1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
//! This module contains the definition and implementation of the Keccak environment
//! including the common functions between the witness and the constraints environments
//! for arithmetic, boolean, and column operations.
use crate::{
interpreters::keccak::{
column::{
Absorbs::{self, *},
KeccakWitness,
Sponges::{self, *},
Steps,
Steps::*,
PAD_SUFFIX_LEN,
},
constraints::Env as ConstraintsEnv,
grid_index,
interpreter::KeccakInterpreter,
pad_blocks, standardize,
witness::Env as WitnessEnv,
KeccakColumn, DIM, HASH_BYTELENGTH, QUARTERS, WORDS_IN_HASH,
},
lookups::Lookup,
E,
};
use ark_ff::Field;
use kimchi::{
circuits::polynomials::keccak::{
constants::*,
witness::{Chi, Iota, PiRho, Theta},
Keccak,
},
o1_utils::Two,
};
use std::array;
/// This struct contains all that needs to be kept track of during the execution of the Keccak step interpreter
#[derive(Clone, Debug)]
pub struct KeccakEnv<F> {
/// Environment for the constraints (includes lookups).
/// The step of the hash that is being executed can be None if just ended
pub constraints_env: ConstraintsEnv<F>,
/// Environment for the witness (includes multiplicities)
pub witness_env: WitnessEnv<F>,
/// Current step
pub step: Option<Steps>,
/// Hash index in the circuit
pub(crate) hash_idx: u64,
/// Step counter of the total number of steps executed so far in the current hash (starts with 0)
pub(crate) step_idx: u64,
/// Current block of preimage data
pub(crate) block_idx: u64,
/// Expanded block of previous step
pub(crate) prev_block: Vec<u64>,
/// How many blocks are left to absorb (including current absorb)
pub(crate) blocks_left_to_absorb: u64,
/// Padded preimage data
pub(crate) padded: Vec<u8>,
/// Byte-length of the 10*1 pad (<=136)
pub(crate) pad_len: u64,
/// Precomputed 2^pad_len
two_to_pad: [F; RATE_IN_BYTES],
/// Precomputed suffixes for the padding blocks
pad_suffixes: [[F; PAD_SUFFIX_LEN]; RATE_IN_BYTES],
}
impl<F: Field> Default for KeccakEnv<F> {
fn default() -> Self {
Self {
constraints_env: ConstraintsEnv::default(),
witness_env: WitnessEnv::default(),
step: None,
hash_idx: 0,
step_idx: 0,
block_idx: 0,
prev_block: vec![],
blocks_left_to_absorb: 0,
padded: vec![],
pad_len: 0,
two_to_pad: array::from_fn(|i| F::two_pow(1 + i as u64)),
pad_suffixes: array::from_fn(|i| pad_blocks::<F>(1 + i)),
}
}
}
impl<F: Field> KeccakEnv<F> {
/// Starts a new Keccak environment for a given hash index and bytestring of preimage data
pub fn new(hash_idx: u64, preimage: &[u8]) -> Self {
// Must update the flag type at each step from the witness interpretation
let mut env = KeccakEnv::<F> {
hash_idx,
..Default::default()
};
// Store hash index in the witness
env.write_column(KeccakColumn::HashIndex, env.hash_idx);
// Update the number of blocks left to be absorbed depending on the length of the preimage
env.blocks_left_to_absorb = Keccak::num_blocks(preimage.len()) as u64;
// Configure first step depending on number of blocks remaining, updating the selector for the row
env.step = if env.blocks_left_to_absorb == 1 {
Some(Sponge(Absorb(Only)))
} else {
Some(Sponge(Absorb(First)))
};
env.step_idx = 0;
// Root state (all zeros) shall be used for the first step
env.prev_block = vec![0u64; STATE_LEN];
// Pad preimage with the 10*1 padding rule
env.padded = Keccak::pad(preimage);
env.block_idx = 0;
env.pad_len = (env.padded.len() - preimage.len()) as u64;
env
}
/// Writes an integer value to a column of the Keccak witness
pub fn write_column(&mut self, column: KeccakColumn, value: u64) {
self.write_column_field(column, F::from(value));
}
/// Writes a field value to a column of the Keccak witness
pub fn write_column_field(&mut self, column: KeccakColumn, value: F) {
self.witness_env.witness[column] = value;
}
/// Nullifies the Witness and Constraint environments by resetting it to default values (except for table-related)
/// This way, each row only adds the constraints of that step (do not nullify the step)
pub fn null_state(&mut self) {
self.witness_env.witness = KeccakWitness::default();
self.witness_env.errors = vec![];
// The multiplicities are not reset.
