` must range between [0..5)
/// - `q` must range between [0..4)
fn from_shifts(
shifts: &[Self::Variable],
i: Option<usize>,
y: Option<usize>,
x: Option<usize>,
q: Option<usize>,
) -> Self::Variable {
match shifts.len() {
400 => {
if let Some(i) = i {
auto_clone_array!(shifts);
shifts(i)
+ Self::two_pow(1) * shifts(100 + i)
+ Self::two_pow(2) * shifts(200 + i)
+ Self::two_pow(3) * shifts(300 + i)
} else {
let shifts = grid!(400, shifts);
shifts(0, y.unwrap(), x.unwrap(), q.unwrap())
+ Self::two_pow(1) * shifts(1, y.unwrap(), x.unwrap(), q.unwrap())
+ Self::two_pow(2) * shifts(2, y.unwrap(), x.unwrap(), q.unwrap())
+ Self::two_pow(3) * shifts(3, y.unwrap(), x.unwrap(), q.unwrap())
}
}
80 => {
let shifts = grid!(80, shifts);
shifts(0, x.unwrap(), q.unwrap())
+ Self::two_pow(1) * shifts(1, x.unwrap(), q.unwrap())
+ Self::two_pow(2) * shifts(2, x.unwrap(), q.unwrap())
+ Self::two_pow(3) * shifts(3, x.unwrap(), q.unwrap())
}
_ => panic!("Invalid length of shifts"),
}
}
/// This function returns the composed variable from dense quarters of any correct length:
/// - When `y` is `Some`, then the length must be 100 and:
/// - `y` must range between [0..5)
/// - `x` must range between [0..5)
/// - When `y` is `None`, then the length must be 20 and:
/// - `x` must range between [0..5)
fn from_quarters(quarters: &[Self::Variable], y: Option<usize>, x: usize) -> Self::Variable {
if let Some(y) = y {
assert!(quarters.len() == 100, "Invalid length of quarters");
let quarters = grid!(100, quarters);
quarters(y, x, 0)
+ Self::two_pow(16) * quarters(y, x, 1)
+ Self::two_pow(32) * quarters(y, x, 2)
+ Self::two_pow(48) * quarters(y, x, 3)
} else {
assert!(quarters.len() == 20, "Invalid length of quarters");
let quarters = grid!(20, quarters);
quarters(x, 0)
+ Self::two_pow(16) * quarters(x, 1)
+ Self::two_pow(32) * quarters(x, 2)
+ Self::two_pow(48) * quarters(x, 3)
}
}
/// Returns a variable that encodes the current round number [0..24)
fn round(&self) -> Self::Variable {
self.variable(KeccakColumn::RoundNumber)
}
/// Returns a variable that encodes the bytelength of the padding if any [0..136)
fn pad_length(&self) -> Self::Variable {
self.variable(KeccakColumn::PadLength)
}
/// Returns a variable that encodes the value 2^pad_length
fn two_to_pad(&self) -> Self::Variable {
self.variable(KeccakColumn::TwoToPad)
}
/// Returns a variable that encodes whether the `idx`-th byte of the new block is involved in the padding (1 = yes)
fn in_padding(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::PadBytesFlags(idx))
}
/// Returns a variable that encodes the `idx`-th chunk of the padding suffix
/// - if `idx` = 0, then the length is 12 bytes at most
/// - if `idx` = [1..5), then the length is 31 bytes at most
fn pad_suffix(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::PadSuffix(idx))
}
/// Returns a variable that encodes the `idx`-th block of bytes of the new block
/// by composing the bytes variables, with `idx` in [0..5)
fn bytes_block(&self, idx: usize) -> Vec<Self::Variable> {
let sponge_bytes = self.sponge_bytes();
match idx {
0 => sponge_bytes[0..12].to_vec(),
1..=4 => sponge_bytes[12 + (idx - 1) * 31..12 + idx * 31].to_vec(),
_ => panic!("No more blocks of bytes can be part of padding"),
}
}
/// Returns the 136 flags indicating which bytes of the new block are involved in the padding, as variables
fn pad_bytes_flags(&self) -> [Self::Variable; PAD_BYTES_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PadBytesFlags(idx)))
}
/// Returns a vector of pad bytes flags as variables, with `idx` in [0..5)
/// - if `idx` = 0, then the length of the block is at most 12
/// - if `idx` = [1..5), then the length of the block is at most 31
fn flags_block(&self, idx: usize) -> Vec<Self::Variable> {
let pad_bytes_flags = self.pad_bytes_flags();
match idx {
0 => pad_bytes_flags[0..12].to_vec(),
1..=4 => pad_bytes_flags[12 + (idx - 1) * 31..12 + idx * 31].to_vec(),
_ => panic!("No more blocks of flags can be part of padding"),
}
}
/// This function returns a degree-2 variable that is computed as the accumulated value of the
/// operation `byte * flag * 2^8` for each byte block and flag block of the new block.
