1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
//! Multivariate polynomial dense representation using prime numbers
//!
//! First, we start by attributing a different prime number for each variable.
//! For instance, for `F^{<=2}[X_{1}, X_{2}]`, we assign `X_{1}` to `2`
//! and $X_{2}$ to $3$.
//! From there, we note `X_{1} X_{2}` as the value `6`, `X_{1}^2` as `4`, `X_{2}^2`
//! as 9. The constant is `1`.
//!
//! From there, we represent our polynomial coefficients in a sparse list. Some
//! cells, noted `NA`, won't be used for certain vector spaces.
//!
//! For instance, `X_{1} + X_{2}` will be represented as:
//! ```text
//! [0, 1, 1, 0, 0, 0, 0, 0, 0]
//! | | | | | | | | |
//! 1 2 3 4 5 6 7 8 9
//! | | | | | | | | |
//! cst X1 X2 X1^2 NA X1*X2 NA NA X2^2
//! ```
//!
//! and the polynomial `42 X_{1} + 3 X_{1} X_{2} + 14 X_{2}^2` will be represented
//! as
//!
//! ```text
//! [0, 42, 1, 0, 0, 3, 0, 0, 14]
//! | | | | | | | | |
//! 1 2 3 4 5 6 7 8 9
//! | | | | | | | | |
//! cst X1 X2 X1^2 NA X1*X2 NA NA X2^2
//! ```
//!
//! Adding two polynomials in this base is pretty straightforward: we simply add the
//! coefficients of the two lists.
//!
//! Multiplication is not more complicated.
//! To compute the result of $P_{1} * P_{2}$, the value of index $i$ will be the sum
//! of the decompositions.
//!
//! For instance, if we take `P_{1}(X_{1}) = 2 X_{1} + X_{2}` and `P_{2}(X_{1},
//! X_{2}) = X_{2} + 3`, the expected product is
//! `P_{3}(X_{1}, X_{2}) = (2 X_{1} + X_{2}) * (X_{2} + 3) = 2 X_{1} X_{2} + 6
//! X_{1} + 3 X_{2} + X_{2}^2`
//!
//! Given in the representation above, we have:
//!
//! ```text
//! For P_{1}:
//!
//! [0, 2, 1, 0, 0, 0, 0, 0, 0]
//! | | | | | | | | |
//! 1 2 3 4 5 6 7 8 9
//! | | | | | | | | |
//! cst X1 X2 X1^2 NA X1*X2 NA NA X2^2
//!
//! ```
//!
//! ```text
//! For P_{2}:
//!
//! [3, 0, 1, 0, 0, 0, 0, 0, 0]
//! | | | | | | | | |
//! 1 2 3 4 5 6 7 8 9
//! | | | | | | | | |
//! cst X1 X2 X1^2 NA X1*X2 NA NA X2^2
//!
//! ```
//!
//!
//! ```text
//! For P_{3}:
//!
//! [0, 6, 3, 0, 0, 2, 0, 0, 1]
//! | | | | | | | | |
//! 1 2 3 4 5 6 7 8 9
//! | | | | | | | | |
//! cst X1 X2 X1^2 NA X1*X2 NA NA X2^2
//!
//! ```
//!
//! To compute `P_{3}`, we get iterate over an empty list of $9$ elements which will
//! define `P_{3}`.
//!
//! For index `1`, we multiply `P_{1}[1]` and `P_{1}[1]`.
//!
//! FOr index $2$, the only way to get this index is by fetching $2$ in each list.
//! Therefore, we do `P_{1}[2] P_{2}[1] + P_{2}[2] * P_{1}[1] = 2 * 3 + 0 * 0 = 6`.
//!
//! For index `3`, same than for `2`.
//!
//! For index `4`, we have `4 = 2 * 2`, therefore, we multiply `P_{1}[2]` and `P_{2}[2]`
//!
