1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Data structure and stuff for compatibility with Cannon

use base64::{engine::general_purpose, Engine as _};

use libflate::zlib::{Decoder, Encoder};
use regex::Regex;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::io::{Read, Write};

pub const PAGE_ADDRESS_SIZE: u32 = 12;
pub const PAGE_SIZE: u32 = 1 << PAGE_ADDRESS_SIZE;
pub const PAGE_ADDRESS_MASK: u32 = PAGE_SIZE - 1;

#[derive(Serialize, Deserialize, Debug)]
pub struct Page {
    pub index: u32,
    #[serde(deserialize_with = "from_base64", serialize_with = "to_base64")]
    pub data: Vec<u8>,
}

fn from_base64<'de, D>(deserializer: D) -> Result<Vec<u8>, D::Error>
where
    D: Deserializer<'de>,
{
    let s: String = Deserialize::deserialize(deserializer)?;
    let b64_decoded = general_purpose::STANDARD.decode(s).unwrap();
    let mut decoder = Decoder::new(&b64_decoded[..]).unwrap();
    let mut data = Vec::new();
    decoder.read_to_end(&mut data).unwrap();
    assert_eq!(data.len(), PAGE_SIZE as usize);
    Ok(data)
}

fn to_base64<S>(v: &[u8], serializer: S) -> Result<S::Ok, S::Error>
where
    S: Serializer,
{
    let encoded_v = Vec::new();
    let mut encoder = Encoder::new(encoded_v).unwrap();
    encoder.write_all(v).unwrap();
    let res = encoder.finish().into_result().unwrap();
    let b64_encoded = general_purpose::STANDARD.encode(res);
    serializer.serialize_str(&b64_encoded)
}

// The renaming below keeps compatibility with OP Cannon's state format
#[derive(Serialize, Deserialize, Debug)]
pub struct State {
    pub memory: Vec<Page>,
    #[serde(
        rename = "preimageKey",
        deserialize_with = "deserialize_preimage_key",
        serialize_with = "serialize_preimage_key"
    )]
    pub preimage_key: [u8; 32],
    #[serde(rename = "preimageOffset")]
    pub preimage_offset: u32,
    pub pc: u32,
    #[serde(rename = "nextPC")]
    pub next_pc: u32,
    pub lo: u32,
    pub hi: u32,
    pub heap: u32,
    pub exit: u8,
    pub exited: bool,
    pub step: u64,
    pub registers: [u32; 32],
    pub last_hint: Option<Vec<u8>>,
    pub preimage: Option<Vec<u8>>,
}

#[derive(Debug, PartialEq, Eq)]
pub struct ParsePreimageKeyError(String);

#[derive(Debug, PartialEq)]
pub struct PreimageKey(pub [u8; 32]);

use std::str::FromStr;

impl FromStr for PreimageKey {
    type Err = ParsePreimageKeyError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let parts = s.split('x').collect::<Vec<&str>>();
        let hex_value: &str = if parts.len() == 1 {
            parts[0]
        } else {
            if parts.len() != 2 {
                return Err(ParsePreimageKeyError(
                    format!("Badly structured value to convert {s}").to_string(),
                ));
            };
            parts[1]
        };
        // We only handle a hexadecimal representations of exactly 32 bytes (no auto-padding)
        if hex_value.len() == 64 {
            hex::decode(hex_value).map_or_else(
                |_| {
                    Err(ParsePreimageKeyError(
                        format!("Could not hex decode {hex_value}").to_string(),
                    ))
                },
                |h| {
                    h.clone().try_into().map_or_else(
                        |_| {
                            Err(ParsePreimageKeyError(
                                format!("Could not cast vector {:#?} into 32 bytes array", h)
                                    .to_string(),
                            ))
                        },
                        |res| Ok(PreimageKey(res)),
                    )
                },
            )
        } else {
            Err(ParsePreimageKeyError(
                format!("{hex_value} is not 32-bytes long").to_string(),
            ))
        }
    }
}

fn deserialize_preimage_key<'de, D>(deserializer: D) -> Result<[u8; 32], D::Error>
where
    D: Deserializer<'de>,
{
    let s: String = Deserialize::deserialize(deserializer)?;
    let p = PreimageKey::from_str(s.as_str())
        .unwrap_or_else(|_| panic!("Parsing {s} as preimage key failed"));
    Ok(p.0)
}

fn serialize_preimage_key<S>(v: &[u8], serializer: S) -> Result<S::Ok, S::Error>
where
    S: Serializer,
{
    let s: String = format!("0x{}", hex::encode(v));
    serializer.serialize_str(&s)
}