/// This function will be used in constraints to determine whether the padding is located
/// at the end of the preimage data, as consecutive bits that are involved in the padding.
fn block_in_padding(&self, idx: usize) -> Self::Variable {
let bytes = self.bytes_block(idx);
let flags = self.flags_block(idx);
assert_eq!(bytes.len(), flags.len());
let pad = bytes
.iter()
.zip(flags)
.fold(Self::zero(), |acc, (byte, flag)| {
acc * Self::two_pow(8) + byte.clone() * flag.clone()
});
pad
}
/// Returns the 4 expanded quarters that encode the round constant, as variables
fn round_constants(&self) -> [Self::Variable; ROUND_CONST_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::RoundConstants(idx)))
}
/// Returns the `idx`-th old state expanded quarter, as a variable
fn old_state(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::Input(idx))
}
/// Returns the `idx`-th new state expanded quarter, as a variable
fn new_state(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::SpongeNewState(idx))
}
/// Returns the output of an absorb sponge, which is the XOR of the old state and the new state
fn xor_state(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::Output(idx))
}
/// Returns the last 32 terms that are added to the new block in an absorb sponge, as variables which should be zeros
fn sponge_zeros(&self) -> [Self::Variable; SPONGE_ZEROS_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::SpongeZeros(idx)))
}
/// Returns the 400 terms that compose the shifts of the sponge, as variables
fn vec_sponge_shifts(&self) -> [Self::Variable; SPONGE_SHIFTS_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::SpongeShifts(idx)))
}
/// Returns the `idx`-th term of the shifts of the sponge, as a variable
fn sponge_shifts(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::SpongeShifts(idx))
}
/// Returns the 200 bytes of the sponge, as variables
fn sponge_bytes(&self) -> [Self::Variable; SPONGE_BYTES_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::SpongeBytes(idx)))
}
/// Returns the `idx`-th byte of the sponge, as a variable
fn sponge_byte(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::SpongeBytes(idx))
}
/// Returns the (y,x,q)-th input of the theta algorithm, as a variable
fn state_a(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_STATE_A_LEN, 0, y, x, q);
self.variable(KeccakColumn::Input(idx))
}
/// Returns the 80 variables corresponding to ThetaShiftsC
fn vec_shifts_c(&self) -> [Self::Variable; THETA_SHIFTS_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaShiftsC(idx)))
}
/// Returns the (i,x,q)-th variable of ThetaShiftsC
fn shifts_c(&self, i: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_SHIFTS_C_LEN, i, 0, x, q);
self.variable(KeccakColumn::ThetaShiftsC(idx))
}
/// Returns the 20 variables corresponding to ThetaDenseC
fn vec_dense_c(&self) -> [Self::Variable; THETA_DENSE_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaDenseC(idx)))
}
/// Returns the (x,q)-th term of ThetaDenseC, as a variable
fn dense_c(&self, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_DENSE_C_LEN, 0, 0, x, q);
self.variable(KeccakColumn::ThetaDenseC(idx))
}
/// Returns the 5 variables corresponding to ThetaQuotientC
fn vec_quotient_c(&self) -> [Self::Variable; THETA_QUOTIENT_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaQuotientC(idx)))
