1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
use crate::{
    prime,
    utils::{compute_indices_nested_loop, naive_prime_factors, PrimeNumberGenerator},
    MVPoly,
};
use ark_ff::{One, PrimeField, Zero};
use kimchi::circuits::{expr::Variable, gate::CurrOrNext};
use num_integer::binomial;
use rand::{Rng, RngCore};
use std::{
    collections::HashMap,
    fmt::Debug,
    ops::{Add, Mul, Neg, Sub},
};

/// Represents a multivariate polynomial in `N` variables with coefficients in
/// `F`. The polynomial is represented as a sparse polynomial, where each
/// monomial is represented by a vector of `N` exponents.
// We could use u8 instead of usize for the exponents
// FIXME: the maximum degree D is encoded in the type to match the type
// prime::Dense
#[derive(Clone)]
pub struct Sparse<F: PrimeField, const N: usize, const D: usize> {
    pub monomials: HashMap<[usize; N], F>,
}

impl<const N: usize, const D: usize, F: PrimeField> Add for Sparse<F, N, D> {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        &self + &other
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Add<&Sparse<F, N, D>> for Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn add(self, other: &Sparse<F, N, D>) -> Self::Output {
        &self + other
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Add<Sparse<F, N, D>> for &Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn add(self, other: Sparse<F, N, D>) -> Self::Output {
        self + &other
    }
}
impl<const N: usize, const D: usize, F: PrimeField> Add<&Sparse<F, N, D>> for &Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn add(self, other: &Sparse<F, N, D>) -> Self::Output {
        let mut monomials = self.monomials.clone();
        for (exponents, coeff) in &other.monomials {
            monomials
                .entry(*exponents)
                .and_modify(|c| *c += *coeff)
                .or_insert(*coeff);
        }
        // Remove monomials with zero coefficients
        let monomials: HashMap<[usize; N], F> = monomials
            .into_iter()
            .filter(|(_, coeff)| !coeff.is_zero())
            .collect();
        // Handle the case where the result is zero because we want a unique
        // representation
        if monomials.is_empty() {
            Sparse::<F, N, D>::zero()
        } else {
            Sparse::<F, N, D> { monomials }
        }
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Debug for Sparse<F, N, D> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut monomials: Vec<String> = self
            .monomials
            .iter()
            .map(|(exponents, coeff)| {
                let mut monomial = format!("{}", coeff);
                for (i, exp) in exponents.iter().enumerate() {
                    if *exp == 0 {
                        continue;
                    } else if *exp == 1 {
                        monomial.push_str(&format!("x_{}", i));
                    } else {
                        monomial.push_str(&format!("x_{}^{}", i, exp));
                    }
                }
                monomial
            })
            .collect();
        monomials.sort();
        write!(f, "{}", monomials.join(" + "))
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Mul for Sparse<F, N, D> {
    type Output = Self;

    fn mul(self, other: Self) -> Self {
        let mut monomials = HashMap::new();
        let degree_lhs = unsafe { self.degree() };
        let degree_rhs = unsafe { other.degree() };
        assert!(degree_lhs + degree_rhs <= D, "The degree of the output is expected to be maximum {D}, but the resulting output would be larger than {D} ({res})", res=degree_lhs + degree_rhs);
        self.monomials.iter().for_each(|(exponents1, coeff1)| {
            other
                .monomials
                .clone()
                .iter()
                .for_each(|(exponents2, coeff2)| {
                    let mut exponents = [0; N];
                    for i in 0..N {
                        exponents[i] = exponents1[i] + exponents2[i];
                    }
                    monomials
                        .entry(exponents)
                        .and_modify(|c| *c += *coeff1 * *coeff2)
                        .or_insert(*coeff1 * *coeff2);
                })
        });
        // Remove monomials with zero coefficients
        let monomials: HashMap<[usize; N], F> = monomials
            .into_iter()
            .filter(|(_, coeff)| !coeff.is_zero())
            .collect();
        if monomials.is_empty() {
            Self::zero()
        } else {
            Self { monomials }
        }
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Neg for Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn neg(self) -> Self::Output {
        -&self
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Neg for &Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn neg(self) -> Self::Output {
        let monomials: HashMap<[usize; N], F> = self
            .monomials
            .iter()
            .map(|(exponents, coeff)| (*exponents, -*coeff))
            .collect();
        Sparse::<F, N, D> { monomials }
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Sub for Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn sub(self, other: Sparse<F, N, D>) -> Self::Output {
        self + (-other)
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Sub<&Sparse<F, N, D>> for Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn sub(self, other: &Sparse<F, N, D>) -> Self::Output {
        self + (-other)
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Sub<Sparse<F, N, D>> for &Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn sub(self, other: Sparse<F, N, D>) -> Self::Output {
        self + (-other)
    }
}
impl<const N: usize, const D: usize, F: PrimeField> Sub<&Sparse<F, N, D>> for &Sparse<F, N, D> {
    type Output = Sparse<F, N, D>;

    fn sub(self, other: &Sparse<F, N, D>) -> Self::Output {
        self + (-other)
    }
}