// The fixed tables are not modified.
self.constraints_env.constraints = vec![];
self.constraints_env.lookups = vec![];
// Step is not reset between iterations
}
/// Returns the selector of the current step in standardized form
pub fn selector(&self) -> Steps {
standardize(self.step.unwrap())
}
/// Entrypoint for the interpreter. It executes one step of the Keccak circuit (one row),
/// and updates the environment accordingly (including the witness and inter-step lookups).
/// When it finishes, it updates the value of the current step, so that the next call to
/// the `step()` function executes the next step.
pub fn step(&mut self) {
// Reset columns to zeros to avoid conflicts between steps
self.null_state();
match self.step.unwrap() {
Sponge(typ) => self.run_sponge(typ),
Round(i) => self.run_round(i),
}
self.write_column(KeccakColumn::StepIndex, self.step_idx);
self.update_step();
}
/// This function updates the next step of the environment depending on the current step
pub fn update_step(&mut self) {
match self.step {
Some(step) => match step {
Sponge(sponge) => match sponge {
Absorb(_) => self.step = Some(Round(0)),
Squeeze => self.step = None,
},
Round(round) => {
if round < ROUNDS as u64 - 1 {
self.step = Some(Round(round + 1));
} else {
self.blocks_left_to_absorb -= 1;
match self.blocks_left_to_absorb {
0 => self.step = Some(Sponge(Squeeze)),
1 => self.step = Some(Sponge(Absorb(Last))),
_ => self.step = Some(Sponge(Absorb(Middle))),
}
}
}
},
None => panic!("No step to update"),
}
self.step_idx += 1;
}
/// Updates the witness corresponding to the round value in [0..23]
fn set_flag_round(&mut self, round: u64) {
assert!(round < ROUNDS as u64);
self.write_column(KeccakColumn::RoundNumber, round);
}
/// Updates and any other sponge flag depending on the kind of absorb step (root, padding, both).
fn set_flag_absorb(&mut self, absorb: Absorbs) {
match absorb {
Last | Only => {
// Step flag has been updated already
self.set_flags_pad();
}
First | Middle => (), // Step flag has been updated already,
}
}
/// Sets the flag columns related to padding flags such as `PadLength`, `TwoToPad`, `PadBytesFlags`, and `PadSuffix`.
fn set_flags_pad(&mut self) {
// Initialize padding columns with precomputed values to speed up interpreter
self.write_column(KeccakColumn::PadLength, self.pad_len);
self.write_column_field(
KeccakColumn::TwoToPad,
self.two_to_pad[self.pad_len as usize - 1],
);
let pad_range = RATE_IN_BYTES - self.pad_len as usize..RATE_IN_BYTES;
for i in pad_range {
self.write_column(KeccakColumn::PadBytesFlags(i), 1);
}
let pad_suffix = self.pad_suffixes[self.pad_len as usize - 1];
for (idx, value) in pad_suffix.iter().enumerate() {
self.write_column_field(KeccakColumn::PadSuffix(idx), *value);
}
}
/// Assigns the witness values needed in a sponge step (absorb or squeeze)
fn run_sponge(&mut self, sponge: Sponges) {
// Keep track of the round number for ease of debugging
match sponge {
Absorb(absorb) => self.run_absorb(absorb),
Squeeze => self.run_squeeze(),
}
}
/// Assigns the witness values needed in an absorb step (root, padding, or middle)
fn run_absorb(&mut self, absorb: Absorbs) {
self.set_flag_absorb(absorb);
// Compute witness values
let ini_idx = RATE_IN_BYTES * self.block_idx as usize;