#[derive(Clone, Debug, PartialEq)]
pub enum StepFrequency {
    Never,
    Always,
    Exactly(u64),
    Every(u64),
    Range(u64, Option<u64>),
}

impl FromStr for StepFrequency {
    type Err = String;
    // Simple parser for Cannon's "frequency format"
    // A frequency input is either
    // - never/always
    // - =<n> (only at step n)
    // - %<n> (every steps multiple of n)
    // - n..[m] (from n on, until m excluded if specified, until the end otherwise)
    fn from_str(s: &str) -> std::result::Result<StepFrequency, String> {
        use StepFrequency::*;

        let mod_re = Regex::new(r"^%([0-9]+)").unwrap();
        let eq_re = Regex::new(r"^=([0-9]+)").unwrap();
        let ival_re = Regex::new(r"^([0-9]+)..([0-9]+)?").unwrap();

        match s {
            "never" => Ok(Never),
            "always" => Ok(Always),
            s => {
                if let Some(m) = mod_re.captures(s) {
                    Ok(Every(m[1].parse::<u64>().unwrap()))
                } else if let Some(m) = eq_re.captures(s) {
                    Ok(Exactly(m[1].parse::<u64>().unwrap()))
                } else if let Some(m) = ival_re.captures(s) {
                    let lo = m[1].parse::<u64>().unwrap();
                    let hi_opt = m.get(2).map(|x| x.as_str().parse::<u64>().unwrap());
                    Ok(Range(lo, hi_opt))
                } else {
                    Err(format!("Unknown frequency format {}", s))
                }
            }
        }
    }
}

impl ToString for State {
    // A very debatable and incomplete, but serviceable, `to_string` implementation.
    fn to_string(&self) -> String {
        format!(
            "memory_size (length): {}\nfirst page size: {}\npreimage key: {:#?}\npreimage offset:{}\npc: {}\nlo: {}\nhi: {}\nregisters:{:#?} ",
            self.memory.len(),
            self.memory[0].data.len(),
            self.preimage_key,
            self.preimage_offset,
            self.pc,
            self.lo,
            self.hi,
            self.registers
        )
    }
}

#[derive(Debug, Clone)]
pub struct HostProgram {
    pub name: String,
    pub arguments: Vec<String>,
}

#[derive(Debug, Clone)]
pub struct VmConfiguration {
    pub input_state_file: String,
    pub output_state_file: String,
    pub metadata_file: String,
    pub proof_at: StepFrequency,
    pub stop_at: StepFrequency,
    pub snapshot_state_at: StepFrequency,
    pub info_at: StepFrequency,
    pub proof_fmt: String,
    pub snapshot_fmt: String,
    pub pprof_cpu: bool,
    pub host: Option<HostProgram>,
}

#[derive(Debug, Clone)]
pub struct Start {
    pub time: std::time::Instant,
    pub step: usize,
}

impl Start {
    pub fn create(step: usize) -> Start {
        Start {
            time: std::time::Instant::now(),
            step,
        }
    }
}

#[derive(Debug, PartialEq, Clone, Deserialize)]
pub struct Symbol {
    pub name: String,
    pub start: u32,
    pub size: usize,
}

#[derive(Debug, PartialEq, Clone, Deserialize)]
pub struct Meta {
    #[serde(deserialize_with = "filtered_ordered")]
    pub symbols: Vec<Symbol>, // Needs to be in ascending order w.r.t start address
}

// Make sure that deserialized data are ordered in ascending order and that we
// have removed 0-size symbols
fn filtered_ordered<'de, D>(deserializer: D) -> Result<Vec<Symbol>, D::Error>
where
    D: Deserializer<'de>,
{
    let v: Vec<Symbol> = Deserialize::deserialize(deserializer)?;
    let mut filtered: Vec<Symbol> = v.into_iter().filter(|e| e.size != 0).collect();
    filtered.sort_by(|a, b| a.start.cmp(&b.start));
    Ok(filtered)
}

impl Meta {
    pub fn find_address_symbol(&self, address: u32) -> Option<String> {
        use std::cmp::Ordering;

        self.symbols
            .binary_search_by(
                |Symbol {
                     start,
                     size,
                     name: _,
                 }| {
                    if address < *start {
                        Ordering::Greater
                    } else {
                        let end = *start + *size as u32;
                        if address >= end {
                            Ordering::Less
                        } else {
                            Ordering::Equal
                        }
                    }
                },
            )
            .map_or_else(|_| None, |idx| Some(self.symbols[idx].name.to_string()))
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use std::{
        fs::File,
        io::{BufReader, Write},
    };