/// Equality is defined as equality of the monomials.
impl<const N: usize, const D: usize, F: PrimeField> PartialEq for Sparse<F, N, D> {
    fn eq(&self, other: &Self) -> bool {
        self.monomials == other.monomials
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Eq for Sparse<F, N, D> {}

impl<const N: usize, const D: usize, F: PrimeField> One for Sparse<F, N, D> {
    fn one() -> Self {
        let mut monomials = HashMap::new();
        monomials.insert([0; N], F::one());
        Self { monomials }
    }
}

impl<const N: usize, const D: usize, F: PrimeField> Zero for Sparse<F, N, D> {
    fn is_zero(&self) -> bool {
        self.monomials.len() == 1
            && self.monomials.contains_key(&[0; N])
            && self.monomials[&[0; N]].is_zero()
    }

    fn zero() -> Self {
        let mut monomials = HashMap::new();
        monomials.insert([0; N], F::zero());
        Self { monomials }
    }
}

impl<const N: usize, const D: usize, F: PrimeField> MVPoly<F, N, D> for Sparse<F, N, D> {
    /// Returns the degree of the polynomial.
    ///
    /// The degree of the polynomial is the maximum degree of the monomials
    /// that have a non-zero coefficient.
    ///
    /// # Safety
    ///
    /// The zero polynomial as a degree equals to 0, as the degree of the
    /// constant polynomials. We do use the `unsafe` keyword to warn the user
    /// for this specific case.
    unsafe fn degree(&self) -> usize {
        self.monomials
            .keys()
            .map(|exponents| exponents.iter().sum())
            .max()
            .unwrap_or(0)
    }

    /// Evaluate the polynomial at the vector point `x`.
    ///
    /// This is a dummy implementation. A cache can be used for the monomials to
    /// speed up the computation.
    fn eval(&self, x: &[F; N]) -> F {
        self.monomials
            .iter()
            .map(|(exponents, coeff)| {
                let mut term = F::one();
                for (exp, point) in exponents.iter().zip(x.iter()) {
                    term *= point.pow([*exp as u64]);
                }
                term * coeff
            })
            .sum()
    }

    fn is_constant(&self) -> bool {
        self.monomials.len() == 1 && self.monomials.contains_key(&[0; N])
    }

    fn double(&self) -> Self {
        let monomials: HashMap<[usize; N], F> = self
            .monomials
            .iter()
            .map(|(exponents, coeff)| (*exponents, coeff.double()))
            .collect();
        Self { monomials }
    }

    fn mul_by_scalar(&self, scalar: F) -> Self {
        if scalar.is_zero() {
            Self::zero()
        } else {
            let monomials: HashMap<[usize; N], F> = self
                .monomials
                .iter()
                .map(|(exponents, coeff)| (*exponents, *coeff * scalar))
                .collect();
            Self { monomials }
        }
    }

    /// Generate a random polynomial of maximum degree `max_degree`.
    ///
    /// If `None` is provided as the maximum degree, the polynomial will be
    /// generated with a maximum degree of `D`.
    ///
    /// # Safety
    ///
    /// Marked as unsafe to warn the user to use it with caution and to not
    /// necessarily rely on it for security/randomness in cryptographic
    /// protocols. The user is responsible for providing its own secure
    /// polynomial random generator, if needed.
    ///
    /// For now, the function is only used for testing.
    unsafe fn random<RNG: RngCore>(rng: &mut RNG, max_degree: Option<usize>) -> Self {
        let degree = max_degree.unwrap_or(D);
        // Generating all monomials with degree <= degree^N
        let nested_loops_indices: Vec<Vec<usize>> =
            compute_indices_nested_loop(vec![degree; N], max_degree);
        // Filtering the monomials with degree <= degree
        let exponents: Vec<Vec<usize>> = nested_loops_indices
            .into_iter()
            .filter(|indices| {
                let sum = indices.iter().sum::<usize>();
                sum <= degree
            })
            .collect();
        // We add 10% of zeroes.
        let exponents: Vec<_> = exponents
            .into_iter()
            .filter(|_indices| rng.gen_range(0..10) != 0)
            .collect();
        // Generating random coefficients for the 90%
        let monomials: HashMap<[usize; N], F> = exponents
            .into_iter()
            .map(|indices| {
                let coeff = F::rand(rng);
                (indices.try_into().unwrap(), coeff)
            })
            .collect();
        Self { monomials }
    }

    fn from_variable<Column: Into<usize>>(
        var: Variable<Column>,
        offset_next_row: Option<usize>,
    ) -> Self {
        let Variable { col, row } = var;
        // Manage offset
        if row == CurrOrNext::Next {
            assert!(
                offset_next_row.is_some(),
                "The offset must be provided for the next row"
            );
        }
        let offset = if row == CurrOrNext::Curr {
            0
        } else {
            offset_next_row.unwrap()
        };

