1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//! Multivariate polynomial dense representation using prime numbers
//!
//! First, we start by attributing a different prime number for each variable.
//! For instance, for `F^{<=2}[X_{1}, X_{2}]`, we assign `X_{1}` to `2`
//! and $X_{2}$ to $3$.
//! From there, we note `X_{1} X_{2}` as the value `6`, `X_{1}^2` as `4`, `X_{2}^2`
//! as 9. The constant is `1`.
//!
//! From there, we represent our polynomial coefficients in a sparse list. Some
//! cells, noted `NA`, won't be used for certain vector spaces.
//!
//! For instance, `X_{1} + X_{2}` will be represented as:
//! ```text
//! [0,   1,   1,   0,    0,   0,    0,    0,    0]
//!  |    |    |    |     |    |     |     |     |
//!  1    2    3    4     5    6     7     8     9
//!  |    |    |    |     |    |     |     |     |
//!  cst  X1  X2   X1^2   NA  X1*X2  NA   NA    X2^2
//! ```
//!
//! and the polynomial `42 X_{1} + 3 X_{1} X_{2} + 14 X_{2}^2` will be represented
//! as
//!
//! ```text
//! [0,  42,   1,   0,    0,   3,    0,    0,    14]
//!  |    |    |    |     |    |     |     |     |
//!  1    2    3    4     5    6     7     8     9
//!  |    |    |    |     |    |     |     |     |
//!  cst  X1  X2   X1^2   NA  X1*X2  NA   NA    X2^2
//! ```
//!
//! Adding two polynomials in this base is pretty straightforward: we simply add the
//! coefficients of the two lists.
//!
//! Multiplication is not more complicated.
//! To compute the result of $P_{1} * P_{2}$, the value of index $i$ will be the sum
//! of the decompositions.
//!
//! For instance, if we take `P_{1}(X_{1}) = 2 X_{1} + X_{2}` and `P_{2}(X_{1},
//! X_{2}) = X_{2} + 3`, the expected product is
//! `P_{3}(X_{1}, X_{2}) = (2 X_{1} + X_{2}) * (X_{2} + 3) = 2 X_{1} X_{2} + 6
//! X_{1} + 3 X_{2} + X_{2}^2`
//!
//! Given in the representation above, we have:
//!
//! ```text
//! For P_{1}:
//!
//! [0,   2,   1,   0,    0,   0,    0,    0,    0]
//!  |    |    |    |     |    |     |     |     |
//!  1    2    3    4     5    6     7     8     9
//!  |    |    |    |     |    |     |     |     |
//!  cst  X1  X2   X1^2   NA  X1*X2  NA   NA    X2^2
//!
//! ```
//!
//! ```text
//! For P_{2}:
//!
//! [3,   0,   1,   0,    0,   0,    0,    0,    0]
//!  |    |    |    |     |    |     |     |     |
//!  1    2    3    4     5    6     7     8     9
//!  |    |    |    |     |    |     |     |     |
//!  cst  X1  X2   X1^2   NA  X1*X2  NA   NA    X2^2
//!
//! ```
//!
//!
//! ```text
//! For P_{3}:
//!
//! [0,   6,   3,   0,    0,   2,    0,    0,    1]
//!  |    |    |    |     |    |     |     |     |
//!  1    2    3    4     5    6     7     8     9
//!  |    |    |    |     |    |     |     |     |
//!  cst  X1  X2   X1^2   NA  X1*X2  NA   NA    X2^2
//!
//! ```
//!
//! To compute `P_{3}`, we get iterate over an empty list of $9$ elements which will
//! define `P_{3}`.
//!
//! For index `1`, we multiply `P_{1}[1]` and `P_{1}[1]`.
//!
//! FOr index $2$, the only way to get this index is by fetching $2$ in each list.
//! Therefore, we do `P_{1}[2] P_{2}[1] + P_{2}[2] * P_{1}[1] = 2 * 3 + 0 * 0 = 6`.
//!
//! For index `3`, same than for `2`.
//!
//! For index `4`, we have `4 = 2 * 2`, therefore, we multiply `P_{1}[2]` and `P_{2}[2]`
//!
//! For index `6`, we have `6 = 2 * 3` and `6 = 3 * 2`, which are the prime
//! decompositions of $6$. Therefore we sum `P_{1}[2] * P_{2}[3]` and `P_{2}[2] *
//! P_{1}[3]`.
//!
//! For index $9$, we have $9 = 3 * 3$, therefore we do the same than for $4$.
//!
//! This can be generalized.
//!
//! The algorithm is as follow:
//! - for each cell `j`:
//!     - if `j` is prime, compute `P_{1}[j] P_{2}[1] + P_{2}[j] P_{1}[1]`
//!     - else:
//!         - take the prime decompositions of `j` (and their permutations).
//!         - for each decomposition, compute the product
//!         - sum
//!
//!
//! #### Other examples degree $2$ with 3 variables.
//!
//! ```math
//! \begin{align}
//! $\mathbb{F}^{\le 2}[X_{1}, X_{2}, X_{3}] = \{
//!         & \, a_{0} + \\
//!         & \, a_{1} X_{1} + \\
//!         & \, a_{2} X_{2} + \\
//!         & \, a_{3} X_{3} + \\
//!         & \, a_{4} X_{1} X_{2} + \\
//!         & \, a_{5} X_{2} X_{3} + \\
//!         & \, a_{6} X_{1} X_{3} + \\
//!         & \, a_{7} X_{1}^2 + \\
//!         & \, a_{8} X_{2}^2 + \\
//!         & \, a_{9} X_{3}^2 \, | \, a_{i} \in \mathbb{F}
//!         \}
//! \end{align}
//! ```
//!
//! We assign:
//!
//! - `X_{1} = 2`
//! - `X_{2} = 3`
//! - `X_{3} = 5`
//!
//! And therefore, we have:
//! - `X_{1}^2 = 4`
//! - `X_{1} X_{2} = 6`
//! - `X_{1} X_{3} = 10`
//! - `X_{2}^2 = 9`
//! - `X_{2} X_{3} = 15`
//! - `X_{3}^2 = 25`
//!
//! We have an array with 25 indices, even though we need 10 elements only.

