1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
//! This module contains functions to work with prime numbers and to compute
//! dimension of multivariate spaces
use std::collections::HashMap;
/// Naive implementation checking if n is prime
/// You can also use the structure PrimeNumberGenerator to check if a number is
/// prime using
/// ```rust
/// use mvpoly::utils::PrimeNumberGenerator;
/// let n = 5;
/// let mut prime_gen = PrimeNumberGenerator::new();
/// prime_gen.is_prime(n);
/// ```
pub fn is_prime(n: usize) -> bool {
if n == 2 {
return true;
}
if n < 2 || n % 2 == 0 {
return false;
}
let mut i = 3;
while i * i <= n {
if n % i == 0 {
return false;
}
i += 2;
}
true
}
/// Given a number n, return the list of prime factors of n, with their
/// multiplicity
/// The first argument is the number to factorize, the second argument is the
/// list of prime numbers to use to factorize the number
/// The output is a list of tuples, where the first element is the prime number
/// and the second element is the multiplicity of the prime number in the
/// factorization of n.
// IMPROVEME: native algorithm, could be optimized. Use a cache to store
// the prime factors of the previous numbers
pub fn naive_prime_factors(n: usize, prime_gen: &mut PrimeNumberGenerator) -> Vec<(usize, usize)> {
assert!(n > 0);
let mut hash_factors = HashMap::new();
let mut n = n;
if prime_gen.is_prime(n) {
vec![(n, 1)]
} else {
let mut i = 1;
let mut p = prime_gen.get_nth_prime(i);
while n != 1 {
if n % p == 0 {
hash_factors.entry(p).and_modify(|e| *e += 1).or_insert(1);
n /= p;
} else {
i += 1;
p = prime_gen.get_nth_prime(i);
}
}
let mut factors = vec![];
hash_factors.into_iter().for_each(|(k, v)| {
factors.push((k, v));
});
// sort by the prime number
factors.sort();
factors
}
}
pub struct PrimeNumberGenerator {
primes: Vec<usize>,
}
impl PrimeNumberGenerator {
pub fn new() -> Self {
PrimeNumberGenerator { primes: vec![] }
}
/// Generate the nth prime number
pub fn get_nth_prime(&mut self, n: usize) -> usize {
assert!(n > 0);
if n <= self.primes.len() {
self.primes[n - 1]
} else {
while self.primes.len() < n {
let mut i = {
if self.primes.is_empty() {
2
} else if self.primes.len() == 1 {
3
} else {
self.primes[self.primes.len() - 1] + 2
}
};
while !is_prime(i) {
i += 2;
}
self.primes.push(i);
}
self.primes[n - 1]
}
}
/// Check if a number is prime using the list of prime numbers
/// It is different than the is_prime function because it uses the list
/// of prime numbers to check if a number is prime instead of checking
/// all the numbers up to the square root of n by step of 2.
/// This method can be more efficient if the list of prime numbers is
/// already computed.
pub fn is_prime(&mut self, n: usize) -> bool {
if n == 0 || n == 1 {
false
} else {
let mut i = 1;
let mut p = self.get_nth_prime(i);
while p * p <= n {
if n % p == 0 {
return false;
}
i += 1;
p = self.get_nth_prime(i);
}
true
}
}
/// Get the next prime number
pub fn get_next_prime(&mut self) -> usize {
let n = self.primes.len();
self.get_nth_prime(n + 1)
}
pub fn get_first_nth_primes(&mut self, n: usize) -> Vec<usize> {
let _ = self.get_nth_prime(n);
self.primes.clone()
}
}
impl Iterator for PrimeNumberGenerator {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
let n = self.primes.len();
Some(self.get_nth_prime(n + 1))
}
}
impl Default for PrimeNumberGenerator {
fn default() -> Self {
Self::new()
}
}
/// Build mapping from 1..N to the first N prime numbers. It will be used to
/// encode variables as prime numbers
/// For instance, if N = 3, i.e. we have the variable $x_1, x_2, x_3$, the
/// mapping will be [1, 2, 3, 2, 3, 5]
/// The idea is to encode products of variables as products of prime numbers
/// and then use the factorization of the products to know which variables must
/// be fetched while computing a product of variables
pub fn get_mapping_with_primes<const N: usize>() -> Vec<usize> {
let mut primes = PrimeNumberGenerator::new();
let mut mapping = vec![0; 2 * N];
for (i, v) in mapping.iter_mut().enumerate().take(N) {
*v = i + 1;
}
for (i, v) in mapping.iter_mut().enumerate().skip(N) {
*v = primes.get_nth_prime(i - N + 1);
}
mapping
}
/// Compute all the possible two factors decomposition of a number n.
