1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
//! Describes helpers for foreign field arithmetics
//! Generic parameters are as follows:
//! - `B` is a bit length of one limb
//! - `N` is a number of limbs that is used to represent one foreign field element

use crate::field_helpers::FieldHelpers;
use ark_ff::{Field, PrimeField};
use num_bigint::BigUint;
use std::{
    fmt::{Debug, Formatter},
    ops::{Index, IndexMut},
};

/// Represents a foreign field element
#[derive(Clone, PartialEq, Eq)]
/// Represents a foreign field element
pub struct ForeignElement<F: Field, const B: usize, const N: usize> {
    /// limbs in little endian order
    pub limbs: [F; N],
    /// number of limbs used for the foreign field element
    len: usize,
}

impl<F: Field, const B: usize, const N: usize> ForeignElement<F, B, N> {
    /// Creates a new foreign element from an array containing N limbs
    pub fn new(limbs: [F; N]) -> Self {
        Self { limbs, len: N }
    }

    /// Creates a new foreign element representing the value zero
    pub fn zero() -> Self {
        Self {
            limbs: [F::zero(); N],
            len: N,
        }
    }

    /// Initializes a new foreign element from a big unsigned integer
    /// Panics if the BigUint is too large to fit in the `N` limbs
    pub fn from_biguint(big: BigUint) -> Self {
        let vec = ForeignElement::<F, B, N>::big_to_vec(big);

        // create an array of N native elements containing the limbs
        // until the array is full in big endian, so most significant
        // limbs may be zero if the big number is smaller
        if vec.len() > N {
            panic!("BigUint element is too large for N limbs");
        }

        let mut limbs = [F::zero(); N];
        for (i, term) in vec.iter().enumerate() {
            limbs[i] = *term;
        }

        Self {
            limbs,
            len: limbs.len(),
        }
    }

    /// Initializes a new foreign element from an absolute `BigUint` but the equivalent
    /// foreign element obtained corresponds to the negated input. It first converts the
    /// input big element to a big integer modulo the foreign field modulus, and then
    /// computes the negation of the result.
    pub fn neg(&self, modulus: &BigUint) -> Self {
        let big = self.to_biguint();
        let ok = big % modulus;
        let neg = modulus - ok;
        Self::from_biguint(neg)
    }

    /// Initializes a new foreign element from a set of bytes in big endian
    pub fn from_be(bytes: &[u8]) -> Self {
        Self::from_biguint(BigUint::from_bytes_be(bytes))
    }

    /// Obtains the big integer representation of the foreign field element
    pub fn to_biguint(&self) -> BigUint {
        let mut bytes = vec![];
        if B % 8 == 0 {
            // limbs are stored in little endian
            for limb in self.limbs {
                let crumb = &limb.to_bytes()[0..B / 8];
                bytes.extend_from_slice(crumb);
            }
        } else {
            let mut bits: Vec<bool> = vec![];
            for limb in self.limbs {
                // Only take lower B bits, as there might be more (zeroes) in the high ones.
                let f_bits_lower: Vec<bool> = limb.to_bits().into_iter().take(B).collect();
                bits.extend(&f_bits_lower);
            }

            let bytes_len = if (B * N) % 8 == 0 {
                (B * N) / 8
            } else {
                ((B * N) / 8) + 1
            };
            bytes = vec![0u8; bytes_len];
            for i in 0..bits.len() {
                bytes[i / 8] |= u8::from(bits[i]) << (i % 8);
            }
        }
        BigUint::from_bytes_le(&bytes)
    }

    /// Split a foreign field element into a vector of `B` (limb bitsize) bits field
    /// elements of type `F` in little-endian. Right now it is written
    /// so that it gives `N` (limb count) limbs, even if it fits in less bits.
    fn big_to_vec(fe: BigUint) -> Vec<F> {
        if B % 8 == 0 {
            let bytes = fe.to_bytes_le();
            let chunks: Vec<&[u8]> = bytes.chunks(B / 8).collect();
            chunks
                .iter()
                .map(|chunk| F::from_random_bytes(chunk).expect("failed to deserialize"))
                .collect()
        } else {
            // Quite inefficient
            let mut bits = vec![]; // can be slice not vec, but B*N is not const?
            assert!(
                fe.bits() <= (B * N) as u64,
                "BigUint too big to be represented in B*N elements"
            );
            for i in 0..B * N {
                bits.push(fe.bit(i as u64));
            }
            let chunks: Vec<_> = bits.chunks(B).collect();
            chunks
                .into_iter()
                .map(|chunk| F::from_bits(chunk).expect("failed to deserialize"))
                .collect()
        }
    }
}