//! For index `6`, we have `6 = 2 * 3` and `6 = 3 * 2`, which are the prime
//! decompositions of $6$. Therefore we sum `P_{1}[2] * P_{2}[3]` and `P_{2}[2] *
//! P_{1}[3]`.
//!
//! For index $9$, we have $9 = 3 * 3$, therefore we do the same than for $4$.
//!
//! This can be generalized.
//!
//! The algorithm is as follow:
//! - for each cell `j`:
//! - if `j` is prime, compute `P_{1}[j] P_{2}[1] + P_{2}[j] P_{1}[1]`
//! - else:
//! - take the prime decompositions of `j` (and their permutations).
//! - for each decomposition, compute the product
//! - sum
//!
//!
//! #### Other examples degree $2$ with 3 variables.
//!
//! ```math
//! \begin{align}
//! $\mathbb{F}^{\le 2}[X_{1}, X_{2}, X_{3}] = \{
//! & \, a_{0} + \\
//! & \, a_{1} X_{1} + \\
//! & \, a_{2} X_{2} + \\
//! & \, a_{3} X_{3} + \\
//! & \, a_{4} X_{1} X_{2} + \\
//! & \, a_{5} X_{2} X_{3} + \\
//! & \, a_{6} X_{1} X_{3} + \\
//! & \, a_{7} X_{1}^2 + \\
//! & \, a_{8} X_{2}^2 + \\
//! & \, a_{9} X_{3}^2 \, | \, a_{i} \in \mathbb{F}
//! \}
//! \end{align}
//! ```
//!
//! We assign:
//!
//! - `X_{1} = 2`
//! - `X_{2} = 3`
//! - `X_{3} = 5`
//!
//! And therefore, we have:
//! - `X_{1}^2 = 4`
//! - `X_{1} X_{2} = 6`
//! - `X_{1} X_{3} = 10`
//! - `X_{2}^2 = 9`
//! - `X_{2} X_{3} = 15`
//! - `X_{3}^2 = 25`
//!
//! We have an array with 25 indices, even though we need 10 elements only.
use std::{
collections::HashMap,
fmt::{Debug, Formatter, Result},
ops::{Add, Mul, Neg, Sub},
};
use ark_ff::{One, PrimeField, Zero};
use kimchi::circuits::{expr::Variable, gate::CurrOrNext};
use num_integer::binomial;
use o1_utils::FieldHelpers;
use rand::{Rng, RngCore};
use std::ops::{Index, IndexMut};
use crate::{
utils::{compute_all_two_factors_decomposition, naive_prime_factors, PrimeNumberGenerator},
MVPoly,
};
/// Represents a multivariate polynomial of degree less than `D` in `N` variables.
/// The representation is dense, i.e., all coefficients are stored.
/// The polynomial is represented as a vector of coefficients, where the index
/// of the coefficient corresponds to the index of the monomial.
/// A mapping between the index and the prime decomposition of the monomial is
/// stored in `normalized_indices`.
#[derive(Clone)]
pub struct Dense<F: PrimeField, const N: usize, const D: usize> {
coeff: Vec<F>,
// keeping track of the indices of the monomials that are normalized
// to avoid recomputing them
// FIXME: this should be stored somewhere else; we should not have it for
// each polynomial
normalized_indices: Vec<usize>,
}
impl<F: PrimeField, const N: usize, const D: usize> Index<usize> for Dense<F, N, D> {
type Output = F;
fn index(&self, index: usize) -> &Self::Output {
&self.coeff[index]
}
}
impl<F: PrimeField, const N: usize, const D: usize> IndexMut<usize> for Dense<F, N, D> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.coeff[index]
}
}
impl<F: PrimeField, const N: usize, const D: usize> Zero for Dense<F, N, D> {
fn is_zero(&self) -> bool {
self.coeff.iter().all(|c| c.is_zero())
}
fn zero() -> Self {
Dense {
coeff: vec![F::zero(); Self::dimension()],
normalized_indices: Self::compute_normalized_indices(),
}
}
}
impl<F: PrimeField, const N: usize, const D: usize> One for Dense<F, N, D> {
fn one() -> Self {
let mut result = Dense::zero();
result.coeff[0] = F::one();
result
}
}
impl<F: PrimeField, const N: usize, const D: usize> MVPoly<F, N, D> for Dense<F, N, D> {
/// Generate a random polynomial of maximum degree `max_degree`.