}
/// Returns the (x)-th term of ThetaQuotientC, as a variable
fn quotient_c(&self, x: usize) -> Self::Variable {
self.variable(KeccakColumn::ThetaQuotientC(x))
}
/// Returns the 20 variables corresponding to ThetaRemainderC
fn vec_remainder_c(&self) -> [Self::Variable; THETA_REMAINDER_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaRemainderC(idx)))
}
/// Returns the (x,q)-th variable of ThetaRemainderC
fn remainder_c(&self, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_REMAINDER_C_LEN, 0, 0, x, q);
self.variable(KeccakColumn::ThetaRemainderC(idx))
}
/// Returns the 20 variables corresponding to ThetaDenseRotC
fn vec_dense_rot_c(&self) -> [Self::Variable; THETA_DENSE_ROT_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaDenseRotC(idx)))
}
/// Returns the (x,q)-th variable of ThetaDenseRotC
fn dense_rot_c(&self, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_DENSE_ROT_C_LEN, 0, 0, x, q);
self.variable(KeccakColumn::ThetaDenseRotC(idx))
}
/// Returns the 20 variables corresponding to ThetaExpandRotC
fn vec_expand_rot_c(&self) -> [Self::Variable; THETA_EXPAND_ROT_C_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ThetaExpandRotC(idx)))
}
/// Returns the (x,q)-th variable of ThetaExpandRotC
fn expand_rot_c(&self, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(THETA_EXPAND_ROT_C_LEN, 0, 0, x, q);
self.variable(KeccakColumn::ThetaExpandRotC(idx))
}
/// Returns the 400 variables corresponding to PiRhoShiftsE
fn vec_shifts_e(&self) -> [Self::Variable; PIRHO_SHIFTS_E_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PiRhoShiftsE(idx)))
}
/// Returns the (i,y,x,q)-th variable of PiRhoShiftsE
fn shifts_e(&self, i: usize, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_SHIFTS_E_LEN, i, y, x, q);
self.variable(KeccakColumn::PiRhoShiftsE(idx))
}
/// Returns the 100 variables corresponding to PiRhoDenseE
fn vec_dense_e(&self) -> [Self::Variable; PIRHO_DENSE_E_LEN] {
array::from_fn(|idx: usize| self.variable(KeccakColumn::PiRhoDenseE(idx)))
}
/// Returns the (y,x,q)-th variable of PiRhoDenseE
fn dense_e(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_DENSE_E_LEN, 0, y, x, q);
self.variable(KeccakColumn::PiRhoDenseE(idx))
}
/// Returns the 100 variables corresponding to PiRhoQuotientE
fn vec_quotient_e(&self) -> [Self::Variable; PIRHO_QUOTIENT_E_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PiRhoQuotientE(idx)))
}
/// Returns the (y,x,q)-th variable of PiRhoQuotientE
fn quotient_e(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_QUOTIENT_E_LEN, 0, y, x, q);
self.variable(KeccakColumn::PiRhoQuotientE(idx))
}
/// Returns the 100 variables corresponding to PiRhoRemainderE
fn vec_remainder_e(&self) -> [Self::Variable; PIRHO_REMAINDER_E_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PiRhoRemainderE(idx)))
}
/// Returns the (y,x,q)-th variable of PiRhoRemainderE
fn remainder_e(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_REMAINDER_E_LEN, 0, y, x, q);
self.variable(KeccakColumn::PiRhoRemainderE(idx))
}
/// Returns the 100 variables corresponding to PiRhoDenseRotE
fn vec_dense_rot_e(&self) -> [Self::Variable; PIRHO_DENSE_ROT_E_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PiRhoDenseRotE(idx)))
}
/// Returns the (y,x,q)-th variable of PiRhoDenseRotE