use std::{
    collections::HashMap,
    fmt::{Debug, Formatter, Result},
    ops::{Add, Mul, Neg, Sub},
};

use ark_ff::{One, PrimeField, Zero};
use kimchi::circuits::{expr::Variable, gate::CurrOrNext};
use num_integer::binomial;
use o1_utils::FieldHelpers;
use rand::{Rng, RngCore};
use std::ops::{Index, IndexMut};

use crate::{
    utils::{compute_all_two_factors_decomposition, naive_prime_factors, PrimeNumberGenerator},
    MVPoly,
};

/// Represents a multivariate polynomial of degree less than `D` in `N` variables.
/// The representation is dense, i.e., all coefficients are stored.
/// The polynomial is represented as a vector of coefficients, where the index
/// of the coefficient corresponds to the index of the monomial.
/// A mapping between the index and the prime decomposition of the monomial is
/// stored in `normalized_indices`.
#[derive(Clone)]
pub struct Dense<F: PrimeField, const N: usize, const D: usize> {
    coeff: Vec<F>,
    // keeping track of the indices of the monomials that are normalized
    // to avoid recomputing them
    // FIXME: this should be stored somewhere else; we should not have it for
    // each polynomial
    normalized_indices: Vec<usize>,
}

impl<F: PrimeField, const N: usize, const D: usize> Index<usize> for Dense<F, N, D> {
    type Output = F;

    fn index(&self, index: usize) -> &Self::Output {
        &self.coeff[index]
    }
}

impl<F: PrimeField, const N: usize, const D: usize> IndexMut<usize> for Dense<F, N, D> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.coeff[index]
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Zero for Dense<F, N, D> {
    fn is_zero(&self) -> bool {
        self.coeff.iter().all(|c| c.is_zero())
    }

    fn zero() -> Self {
        Dense {
            coeff: vec![F::zero(); Self::dimension()],
            normalized_indices: Self::compute_normalized_indices(),
        }
    }
}