///
/// If `None` is provided as the maximum degree, the polynomial will be
/// generated with a maximum degree of `D`.
///
/// # Safety
///
/// Marked as unsafe to warn the user to use it with caution and to not
/// necessarily rely on it for security/randomness in cryptographic
/// protocols. The user is responsible for providing its own secure
/// polynomial random generator, if needed.
///
/// In addition to that, zeroes coefficients are added one every 10
/// monomials to be sure we do have some sparcity in the polynomial.
///
/// For now, the function is only used for testing.
unsafe fn random<RNG: RngCore>(rng: &mut RNG, max_degree: Option<usize>) -> Self {
let mut prime_gen = PrimeNumberGenerator::new();
let normalized_indices = Self::compute_normalized_indices();
// Different cases to avoid complexity in the case no maximum degree is
// provided
let coeff = if let Some(max_degree) = max_degree {
normalized_indices
.iter()
.map(|idx| {
let degree = naive_prime_factors(*idx, &mut prime_gen)
.iter()
.fold(0, |acc, (_, d)| acc + d);
if degree > max_degree || rng.gen_range(0..10) == 0 {
// Adding zero coefficients one every 10 monomials
F::zero()
} else {
F::rand(rng)
}
})
.collect::<Vec<F>>()
} else {
normalized_indices
.iter()
.map(|_| {
if rng.gen_range(0..10) == 0 {
// Adding zero coefficients one every 10 monomials
F::zero()
} else {
F::rand(rng)
}
})
.collect()
};
Self {
coeff,
normalized_indices,
}
}
fn is_constant(&self) -> bool {
self.coeff.iter().skip(1).all(|c| c.is_zero())
}
/// Returns the degree of the polynomial.
///
/// The degree of the polynomial is the maximum degree of the monomials
/// that have a non-zero coefficient.
///
/// # Safety
///
/// The zero polynomial as a degree equals to 0, as the degree of the
/// constant polynomials. We do use the `unsafe` keyword to warn the user
/// for this specific case.
unsafe fn degree(&self) -> usize {
if self.is_constant() {
return 0;
}
let mut prime_gen = PrimeNumberGenerator::new();
self.coeff.iter().enumerate().fold(1, |acc, (i, c)| {
if *c != F::zero() {
let decomposition_of_i =
naive_prime_factors(self.normalized_indices[i], &mut prime_gen);
let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
acc.max(monomial_degree)
} else {
acc
}
})
}
fn double(&self) -> Self {
let coeffs = self.coeff.iter().map(|c| c.double()).collect();
Self::from_coeffs(coeffs)
}
fn mul_by_scalar(&self, c: F) -> Self {
let coeffs = self.coeff.iter().map(|coef| *coef * c).collect();
Self::from_coeffs(coeffs)
}
/// Evaluate the polynomial at the vector point `x`.
///
/// This is a dummy implementation. A cache can be used for the monomials to
/// speed up the computation.
fn eval(&self, x: &[F; N]) -> F {
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
self.coeff
.iter()
.enumerate()
.fold(F::zero(), |acc, (i, c)| {
if i == 0 {
acc + c
} else {
let normalized_index = self.normalized_indices[i];
// IMPROVEME: we should keep the prime decomposition somewhere.