        // Build the corresponding monomial
        let var_usize: usize = col.into();
        let idx = offset + var_usize;

        let mut monomials = HashMap::new();
        let exponents: [usize; N] = std::array::from_fn(|i| if i == idx { 1 } else { 0 });
        monomials.insert(exponents, F::one());
        Self { monomials }
    }

    fn is_homogeneous(&self) -> bool {
        self.monomials
            .iter()
            .all(|(exponents, _)| exponents.iter().sum::<usize>() == D)
    }

    // IMPROVEME: powers can be cached
    fn homogeneous_eval(&self, x: &[F; N], u: F) -> F {
        self.monomials
            .iter()
            .map(|(exponents, coeff)| {
                let mut term = F::one();
                for (exp, point) in exponents.iter().zip(x.iter()) {
                    term *= point.pow([*exp as u64]);
                }
                term *= u.pow([D as u64 - exponents.iter().sum::<usize>() as u64]);
                term * coeff
            })
            .sum()
    }

    fn add_monomial(&mut self, exponents: [usize; N], coeff: F) {
        self.monomials
            .entry(exponents)
            .and_modify(|c| *c += coeff)
            .or_insert(coeff);
    }

    fn compute_cross_terms(
        &self,
        eval1: &[F; N],
        eval2: &[F; N],
        u1: F,
        u2: F,
    ) -> HashMap<usize, F> {
        assert!(
            D >= 2,
            "The degree of the polynomial must be greater than 2"
        );
        let mut cross_terms_by_powers_of_r: HashMap<usize, F> = HashMap::new();
        // We iterate over each monomial with their respective coefficient
        // i.e. we do have something like coeff * x_1^d_1 * x_2^d_2 * ... * x_N^d_N
        self.monomials.iter().for_each(|(exponents, coeff)| {
            // "Exponents" contains all powers, even the ones that are 0. We must
            // get rid of them and keep the index to fetch the correct
            // evaluation later
            let non_zero_exponents_with_index: Vec<(usize, &usize)> = exponents
                .iter()
                .enumerate()
                .filter(|(_, &d)| d != 0)
                .collect();
            // coeff = 0 should not happen as we suppose we have a sparse polynomial
            // Therefore, skipping a check
            let non_zero_exponents: Vec<usize> = non_zero_exponents_with_index
                .iter()
                .map(|(_, d)| *d)
                .copied()
                .collect::<Vec<usize>>();
            let monomial_degree = non_zero_exponents.iter().sum::<usize>();
            let u_degree: usize = D - monomial_degree;
            // Will be used to compute the nested sums
            // It returns all the indices i_1, ..., i_k for the sums:
            // Σ_{i_1 = 0}^{n_1} Σ_{i_2 = 0}^{n_2} ... Σ_{i_k = 0}^{n_k}
            let indices = compute_indices_nested_loop(
                non_zero_exponents.iter().map(|d| *d + 1).collect(),
                None,
            );
            for i in 0..=u_degree {
                // Add the binomial from the homogeneisation
                // i.e (u_degree choose i)
                let u_binomial_term = binomial(u_degree, i);
                // Now, we iterate over all the indices i_1, ..., i_k, i.e. we
                // do over the whole sum, and we populate the map depending on
                // the power of r
                indices.iter().for_each(|indices| {
                    let sum_indices = indices.iter().sum::<usize>() + i;
                    // power of r is Σ (n_k - i_k)
                    let power_r: usize = D - sum_indices;

                    // If the sum of the indices is 0 or D, we skip the
                    // computation as the contribution would go in the
                    // evaluation of the polynomial at each evaluation
                    // vectors eval1 and eval2
                    if sum_indices == 0 || sum_indices == D {
                        return;
                    }
                    // Compute
                    // (n_1 choose i_1) * (n_2 choose i_2) * ... * (n_k choose i_k)
                    let binomial_term = indices
                        .iter()
                        .zip(non_zero_exponents.iter())
                        .fold(u_binomial_term, |acc, (i, &d)| acc * binomial(d, *i));
                    let binomial_term = F::from(binomial_term as u64);
                    // Compute the product x_k^i_k
                    // We ignore the power as it comes into account for the
                    // right evaluation.
                    // NB: we could merge both loops, but we keep them separate
                    // for readability
                    let eval_left = indices
                        .iter()
                        .zip(non_zero_exponents_with_index.iter())
                        .fold(F::one(), |acc, (i, (idx, _d))| {
                            acc * eval1[*idx].pow([*i as u64])
                        });
                    // Compute the product x'_k^(n_k - i_k)
                    let eval_right = indices
                        .iter()
                        .zip(non_zero_exponents_with_index.iter())
                        .fold(F::one(), |acc, (i, (idx, d))| {
                            acc * eval2[*idx].pow([(*d - *i) as u64])
                        });
                    // u1^i * u2^(u_degree - i)
                    let u = u1.pow([i as u64]) * u2.pow([(u_degree - i) as u64]);
                    let res = binomial_term * eval_left * eval_right * u;
                    let res = *coeff * res;
                    cross_terms_by_powers_of_r
                        .entry(power_r)
                        .and_modify(|e| *e += res)
                        .or_insert(res);
                })
            }
        });
        cross_terms_by_powers_of_r
    }