/// It uses an cache where previous values have been computed.
/// For instance, if n = 6, the function will return [(1, 6), (2, 3), (3, 2), (6, 1)].
/// The cache might be used to store the results of previous computations.
/// The cache is a hashmap where the key is the number and the value is the
/// list of all the possible two factors decomposition.
/// The hashmap is updated in place.
/// The third parameter is a precomputed list of prime numbers. It is updated in
/// place in case new prime numbers are generated.
pub fn compute_all_two_factors_decomposition(
n: usize,
cache: &mut HashMap<usize, Vec<(usize, usize)>>,
prime_numbers: &mut PrimeNumberGenerator,
) -> Vec<(usize, usize)> {
if cache.contains_key(&n) {
cache[&n].clone()
} else {
let mut factors = vec![];
if n == 1 {
factors.push((1, 1));
} else if prime_numbers.is_prime(n) {
factors.push((1, n));
factors.push((n, 1));
} else {
let mut i = 1;
let mut p = prime_numbers.get_nth_prime(i);
while p * p <= n {
if n % p == 0 {
let res = n / p;
let res_factors =
compute_all_two_factors_decomposition(res, cache, prime_numbers);
for (a, b) in res_factors {
let x = (p * a, b);
if !factors.contains(&x) {
factors.push(x);
}
let x = (a, p * b);
if !factors.contains(&x) {
factors.push(x);
}
}
}
i += 1;
p = prime_numbers.get_nth_prime(i);
}
}
cache.insert(n, factors.clone());
factors
}
}
/// Compute the list of indices to perform N nested loops of different size
/// each, whose sum is less than or equal to an optional upper bound.
/// In other words, if we have to perform the 3 nested loops:
/// ```rust
/// let n1 = 3;
/// let n2 = 3;
/// let n3 = 5;
/// for i in 0..n1 {
/// for j in 0..n2 {
/// for k in 0..n3 {
/// }
/// }
/// }
/// ```
/// the output will be all the possible values of `i`, `j`, and `k`.
/// The algorithm is as follows:
/// ```rust
/// let n1 = 3;
/// let n2 = 3;
/// let n3 = 5;
/// (0..(n1 * n2 * n3)).map(|l| {
/// let i = l % n1;
/// let j = (l / n1) % n2;
/// let k = (l / (n1 * n2)) % n3;
/// (i, j, k)
/// });
/// ```
/// For N nested loops, the algorithm is the same, with the division increasing
/// by the factor `N_k` for the index `i_(k + 1)`
///
/// In the case of an empty list, the function will return a list containing a
/// single element which is the empty list.
///
/// In the case of an empty loop (i.e. one value in the input list is 0), the
/// expected output is the empty list.
pub fn compute_indices_nested_loop(
nested_loop_sizes: Vec<usize>,
upper_bound: Option<usize>,
) -> Vec<Vec<usize>> {
let n = nested_loop_sizes.iter().product();
(0..n)
.filter_map(|i| {
let mut div = 1;
// Compute indices for the loop, step i
let indices: Vec<usize> = nested_loop_sizes
.iter()
.map(|n_i| {
let k = (i / div) % n_i;
div *= n_i;
k
})
.collect();
if let Some(upper_bound) = upper_bound {
if indices.iter().sum::<usize>() <= upper_bound {
Some(indices)
} else {
None
}
} else {
Some(indices)
}
})
.collect()
}