// It can be precomputed for a few multi-variate polynomials
// vector space
let prime_decomposition = naive_prime_factors(normalized_index, &mut prime_gen);
let mut monomial = F::one();
prime_decomposition.iter().for_each(|(p, d)| {
// IMPROVEME: we should keep the inverse indices
let inv_p = primes.iter().position(|&x| x == *p).unwrap();
let x_p = x[inv_p].pow([*d as u64]);
monomial *= x_p;
});
acc + *c * monomial
}
})
}
fn from_variable<Column: Into<usize>>(
var: Variable<Column>,
offset_next_row: Option<usize>,
) -> Self {
let Variable { col, row } = var;
if row == CurrOrNext::Next {
assert!(
offset_next_row.is_some(),
"The offset for the next row must be provided"
);
}
let offset = if row == CurrOrNext::Curr {
0
} else {
offset_next_row.unwrap()
};
let var_usize: usize = col.into();
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
assert!(primes.contains(&var_usize), "The usize representation of the variable must be a prime number, and unique for each variable");
let prime_idx = primes.iter().position(|&x| x == var_usize).unwrap();
let idx = prime_gen.get_nth_prime(prime_idx + offset + 1);
let mut res = Self::zero();
let inv_idx = res
.normalized_indices
.iter()
.position(|&x| x == idx)
.unwrap();
res[inv_idx] = F::one();
res
}
fn is_homogeneous(&self) -> bool {
let normalized_indices = self.normalized_indices.clone();
let mut prime_gen = PrimeNumberGenerator::new();
let is_homogeneous = normalized_indices
.iter()
.zip(self.coeff.clone())
.all(|(idx, c)| {
let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
monomial_degree == D || c == F::zero()
});
is_homogeneous
}
fn homogeneous_eval(&self, x: &[F; N], u: F) -> F {
let normalized_indices = self.normalized_indices.clone();
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
normalized_indices
.iter()
.zip(self.coeff.clone())
.fold(F::zero(), |acc, (idx, c)| {
let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
let monomial_degree = decomposition_of_i.iter().fold(0, |acc, (_, d)| acc + d);
let u_power = D - monomial_degree;
let monomial = decomposition_of_i.iter().fold(F::one(), |acc, (p, d)| {
let inv_p = primes.iter().position(|&x| x == *p).unwrap();
let x_p = x[inv_p].pow([*d as u64]);
acc * x_p
});
acc + c * monomial * u.pow([u_power as u64])
})
}
fn add_monomial(&mut self, exponents: [usize; N], coeff: F) {
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
let normalized_index = exponents
.iter()
.zip(primes.iter())
.fold(1, |acc, (d, p)| acc * p.pow(*d as u32));
let inv_idx = self
.normalized_indices
.iter()
.position(|&x| x == normalized_index)
.unwrap();
self.coeff[inv_idx] += coeff;
}
fn compute_cross_terms(
&self,
_eval1: &[F; N],
_eval2: &[F; N],
_u1: F,
_u2: F,
) -> HashMap<usize, F> {
unimplemented!()
}
fn compute_cross_terms_scaled(
&self,
_eval1: &[F; N],
_eval2: &[F; N],
_u1: F,
_u2: F,
_scalar1: F,
_scalar2: F,
) -> HashMap<usize, F> {
unimplemented!()
}
fn modify_monomial(&mut self, exponents: [usize; N], coeff: F) {
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
let index = exponents
.iter()
.zip(primes.iter())
.fold(1, |acc, (exp, &prime)| acc * prime.pow(*exp as u32));
if let Some(pos) = self.normalized_indices.iter().position(|&x| x == index) {
self.coeff[pos] = coeff;
} else {
panic!("Exponent combination out of bounds for the given polynomial degree and number of variables.");
}
}
fn is_multilinear(&self) -> bool {
if self.is_zero() {
return true;
}
let normalized_indices = self.normalized_indices.clone();
let mut prime_gen = PrimeNumberGenerator::new();
normalized_indices
.iter()