fn dense_rot_e(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_DENSE_ROT_E_LEN, 0, y, x, q);
self.variable(KeccakColumn::PiRhoDenseRotE(idx))
}
/// Returns the 100 variables corresponding to PiRhoExpandRotE
fn vec_expand_rot_e(&self) -> [Self::Variable; PIRHO_EXPAND_ROT_E_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::PiRhoExpandRotE(idx)))
}
/// Returns the (y,x,q)-th variable of PiRhoExpandRotE
fn expand_rot_e(&self, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(PIRHO_EXPAND_ROT_E_LEN, 0, y, x, q);
self.variable(KeccakColumn::PiRhoExpandRotE(idx))
}
/// Returns the 400 variables corresponding to ChiShiftsB
fn vec_shifts_b(&self) -> [Self::Variable; CHI_SHIFTS_B_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ChiShiftsB(idx)))
}
/// Returns the (i,y,x,q)-th variable of ChiShiftsB
fn shifts_b(&self, i: usize, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(CHI_SHIFTS_B_LEN, i, y, x, q);
self.variable(KeccakColumn::ChiShiftsB(idx))
}
/// Returns the 400 variables corresponding to ChiShiftsSum
fn vec_shifts_sum(&self) -> [Self::Variable; CHI_SHIFTS_SUM_LEN] {
array::from_fn(|idx| self.variable(KeccakColumn::ChiShiftsSum(idx)))
}
/// Returns the (i,y,x,q)-th variable of ChiShiftsSum
fn shifts_sum(&self, i: usize, y: usize, x: usize, q: usize) -> Self::Variable {
let idx = grid_index(CHI_SHIFTS_SUM_LEN, i, y, x, q);
self.variable(KeccakColumn::ChiShiftsSum(idx))
}
/// Returns the `idx`-th output of a round step as a variable
fn state_g(&self, idx: usize) -> Self::Variable {
self.variable(KeccakColumn::Output(idx))
}
/// Returns the hash index as a variable
fn hash_index(&self) -> Self::Variable {
self.variable(KeccakColumn::HashIndex)
}
/// Returns the block index as a variable
fn block_index(&self) -> Self::Variable {
self.variable(KeccakColumn::BlockIndex)
}
/// Returns the step index as a variable
fn step_index(&self) -> Self::Variable {
self.variable(KeccakColumn::StepIndex)
}
/// Returns the 100 step input variables, which correspond to the:
/// - State A when the current step is a permutation round
/// - Old state when the current step is a non-root sponge
fn input(&self) -> [Self::Variable; STATE_LEN] {
array::from_fn::<_, STATE_LEN, _>(|idx| self.variable(KeccakColumn::Input(idx)))
}
/// Returns a slice of the input variables of the current step
/// including the current hash index and step index
fn input_of_step(&self) -> Vec<Self::Variable> {
let mut input_of_step = Vec::with_capacity(STATE_LEN + 2);
input_of_step.push(self.hash_index());
input_of_step.push(self.step_index());
input_of_step.extend_from_slice(&self.input());
input_of_step
}
/// Returns the 100 step output variables, which correspond to the:
/// - State G when the current step is a permutation round
/// - Xor state when the current step is an absorb sponge
fn output(&self) -> [Self::Variable; STATE_LEN] {
array::from_fn::<_, STATE_LEN, _>(|idx| self.variable(KeccakColumn::Output(idx)))
}
/// Returns a slice of the output variables of the current step (= input of next step)
/// including the current hash index and step index
fn output_of_step(&self) -> Vec<Self::Variable> {
let mut output_of_step = Vec::with_capacity(STATE_LEN + 2);
output_of_step.push(self.hash_index());
output_of_step.push(self.step_index() + Self::one());
output_of_step.extend_from_slice(&self.output());
output_of_step
}
}