impl<F: PrimeField, const N: usize, const D: usize> One for Dense<F, N, D> {
    fn one() -> Self {
        let mut result = Dense::zero();
        result.coeff[0] = F::one();
        result
    }
}

impl<F: PrimeField, const N: usize, const D: usize> MVPoly<F, N, D> for Dense<F, N, D> {
    /// Generate a random polynomial of maximum degree `max_degree`.
    ///
    /// If `None` is provided as the maximum degree, the polynomial will be
    /// generated with a maximum degree of `D`.
    ///
    /// # Safety
    ///
    /// Marked as unsafe to warn the user to use it with caution and to not
    /// necessarily rely on it for security/randomness in cryptographic
    /// protocols. The user is responsible for providing its own secure
    /// polynomial random generator, if needed.
    ///
    /// In addition to that, zeroes coefficients are added one every 10
    /// monomials to be sure we do have some sparcity in the polynomial.
    ///
    /// For now, the function is only used for testing.
    unsafe fn random<RNG: RngCore>(rng: &mut RNG, max_degree: Option<usize>) -> Self {
        let mut prime_gen = PrimeNumberGenerator::new();
        let normalized_indices = Self::compute_normalized_indices();
        // Different cases to avoid complexity in the case no maximum degree is
        // provided
        let coeff = if let Some(max_degree) = max_degree {
            normalized_indices
                .iter()
                .map(|idx| {
                    let degree = naive_prime_factors(*idx, &mut prime_gen)
                        .iter()
                        .fold(0, |acc, (_, d)| acc + d);
                    if degree > max_degree || rng.gen_range(0..10) == 0 {
                        // Adding zero coefficients one every 10 monomials
                        F::zero()
                    } else {
                        F::rand(rng)
                    }
                })
                .collect::<Vec<F>>()
        } else {
            normalized_indices
                .iter()
                .map(|_| {
                    if rng.gen_range(0..10) == 0 {
                        // Adding zero coefficients one every 10 monomials
                        F::zero()
                    } else {
                        F::rand(rng)
                    }
                })
                .collect()
        };
        Self {
            coeff,
            normalized_indices,
        }
    }

    fn is_constant(&self) -> bool {
        self.coeff.iter().skip(1).all(|c| c.is_zero())
    }

    /// Returns the degree of the polynomial.
    ///
    /// The degree of the polynomial is the maximum degree of the monomials
    /// that have a non-zero coefficient.
    ///
    /// # Safety
    ///
    /// The zero polynomial as a degree equals to 0, as the degree of the
    /// constant polynomials. We do use the `unsafe` keyword to warn the user
    /// for this specific case.
    unsafe fn degree(&self) -> usize {
        if self.is_constant() {
            return 0;
        }
        let mut prime_gen = PrimeNumberGenerator::new();
        self.coeff.iter().enumerate().fold(1, |acc, (i, c)| {
            if *c != F::zero() {
                let decomposition_of_i =
                    naive_prime_factors(self.normalized_indices[i], &mut prime_gen);
                let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
                acc.max(monomial_degree)
            } else {
                acc
            }
        })
    }

    fn double(&self) -> Self {
        let coeffs = self.coeff.iter().map(|c| c.double()).collect();
        Self::from_coeffs(coeffs)
    }

    fn mul_by_scalar(&self, c: F) -> Self {
        let coeffs = self.coeff.iter().map(|coef| *coef * c).collect();
        Self::from_coeffs(coeffs)
    }