impl<F: PrimeField, const B: usize, const N: usize> ForeignElement<F, B, N> {
    /// Initializes a new foreign element from an element in the native field
    pub fn from_field(field: F) -> Self {
        Self::from_biguint(field.into())
    }
}

impl<F: Field, const B: usize, const N: usize> Index<usize> for ForeignElement<F, B, N> {
    type Output = F;
    fn index(&self, idx: usize) -> &Self::Output {
        &self.limbs[idx]
    }
}

impl<F: Field, const B: usize, const N: usize> IndexMut<usize> for ForeignElement<F, B, N> {
    fn index_mut(&mut self, idx: usize) -> &mut Self::Output {
        &mut self.limbs[idx]
    }
}

impl<F: Field, const B: usize, const N: usize> Debug for ForeignElement<F, B, N> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "ForeignElement(")?;
        for i in 0..self.len {
            write!(f, "{:?}", self.limbs[i].to_hex())?;
            if i != self.len - 1 {
                write!(f, ", ")?;
            }
        }
        write!(f, ")")
    }
}

/// Foreign field helpers for `B` the limb size.
pub trait ForeignFieldHelpers<F, const B: usize> {
    /// 2^{B}
    fn two_to_limb() -> F;

    /// 2^{2 * B}
    fn two_to_2limb() -> F;

    /// 2^{3 * B}
    fn two_to_3limb() -> F;
}

impl<F: Field, const B: usize, const N: usize> ForeignFieldHelpers<F, B>
    for ForeignElement<F, B, N>
{
    fn two_to_limb() -> F {
        F::from(2u64).pow([B as u64])
    }

    fn two_to_2limb() -> F {
        F::from(2u64).pow([2 * B as u64])
    }

    fn two_to_3limb() -> F {
        F::from(2u64).pow([3 * B as u64])
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::field_helpers::FieldHelpers;
    use ark_ec::AffineCurve;
    use ark_ff::One;
    use mina_curves::pasta::Pallas as CurvePoint;

    /// Base field element type
    pub type BaseField = <CurvePoint as AffineCurve>::BaseField;

    fn secp256k1_modulus() -> BigUint {
        BigUint::from_bytes_be(&secp256k1::constants::FIELD_SIZE)
    }

    const TEST_B_1: usize = 88;
    const TEST_N_1: usize = 3;
    const TEST_B_2: usize = 15;
    const TEST_N_2: usize = 18;

    #[test]
    fn test_big_be() {
        let big = secp256k1_modulus();
        let bytes = big.to_bytes_be();
        assert_eq!(
            ForeignElement::<BaseField, TEST_B_1, 3>::from_be(&bytes),
            ForeignElement::<BaseField, TEST_B_1, 3>::from_biguint(big.clone())
        );
        assert_eq!(
            ForeignElement::<BaseField, TEST_B_2, TEST_N_2>::from_be(&bytes),
            ForeignElement::<BaseField, TEST_B_2, TEST_N_2>::from_biguint(big)
        );
    }

    #[test]
    fn test_to_biguint() {
        let big = secp256k1_modulus();
        let bytes = big.to_bytes_be();
        let fe = ForeignElement::<BaseField, TEST_B_1, TEST_N_1>::from_be(&bytes);
        assert_eq!(fe.to_biguint(), big);
        let fe2 = ForeignElement::<BaseField, TEST_B_2, TEST_N_2>::from_be(&bytes);
        assert_eq!(fe2.to_biguint(), big);
    }

    #[test]
    fn test_from_biguint() {
        {
            let one = ForeignElement::<BaseField, TEST_B_1, TEST_N_1>::from_be(&[0x01]);
            assert_eq!(
                BaseField::from_biguint(&one.to_biguint()).unwrap(),
                BaseField::one()
            );

            let max_big = BaseField::modulus_biguint() - 1u32;
            let max_fe =
                ForeignElement::<BaseField, TEST_B_1, TEST_N_1>::from_biguint(max_big.clone());
            assert_eq!(
                BaseField::from_biguint(&max_fe.to_biguint()).unwrap(),
                BaseField::from_bytes(&max_big.to_bytes_le()).unwrap(),
            );
        }
        {
            let one = ForeignElement::<BaseField, TEST_B_2, TEST_N_2>::from_be(&[0x01]);
            assert_eq!(
                BaseField::from_biguint(&one.to_biguint()).unwrap(),
                BaseField::one()
            );

            let max_big = BaseField::modulus_biguint() - 1u32;
            let max_fe =
                ForeignElement::<BaseField, TEST_B_2, TEST_N_2>::from_biguint(max_big.clone());
            assert_eq!(
                BaseField::from_biguint(&max_fe.to_biguint()).unwrap(),
                BaseField::from_bytes(&max_big.to_bytes_le()).unwrap(),
            );
        }
    }
}