    fn compute_cross_terms_scaled(
        &self,
        eval1: &[F; N],
        eval2: &[F; N],
        u1: F,
        u2: F,
        scalar1: F,
        scalar2: F,
    ) -> HashMap<usize, F> {
        assert!(
            D >= 2,
            "The degree of the polynomial must be greater than 2"
        );
        let cross_terms = self.compute_cross_terms(eval1, eval2, u1, u2);

        let mut res: HashMap<usize, F> = HashMap::new();
        cross_terms.iter().for_each(|(power_r, coeff)| {
            res.insert(*power_r, *coeff * scalar1);
        });
        cross_terms.iter().for_each(|(power_r, coeff)| {
            res.entry(*power_r + 1)
                .and_modify(|e| *e += *coeff * scalar2)
                .or_insert(*coeff * scalar2);
        });
        let eval1_hom = self.homogeneous_eval(eval1, u1);
        res.entry(1)
            .and_modify(|e| *e += eval1_hom * scalar2)
            .or_insert(eval1_hom * scalar2);
        let eval2_hom = self.homogeneous_eval(eval2, u2);
        res.entry(D)
            .and_modify(|e| *e += eval2_hom * scalar1)
            .or_insert(eval2_hom * scalar1);
        res
    }

    fn modify_monomial(&mut self, exponents: [usize; N], coeff: F) {
        self.monomials
            .entry(exponents)
            .and_modify(|c| *c = coeff)
            .or_insert(coeff);
    }

    fn is_multilinear(&self) -> bool {
        self.monomials
            .iter()
            .all(|(exponents, _)| exponents.iter().all(|&d| d <= 1))
    }
}

impl<const N: usize, const D: usize, F: PrimeField> From<prime::Dense<F, N, D>>
    for Sparse<F, N, D>
{
    fn from(dense: prime::Dense<F, N, D>) -> Self {
        let mut prime_gen = PrimeNumberGenerator::new();
        let primes = prime_gen.get_first_nth_primes(N);
        let mut monomials = HashMap::new();
        let normalized_indices = prime::Dense::<F, N, D>::compute_normalized_indices();
        dense.iter().enumerate().for_each(|(i, coeff)| {
            if *coeff != F::zero() {
                let mut exponents = [0; N];
                let inv_idx = normalized_indices[i];
                let prime_decomposition_of_index = naive_prime_factors(inv_idx, &mut prime_gen);
                prime_decomposition_of_index
                    .into_iter()
                    .for_each(|(prime, exp)| {
                        let inv_prime_idx = primes.iter().position(|&p| p == prime).unwrap();
                        exponents[inv_prime_idx] = exp;
                    });
                monomials.insert(exponents, *coeff);
            }
        });
        Self { monomials }
    }
}

impl<F: PrimeField, const N: usize, const D: usize> From<F> for Sparse<F, N, D> {
    fn from(value: F) -> Self {
        let mut result = Self::zero();
        result.modify_monomial([0; N], value);
        result
    }
}

impl<F: PrimeField, const N: usize, const D: usize, const M: usize, const D_PRIME: usize>
    From<Sparse<F, N, D>> for Result<Sparse<F, M, D_PRIME>, String>
{
    fn from(poly: Sparse<F, N, D>) -> Result<Sparse<F, M, D_PRIME>, String> {
        if M < N {
            return Err(format!(
                "The final number of variables {M} must be greater than {N}"
            ));
        }
        if D_PRIME < D {
            return Err(format!(
                "The final degree {D_PRIME} must be greater than initial degree {D}"
            ));
        }
        let mut monomials = HashMap::new();
        poly.monomials.iter().for_each(|(exponents, coeff)| {
            let mut new_exponents = [0; M];
            new_exponents[0..N].copy_from_slice(&exponents[0..N]);
            monomials.insert(new_exponents, *coeff);
        });
        Ok(Sparse { monomials })
    }
}