    /// Evaluate the polynomial at the vector point `x`.
    ///
    /// This is a dummy implementation. A cache can be used for the monomials to
    /// speed up the computation.
    fn eval(&self, x: &[F; N]) -> F {
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        self.coeff
            .iter()
            .enumerate()
            .fold(F::zero(), |acc, (i, c)| {
                if i == 0 {
                    acc + c
                } else {
                    let normalized_index = self.normalized_indices[i];
                    // IMPROVEME: we should keep the prime decomposition somewhere.
                    // It can be precomputed for a few multi-variate polynomials
                    // vector space
                    let prime_decomposition = naive_prime_factors(normalized_index, &mut prime_gen);
                    let mut monomial = F::one();
                    prime_decomposition.iter().for_each(|(p, d)| {
                        // IMPROVEME: we should keep the inverse indices
                        let inv_p = primes.iter().position(|&x| x == *p).unwrap();
                        let x_p = x[inv_p].pow([*d as u64]);
                        monomial *= x_p;
                    });
                    acc + *c * monomial
                }
            })
    }

    fn from_variable<Column: Into<usize>>(
        var: Variable<Column>,
        offset_next_row: Option<usize>,
    ) -> Self {
        let Variable { col, row } = var;
        if row == CurrOrNext::Next {
            assert!(
                offset_next_row.is_some(),
                "The offset for the next row must be provided"
            );
        }
        let offset = if row == CurrOrNext::Curr {
            0
        } else {
            offset_next_row.unwrap()
        };
        let var_usize: usize = col.into();

        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        assert!(primes.contains(&var_usize), "The usize representation of the variable must be a prime number, and unique for each variable");

        let prime_idx = primes.iter().position(|&x| x == var_usize).unwrap();
        let idx = prime_gen.get_nth_prime(prime_idx + offset + 1);

        let mut res = Self::zero();
        let inv_idx = res
            .normalized_indices
            .iter()
            .position(|&x| x == idx)
            .unwrap();
        res[inv_idx] = F::one();
        res
    }

    fn is_homogeneous(&self) -> bool {
        let normalized_indices = self.normalized_indices.clone();
        let mut prime_gen = PrimeNumberGenerator::new();
        let is_homogeneous = normalized_indices
            .iter()
            .zip(self.coeff.clone())
            .all(|(idx, c)| {
                let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
                let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
                monomial_degree == D || c == F::zero()
            });
        is_homogeneous
    }

    fn homogeneous_eval(&self, x: &[F; N], u: F) -> F {
        let normalized_indices = self.normalized_indices.clone();
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        normalized_indices
            .iter()
            .zip(self.coeff.clone())
            .fold(F::zero(), |acc, (idx, c)| {
                let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
                let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
                let u_power = D - monomial_degree;
                let monomial = decomposition_of_i.iter().fold(F::one(), |acc, (p, d)| {
                    let inv_p = primes.iter().position(|&x| x == *p).unwrap();
                    let x_p = x[inv_p].pow([*d as u64]);
                    acc * x_p
                });
                acc + c * monomial * u.pow([u_power as u64])
            })
    }

    fn add_monomial(&mut self, exponents: [usize; N], coeff: F) {
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        let normalized_index = exponents
            .iter()
            .zip(primes.iter())
            .fold(1, |acc, (d, p)| acc * p.pow(*d as u32));
        let inv_idx = self
            .normalized_indices
            .iter()
            .position(|&x| x == normalized_index)
            .unwrap();
        self.coeff[inv_idx] += coeff;
    }

    fn compute_cross_terms(
        &self,
        _eval1: &[F; N],
        _eval2: &[F; N],
        _u1: F,
        _u2: F,
    ) -> HashMap<usize, F> {
        unimplemented!()
    }

    fn compute_cross_terms_scaled(
        &self,
        _eval1: &[F; N],
        _eval2: &[F; N],
        _u1: F,
        _u2: F,
        _scalar1: F,
        _scalar2: F,
    ) -> HashMap<usize, F> {
        unimplemented!()
    }

    fn modify_monomial(&mut self, exponents: [usize; N], coeff: F) {
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        let index = exponents
            .iter()
            .zip(primes.iter())
            .fold(1, |acc, (exp, &prime)| acc * prime.pow(*exp as u32));
        if let Some(pos) = self.normalized_indices.iter().position(|&x| x == index) {
            self.coeff[pos] = coeff;
        } else {
            panic!("Exponent combination out of bounds for the given polynomial degree and number of variables.");
        }
    }