.zip(self.coeff.iter())
.all(|(idx, c)| {
if c.is_zero() {
true
} else {
let decomposition_of_i = naive_prime_factors(*idx, &mut prime_gen);
// Each prime number/variable should appear at most once
decomposition_of_i.iter().all(|(_p, d)| *d <= 1)
}
})
}
}
impl<F: PrimeField, const N: usize, const D: usize> Dense<F, N, D> {
pub fn new() -> Self {
let normalized_indices = Self::compute_normalized_indices();
Self {
coeff: vec![F::zero(); Self::dimension()],
normalized_indices,
}
}
pub fn iter(&self) -> impl Iterator<Item = &F> {
self.coeff.iter()
}
pub fn dimension() -> usize {
binomial(N + D, D)
}
pub fn from_coeffs(coeff: Vec<F>) -> Self {
let normalized_indices = Self::compute_normalized_indices();
Dense {
coeff,
normalized_indices,
}
}
pub fn number_of_variables(&self) -> usize {
N
}
pub fn maximum_degree(&self) -> usize {
D
}
/// Output example for N = 2 and D = 2:
/// ```text
/// - 0 -> 1
/// - 1 -> 2
/// - 2 -> 3
/// - 3 -> 4
/// - 4 -> 6
/// - 5 -> 9
/// ```
pub fn compute_normalized_indices() -> Vec<usize> {
let mut normalized_indices = vec![1; Self::dimension()];
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
let max_index = primes[N - 1].checked_pow(D as u32);
let max_index = max_index.expect("Overflow in computing the maximum index");
let mut j = 0;
(1..=max_index).for_each(|i| {
let prime_decomposition_of_index = naive_prime_factors(i, &mut prime_gen);
let is_valid_decomposition = prime_decomposition_of_index
.iter()
.all(|(p, _)| primes.contains(p));
let monomial_degree = prime_decomposition_of_index
.iter()
.fold(0, |acc, (_, d)| acc + d);
let is_valid_decomposition = is_valid_decomposition && monomial_degree <= D;
if is_valid_decomposition {
normalized_indices[j] = i;
j += 1;
}
});
normalized_indices
}
pub fn increase_degree<const D_PRIME: usize>(&self) -> Dense<F, N, D_PRIME> {
assert!(D <= D_PRIME, "The degree of the target polynomial must be greater or equal to the degree of the source polynomial");
let mut result: Dense<F, N, D_PRIME> = Dense::zero();
let dst_normalized_indices = Dense::<F, N, D_PRIME>::compute_normalized_indices();
let src_normalized_indices = Dense::<F, N, D>::compute_normalized_indices();
src_normalized_indices
.iter()
.enumerate()
.for_each(|(i, idx)| {
// IMPROVEME: should be computed once
let inv_idx = dst_normalized_indices
.iter()
.position(|&x| x == *idx)
.unwrap();
result[inv_idx] = self[i];
});
result
}
}
impl<F: PrimeField, const N: usize, const D: usize> Default for Dense<F, N, D> {
fn default() -> Self {
Dense::new()
}
}
// Addition
impl<F: PrimeField, const N: usize, const D: usize> Add for Dense<F, N, D> {
type Output = Self;
fn add(self, other: Self) -> Self {
&self + &other
}
}
impl<F: PrimeField, const N: usize, const D: usize> Add<&Dense<F, N, D>> for Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn add(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
&self + other
}
}
impl<F: PrimeField, const N: usize, const D: usize> Add<Dense<F, N, D>> for &Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn add(self, other: Dense<F, N, D>) -> Dense<F, N, D> {
self + &other
}
}
impl<F: PrimeField, const N: usize, const D: usize> Add<&Dense<F, N, D>> for &Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn add(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
let coeffs = self
.coeff
.iter()
.zip(other.coeff.iter())
.map(|(a, b)| *a + *b)
.collect();
Dense::from_coeffs(coeffs)
}
}
// Subtraction
impl<F: PrimeField, const N: usize, const D: usize> Sub for Dense<F, N, D> {
type Output = Self;
fn sub(self, other: Self) -> Self {