let mut block = self.padded[ini_idx..ini_idx + RATE_IN_BYTES].to_vec();
self.write_column(KeccakColumn::BlockIndex, self.block_idx);
// Pad with zeros
block.append(&mut vec![0; CAPACITY_IN_BYTES]);
// Round + Mode of Operation (Sponge)
// state -> permutation(state) -> state'
// ----> either [0] or state'
// | new state = Exp(block)
// | ------------------------
// Absorb: state + [ block + 0...0 ]
// 1088 bits 512
// ----------------------------------
// XOR STATE
let old_state = self.prev_block.clone();
let new_state = Keccak::expand_state(&block);
let xor_state = old_state
.iter()
.zip(new_state.clone())
.map(|(x, y)| x + y)
.collect::<Vec<u64>>();
let shifts = Keccak::shift(&new_state);
let bytes = block.iter().map(|b| *b as u64).collect::<Vec<u64>>();
// Write absorb-related columns
for idx in 0..STATE_LEN {
self.write_column(KeccakColumn::Input(idx), old_state[idx]);
self.write_column(KeccakColumn::SpongeNewState(idx), new_state[idx]);
self.write_column(KeccakColumn::Output(idx), xor_state[idx]);
}
for (idx, value) in bytes.iter().enumerate() {
self.write_column(KeccakColumn::SpongeBytes(idx), *value);
}
for (idx, value) in shifts.iter().enumerate() {
self.write_column(KeccakColumn::SpongeShifts(idx), *value);
}
// Rest is zero thanks to null_state
// Update environment
self.prev_block = xor_state;
self.block_idx += 1; // To be used in next absorb (if any)
}
/// Assigns the witness values needed in a squeeze step
fn run_squeeze(&mut self) {
// Squeeze step is already updated
// Compute witness values
let state = self.prev_block.clone();
let shifts = Keccak::shift(&state);
let dense = Keccak::collapse(&Keccak::reset(&shifts));
let bytes = Keccak::bytestring(&dense);
// Write squeeze-related columns
for (idx, value) in state.iter().enumerate() {
self.write_column(KeccakColumn::Input(idx), *value);
}
for (idx, value) in bytes.iter().enumerate().take(HASH_BYTELENGTH) {
self.write_column(KeccakColumn::SpongeBytes(idx), *value);
}
for idx in 0..WORDS_IN_HASH * QUARTERS {
self.write_column(KeccakColumn::SpongeShifts(idx), shifts[idx]);
self.write_column(KeccakColumn::SpongeShifts(100 + idx), shifts[100 + idx]);
self.write_column(KeccakColumn::SpongeShifts(200 + idx), shifts[200 + idx]);
self.write_column(KeccakColumn::SpongeShifts(300 + idx), shifts[300 + idx]);
}
// Rest is zero thanks to null_state
}
/// Assigns the witness values needed in the round step for the given round index
fn run_round(&mut self, round: u64) {
self.set_flag_round(round);
let state_a = self.prev_block.clone();
let state_e = self.run_theta(&state_a);
let state_b = self.run_pirho(&state_e);
let state_f = self.run_chi(&state_b);
let state_g = self.run_iota(&state_f, round as usize);
// Update block for next step with the output of the round
self.prev_block = state_g;
}
/// Assigns the witness values needed in the theta algorithm
/// ```text
/// for x in 0…4
/// C[x] = A[x,0] xor A[x,1] xor \
/// A[x,2] xor A[x,3] xor \
/// A[x,4]
/// for x in 0…4
/// D[x] = C[x-1] xor rot(C[x+1],1)
/// for (x,y) in (0…4,0…4)
/// A[x,y] = A[x,y] xor D[x]
/// ```
fn run_theta(&mut self, state_a: &[u64]) -> Vec<u64> {
let theta = Theta::create(state_a);
// Write Theta-related columns
for x in 0..DIM {