    fn is_multilinear(&self) -> bool {
        if self.is_zero() {
            return true;
        }
        let normalized_indices = self.normalized_indices.clone();
        let mut prime_gen = PrimeNumberGenerator::new();
        normalized_indices
            .iter()
            .zip(self.coeff.iter())
            .all(|(idx, c)| {
                if c.is_zero() {
                    true
                } else {
                    let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
                    // Each prime number/variable should appear at most once
                    decomposition_of_i.iter().all(|(_p, d)| *d <= 1)
                }
            })
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Dense<F, N, D> {
    pub fn new() -> Self {
        let normalized_indices = Self::compute_normalized_indices();
        Self {
            coeff: vec![F::zero(); Self::dimension()],
            normalized_indices,
        }
    }
    pub fn iter(&self) -> impl Iterator<Item = &F> {
        self.coeff.iter()
    }

    pub fn dimension() -> usize {
        binomial(N + D, D)
    }

    pub fn from_coeffs(coeff: Vec<F>) -> Self {
        let normalized_indices = Self::compute_normalized_indices();
        Dense {
            coeff,
            normalized_indices,
        }
    }

    pub fn number_of_variables(&self) -> usize {
        N
    }

    pub fn maximum_degree(&self) -> usize {
        D
    }

    /// Output example for N = 2 and D = 2:
    /// ```text
    /// - 0 -> 1
    /// - 1 -> 2
    /// - 2 -> 3
    /// - 3 -> 4
    /// - 4 -> 6
    /// - 5 -> 9
    /// ```
    pub fn compute_normalized_indices() -> Vec<usize> {
        let mut normalized_indices = vec![1; Self::dimension()];
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        let max_index = primes[N - 1].checked_pow(D as u32);
        let max_index = max_index.expect("Overflow in computing the maximum index");
        let mut j = 0;
        (1..=max_index).for_each(|i| {
            let prime_decomposition_of_index = naive_prime_factors(i, &mut prime_gen);
            let is_valid_decomposition = prime_decomposition_of_index
                .iter()
                .all(|(p, _)| primes.contains(p));
            let monomial_degree = prime_decomposition_of_index
                .iter()
                .fold(0, |acc, (_, d)| acc + d);
            let is_valid_decomposition = is_valid_decomposition && monomial_degree <= D;
            if is_valid_decomposition {
                normalized_indices[j] = i;
                j += 1;
            }
        });
        normalized_indices
    }

    pub fn increase_degree<const D_PRIME: usize>(&self) -> Dense<F, N, D_PRIME> {
        assert!(D <= D_PRIME, "The degree of the target polynomial must be greater or equal to the degree of the source polynomial");
        let mut result: Dense<F, N, D_PRIME> = Dense::zero();
        let dst_normalized_indices = Dense::<F, N, D_PRIME>::compute_normalized_indices();
        let src_normalized_indices = Dense::<F, N, D>::compute_normalized_indices();
        src_normalized_indices
            .iter()
            .enumerate()
            .for_each(|(i, idx)| {
                // IMPROVEME: should be computed once
                let inv_idx = dst_normalized_indices
                    .iter()
                    .position(|&x| x == *idx)
                    .unwrap();
                result[inv_idx] = self[i];
            });
        result
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Default for Dense<F, N, D> {
    fn default() -> Self {
        Dense::new()
    }
}

// Addition
impl<F: PrimeField, const N: usize, const D: usize> Add for Dense<F, N, D> {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        &self + &other
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Add<&Dense<F, N, D>> for Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn add(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
        &self + other
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Add<Dense<F, N, D>> for &Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn add(self, other: Dense<F, N, D>) -> Dense<F, N, D> {
        self + &other
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Add<&Dense<F, N, D>> for &Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn add(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
        let coeffs = self
            .coeff
            .iter()
            .zip(other.coeff.iter())
            .map(|(a, b)| *a + *b)
            .collect();
        Dense::from_coeffs(coeffs)
    }
}