self + (-other)
}
}
impl<F: PrimeField, const N: usize, const D: usize> Sub<&Dense<F, N, D>> for Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn sub(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
self + (-other)
}
}
impl<F: PrimeField, const N: usize, const D: usize> Sub<Dense<F, N, D>> for &Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn sub(self, other: Dense<F, N, D>) -> Dense<F, N, D> {
self + (-other)
}
}
impl<F: PrimeField, const N: usize, const D: usize> Sub<&Dense<F, N, D>> for &Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn sub(self, other: &Dense<F, N, D>) -> Dense<F, N, D> {
self + (-other)
}
}
// Negation
impl<F: PrimeField, const N: usize, const D: usize> Neg for Dense<F, N, D> {
type Output = Self;
fn neg(self) -> Self::Output {
-&self
}
}
impl<F: PrimeField, const N: usize, const D: usize> Neg for &Dense<F, N, D> {
type Output = Dense<F, N, D>;
fn neg(self) -> Self::Output {
let coeffs = self.coeff.iter().map(|c| -*c).collect();
Dense::from_coeffs(coeffs)
}
}
// Multiplication
impl<F: PrimeField, const N: usize, const D: usize> Mul<Dense<F, N, D>> for Dense<F, N, D> {
type Output = Self;
fn mul(self, other: Self) -> Self {
let mut cache = HashMap::new();
let mut prime_gen = PrimeNumberGenerator::new();
let mut result = vec![];
(0..self.coeff.len()).for_each(|i| {
let mut sum = F::zero();
let normalized_index = self.normalized_indices[i];
let two_factors_decomposition =
compute_all_two_factors_decomposition(normalized_index, &mut cache, &mut prime_gen);
two_factors_decomposition.iter().for_each(|(a, b)| {
// FIXME: we should keep the inverse normalized indices
let inv_a = self
.normalized_indices
.iter()
.position(|&x| x == *a)
.unwrap();
let inv_b = self
.normalized_indices
.iter()
.position(|&x| x == *b)
.unwrap();
let a_coeff = self.coeff[inv_a];
let b_coeff = other.coeff[inv_b];
let product = a_coeff * b_coeff;
sum += product;
});
result.push(sum);
});
Self::from_coeffs(result)
}
}
impl<F: PrimeField, const N: usize, const D: usize> PartialEq for Dense<F, N, D> {
fn eq(&self, other: &Self) -> bool {
self.coeff == other.coeff
}
}
impl<F: PrimeField, const N: usize, const D: usize> Eq for Dense<F, N, D> {}
impl<F: PrimeField, const N: usize, const D: usize> Debug for Dense<F, N, D> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
let mut prime_gen = PrimeNumberGenerator::new();
let primes = prime_gen.get_first_nth_primes(N);
let coeff: Vec<_> = self
.coeff
.iter()
.enumerate()
.filter(|(_i, c)| *c != &F::zero())
.collect();
// Print 0 if the polynomial is zero
if coeff.is_empty() {
write!(f, "0").unwrap();
return Ok(());
}
let l = coeff.len();
coeff.into_iter().for_each(|(i, c)| {
let normalized_idx = self.normalized_indices[i];
if normalized_idx == 1 && *c != F::one() {
write!(f, "{}", c.to_biguint()).unwrap();
} else {
let prime_decomposition = naive_prime_factors(normalized_idx, &mut prime_gen);
if *c != F::one() {
write!(f, "{}", c.to_biguint()).unwrap();
}
prime_decomposition.iter().for_each(|(p, d)| {
let inv_p = primes.iter().position(|&x| x == *p).unwrap();
if *d > 1 {
write!(f, "x_{}^{}", inv_p, d).unwrap();
} else {
write!(f, "x_{}", inv_p).unwrap();
}
});
}
// Avoid printing the last `+` or if the polynomial is a single
// monomial
if i != l - 1 && l != 1 {
write!(f, " + ").unwrap();
}
});
Ok(())
}
}
impl<F: PrimeField, const N: usize, const D: usize> From<F> for Dense<F, N, D> {
fn from(value: F) -> Self {
let mut result = Self::zero();
result.coeff[0] = value;
result
}
}
// TODO: implement From/To Expr<F, Column>