self.write_column(KeccakColumn::ThetaQuotientC(x), theta.quotient_c(x));
for q in 0..QUARTERS {
let idx = grid_index(QUARTERS * DIM, 0, 0, x, q);
self.write_column(KeccakColumn::ThetaDenseC(idx), theta.dense_c(x, q));
self.write_column(KeccakColumn::ThetaRemainderC(idx), theta.remainder_c(x, q));
self.write_column(KeccakColumn::ThetaDenseRotC(idx), theta.dense_rot_c(x, q));
self.write_column(KeccakColumn::ThetaExpandRotC(idx), theta.expand_rot_c(x, q));
for y in 0..DIM {
let idx = grid_index(THETA_STATE_A_LEN, 0, y, x, q);
self.write_column(KeccakColumn::Input(idx), state_a[idx]);
}
for i in 0..QUARTERS {
let idx = grid_index(THETA_SHIFTS_C_LEN, i, 0, x, q);
self.write_column(KeccakColumn::ThetaShiftsC(idx), theta.shifts_c(i, x, q));
}
}
}
theta.state_e()
}
/// Assigns the witness values needed in the pirho algorithm
/// ```text
/// for (x,y) in (0…4,0…4)
/// B[y,2*x+3*y] = rot(A[x,y], r[x,y])
/// ```
fn run_pirho(&mut self, state_e: &[u64]) -> Vec<u64> {
let pirho = PiRho::create(state_e);
// Write PiRho-related columns
for y in 0..DIM {
for x in 0..DIM {
for q in 0..QUARTERS {
let idx = grid_index(STATE_LEN, 0, y, x, q);
self.write_column(KeccakColumn::PiRhoDenseE(idx), pirho.dense_e(y, x, q));
self.write_column(KeccakColumn::PiRhoQuotientE(idx), pirho.quotient_e(y, x, q));
self.write_column(
KeccakColumn::PiRhoRemainderE(idx),
pirho.remainder_e(y, x, q),
);
self.write_column(
KeccakColumn::PiRhoDenseRotE(idx),
pirho.dense_rot_e(y, x, q),
);
self.write_column(
KeccakColumn::PiRhoExpandRotE(idx),
pirho.expand_rot_e(y, x, q),
);
for i in 0..QUARTERS {
self.write_column(
KeccakColumn::PiRhoShiftsE(grid_index(PIRHO_SHIFTS_E_LEN, i, y, x, q)),
pirho.shifts_e(i, y, x, q),
);
}
}
}
}
pirho.state_b()
}
/// Assigns the witness values needed in the chi algorithm
/// ```text
/// for (x,y) in (0…4,0…4)
/// A[x, y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])
/// ```
fn run_chi(&mut self, state_b: &[u64]) -> Vec<u64> {
let chi = Chi::create(state_b);
// Write Chi-related columns
for i in 0..SHIFTS {
for y in 0..DIM {
for x in 0..DIM {
for q in 0..QUARTERS {
let idx = grid_index(SHIFTS_LEN, i, y, x, q);
self.write_column(KeccakColumn::ChiShiftsB(idx), chi.shifts_b(i, y, x, q));
self.write_column(
KeccakColumn::ChiShiftsSum(idx),
chi.shifts_sum(i, y, x, q),
);
}
}
}
}
chi.state_f()
}
/// Assigns the witness values needed in the iota algorithm
/// ```text
/// A[0,0] = A[0,0] xor RC
/// ```
fn run_iota(&mut self, state_f: &[u64], round: usize) -> Vec<u64> {
let iota = Iota::create(state_f, round);
let state_g = iota.state_g();
// Update columns
for (idx, g) in state_g.iter().enumerate() {
self.write_column(KeccakColumn::Output(idx), *g);
}
for idx in 0..QUARTERS {
self.write_column(KeccakColumn::RoundConstants(idx), iota.round_constants(idx));
}
state_g
}
/// Returns the list of constraints used in a specific Keccak step
pub(crate) fn constraints_of(step: Steps) -> Vec<E<F>> {
let mut env = ConstraintsEnv {
constraints: vec![],
lookups: vec![],
};
env.constraints(step);
env.constraints
}
/// Returns the list of lookups used in a specific Keccak step
pub(crate) fn lookups_of(step: Steps) -> Vec<Lookup<E<F>>> {
let mut env = ConstraintsEnv {
constraints: vec![],
lookups: vec![],
};
env.lookups(step);
env.lookups
}
}