// Subtraction
impl<F: PrimeField, const N: usize, const D: usize> Sub for Dense<F, N, D> {
    type Output = Self;

    fn sub(self, other: Self) -> Self {
        self + (-other)
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Sub<&Dense<F, N, D>> for Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn sub(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
        self + (-other)
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Sub<Dense<F, N, D>> for &Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn sub(self, other: Dense<F, N, D>) -> Dense<F, N, D> {
        self + (-other)
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Sub<&Dense<F, N, D>> for &Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn sub(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
        self + (-other)
    }
}

// Negation
impl<F: PrimeField, const N: usize, const D: usize> Neg for Dense<F, N, D> {
    type Output = Self;

    fn neg(self) -> Self::Output {
        -&self
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Neg for &Dense<F, N, D> {
    type Output = Dense<F, N, D>;

    fn neg(self) -> Self::Output {
        let coeffs = self.coeff.iter().map(|c| -*c).collect();
        Dense::from_coeffs(coeffs)
    }
}

// Multiplication
impl<F: PrimeField, const N: usize, const D: usize> Mul<Dense<F, N, D>> for Dense<F, N, D> {
    type Output = Self;

    fn mul(self, other: Self) -> Self {
        let mut cache = HashMap::new();
        let mut prime_gen = PrimeNumberGenerator::new();
        let mut result = vec![];
        (0..self.coeff.len()).for_each(|i| {
            let mut sum = F::zero();
            let normalized_index = self.normalized_indices[i];
            let two_factors_decomposition =
                compute_all_two_factors_decomposition(normalized_index, &mut cache, &mut prime_gen);
            two_factors_decomposition.iter().for_each(|(a, b)| {
                // FIXME: we should keep the inverse normalized indices
                let inv_a = self
                    .normalized_indices
                    .iter()
                    .position(|&x| x == *a)
                    .unwrap();
                let inv_b = self
                    .normalized_indices
                    .iter()
                    .position(|&x| x == *b)
                    .unwrap();
                let a_coeff = self.coeff[inv_a];
                let b_coeff = other.coeff[inv_b];
                let product = a_coeff * b_coeff;
                sum += product;
            });
            result.push(sum);
        });
        Self::from_coeffs(result)
    }
}

impl<F: PrimeField, const N: usize, const D: usize> PartialEq for Dense<F, N, D> {
    fn eq(&self, other: &Self) -> bool {
        self.coeff == other.coeff
    }
}

impl<F: PrimeField, const N: usize, const D: usize> Eq for Dense<F, N, D> {}

impl<F: PrimeField, const N: usize, const D: usize> Debug for Dense<F, N, D> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        let coeff: Vec<_> = self
            .coeff
            .iter()
            .enumerate()
            .filter(|(_i, c)| *c != &F::zero())
            .collect();
        // Print 0 if the polynomial is zero
        if coeff.is_empty() {
            write!(f, "0").unwrap();
            return Ok(());
        }
        let l = coeff.len();
        coeff.into_iter().for_each(|(i, c)| {
            let normalized_idx = self.normalized_indices[i];
            if normalized_idx == 1 && *c != F::one() {
                write!(f, "{}", c.to_biguint()).unwrap();
            } else {
                let prime_decomposition = naive_prime_factors(normalized_idx, &mut prime_gen);
                if *c != F::one() {
                    write!(f, "{}", c.to_biguint()).unwrap();
                }
                prime_decomposition.iter().for_each(|(p, d)| {
                    let inv_p = primes.iter().position(|&x| x == *p).unwrap();
                    if *d > 1 {
                        write!(f, "x_{}^{}", inv_p, d).unwrap();
                    } else {
                        write!(f, "x_{}", inv_p).unwrap();
                    }
                });
            }
            // Avoid printing the last `+` or if the polynomial is a single
            // monomial
            if i != l - 1 && l != 1 {
                write!(f, " + ").unwrap();
            }
        });
        Ok(())
    }
}

impl<F: PrimeField, const N: usize, const D: usize> From<F> for Dense<F, N, D> {
    fn from(value: F) -> Self {
        let mut result = Self::zero();
        result.coeff[0] = value;
        result
    }
}

// TODO: implement From/To Expr<F, Column>