    #[test]
    fn sp_parser() {
        use StepFrequency::*;
        assert_eq!(StepFrequency::from_str("never"), Ok(Never));
        assert_eq!(StepFrequency::from_str("always"), Ok(Always));
        assert_eq!(StepFrequency::from_str("=123"), Ok(Exactly(123)));
        assert_eq!(StepFrequency::from_str("%123"), Ok(Every(123)));
        assert_eq!(StepFrequency::from_str("1..3"), Ok(Range(1, Some(3))));
        assert_eq!(StepFrequency::from_str("1.."), Ok(Range(1, None)));
        assert!(StepFrequency::from_str("@123").is_err());
    }

    // This sample is a subset taken from a Cannon-generated "meta.json" file
    // Interestingly, it contains 0-size symbols - there are removed by
    // deserialization.
    const META_SAMPLE: &str = r#"{
  "symbols": [
    {
      "name": "go.go",
      "start": 0,
      "size": 0
    },
    {
      "name": "internal/cpu.processOptions",
      "start": 69632,
      "size": 1872
    },
    {
      "name": "runtime.text",
      "start": 69632,
      "size": 0
    },  
    {
      "name": "runtime/internal/atomic.(*Uint8).Load",
      "start": 71504,
      "size": 28
    },
    {
      "name": "runtime/internal/atomic.(*Uint8).Store",
      "start": 71532,
      "size": 28
    },
    {
      "name": "runtime/internal/atomic.(*Uint8).And",
      "start": 71560,
      "size": 88
    },
    {
      "name": "runtime/internal/atomic.(*Uint8).Or",
      "start": 71648,
      "size": 72
    }]}"#;

    fn deserialize_meta_sample() -> Meta {
        serde_json::from_str::<Meta>(META_SAMPLE).unwrap()
    }

    #[test]
    fn test_serialize_deserialize_page() {
        let value: &str = r#"{"index":16,"data":"eJztlkFoE0EUht8k21ZEtFYFg1FCTW0qSGoTS6pFJU3TFlNI07TEQJHE1kJMmhwi1ihaRJCqiAdBKR5Ez4IXvQk5eBaP4iEWpAchV0Hoof5vd14SoQcvve0H/5s3O//OzuzMLHtvNBZVDkUNHLQLUdHugSTKINJgnDoNZB60+MhFBq63Q0G4LCFYQptZoKR9r0hpEc1r4bopy8WRtdptmCJqM+t89RHiY60Xc39M8b26XXUjHLdEbf4qdTyMIWvn9vnyxhTy7eBxGwvGoRWU23ASIqNE5MT4H2DslogOa/EY+f38LxiNKYyrEwW02sV9CJLfgdjnMOfLc0+6biMKHohJFLe2fqO0qLl4Hui0AfcB1H0EzEFTc73GtSfIBO0jnhvnDvpx5CLVIJoKoS7Ic59C2pdfoRpEe+KoC+J7CWnf8leqQf/CbcwbiHP2rcO3TuENfr+C9HcGYp+T15nXnMjdOl/JOyDtc3tUt9tDzto31AXprwuyfCc2SfVsohZ8j7ogPh4Lr7NT+fxV1Yv9pXJ11AXxHYUsX99aVfnWqkT11vcsvk8QnstWJD4EUr0Igt4HqodD0wdP59kIUkH76DvU9IXOXSfnr0tIBe1T5zlAJmrY+xHFICRIG+8p5Lq/YW+djt1tfX/S314ODV/67Wc6eOEZUkF8CxwavqWfSWo/9QWpoH2UhXjtHDhn+E6wzO+EIL4RnEk+nOzDnmWZayRYDyJ6BzkgE3Vjv5faYrjV9F6DuD/eMx+gxvlQlbnndMDdh1TA2G1sbGxsbGxsbGx2Co9Sqvk/2gL/r05DxlgRP8bZK0O50cJQPjMxO5HKhCOlQr8/sVy5uRTuD5RGKuXFaDgYSQ+E/LOlsZlEIZ8NBqKlcmby8mIpPOjPpWYmxwPF06lI+mpqPB+O35ou0l+FGHpe"}"#;
        let decoded_page: Page = serde_json::from_str(value).unwrap();
        let res = serde_json::to_string(&decoded_page).unwrap();
        assert_eq!(res, value);
    }

    #[test]
    fn test_preimage_key_serialisation() {
        #[derive(Serialize, Deserialize)]
        struct TestPreimageKeyStruct {
            #[serde(
                rename = "preimageKey",
                deserialize_with = "deserialize_preimage_key",
                serialize_with = "serialize_preimage_key"
            )]
            pub preimage_key: [u8; 32],
        }

        let preimage_key: &str = r#"{"preimageKey":"0x0000000000000000000000000000000000000000000000000000000000000000"}"#;
        let s: TestPreimageKeyStruct = serde_json::from_str(preimage_key).unwrap();
        let res = serde_json::to_string(&s).unwrap();
        assert_eq!(preimage_key, res);
    }

    #[test]
    fn test_meta_deserialize_from_file() {
        let path = "meta_test.json";
        let mut output =
            File::create(path).unwrap_or_else(|_| panic!("Could not create file {path}"));
        write!(output, "{}", META_SAMPLE)
            .unwrap_or_else(|_| panic!("Could not write to file {path}"));

        let input = File::open(path).unwrap_or_else(|_| panic!("Could not open file {path}"));
        let buffered = BufReader::new(input);
        let read: Meta = serde_json::from_reader(buffered)
            .unwrap_or_else(|_| panic!("Failed to deserialize metadata from file {path}"));

        let expected = Meta {
            symbols: vec![
                Symbol {
                    name: "internal/cpu.processOptions".to_string(),
                    start: 69632,
                    size: 1872,
                },
                Symbol {
                    name: "runtime/internal/atomic.(*Uint8).Load".to_string(),
                    start: 71504,
                    size: 28,
                },
                Symbol {
                    name: "runtime/internal/atomic.(*Uint8).Store".to_string(),
                    start: 71532,
                    size: 28,
                },
                Symbol {
                    name: "runtime/internal/atomic.(*Uint8).And".to_string(),
                    start: 71560,
                    size: 88,
                },
                Symbol {
                    name: "runtime/internal/atomic.(*Uint8).Or".to_string(),
                    start: 71648,
                    size: 72,
                },
            ],
        };

        assert_eq!(read, expected);
    }

    #[test]
    fn test_find_address_symbol() {
        let meta = deserialize_meta_sample();

        assert_eq!(
            meta.find_address_symbol(69633),
            Some("internal/cpu.processOptions".to_string())
        );
        assert_eq!(
            meta.find_address_symbol(69632),
            Some("internal/cpu.processOptions".to_string())
        );
        assert_eq!(meta.find_address_symbol(42), None);
    }

    #[test]
    fn test_parse_preimagekey() {
        assert_eq!(
            PreimageKey::from_str(
                "0x0000000000000000000000000000000000000000000000000000000000000000"
            ),
            Ok(PreimageKey([0; 32]))
        );
        assert_eq!(
            PreimageKey::from_str(
                "0x0000000000000000000000000000000000000000000000000000000000000001"
            ),
            Ok(PreimageKey([
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 1
            ]))
        );
        assert!(PreimageKey::from_str("0x01").is_err());
    }
}

pub const HINT_CLIENT_READ_FD: i32 = 3;
pub const HINT_CLIENT_WRITE_FD: i32 = 4;
pub const PREIMAGE_CLIENT_READ_FD: i32 = 5;
pub const PREIMAGE_CLIENT_WRITE_FD: i32 = 6;

pub struct Preimage(Vec<u8>);

impl Preimage {
    pub fn create(v: Vec<u8>) -> Self {
        Preimage(v)
    }

    pub fn get(self) -> Vec<u8> {
        self.0
    }
}

pub struct Hint(Vec<u8>);

impl Hint {
    pub fn create(v: Vec<u8>) -> Self {
        Hint(v)
    }

    pub fn get(self) -> Vec<u8> {
        self.0
    }
}