1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use crate::{
    constants::SpongeConstants,
    poseidon::{ArithmeticSponge, ArithmeticSpongeParams, Sponge},
};
use ark_ec::models::short_weierstrass::{Affine, SWCurveConfig};
use ark_ff::{BigInteger, Field, One, PrimeField, Zero};

/// Abstracts a sponge operating on a base field `Fq` of the curve
/// `G`. The parameter `Fr` is modelling the scalar field of the
/// curve.
pub trait FqSponge<Fq: Field, G, Fr> {
    /// Creates a new sponge.
    fn new(p: &'static ArithmeticSpongeParams<Fq>) -> Self;

    /// Absorbs a base field element. This operation is the most
    /// straightforward and calls the underlying sponge directly.
    fn absorb_fq(&mut self, x: &[Fq]);

    /// Absorbs a base field point, that is a pair of `Fq` elements.
    /// In the case of the point to infinity, the values `(0, 0)` are absorbed.
    fn absorb_g(&mut self, g: &[G]);

    /// Absorbs an element of the scalar field `Fr` --- it is done
    /// by converting the element to the base field first.
    fn absorb_fr(&mut self, x: &[Fr]);

    /// Squeeze out a base field challenge. This operation is the most
    /// direct and calls the underlying sponge.
    fn challenge_fq(&mut self) -> Fq;

    /// Squeeze out a challenge in the scalar field. Implemented by
    /// squeezing out base points and then converting them to a scalar
    /// field element using binary representation.
    fn challenge(&mut self) -> Fr;

    /// Returns a base field digest by squeezing the underlying sponge directly.
    fn digest_fq(self) -> Fq;

    /// Returns a scalar field digest using the binary representation technique.
    fn digest(self) -> Fr;
}

pub const CHALLENGE_LENGTH_IN_LIMBS: usize = 2;

const HIGH_ENTROPY_LIMBS: usize = 2;

// TODO: move to a different file / module
/// A challenge which is used as a scalar on a group element in the verifier
#[derive(Clone, Debug)]
pub struct ScalarChallenge<F>(pub F);

pub fn endo_coefficient<F: PrimeField>() -> F {
    let p_minus_1_over_3 = (F::zero() - F::one()) / F::from(3u64);

    F::GENERATOR.pow(p_minus_1_over_3.into_bigint().as_ref())
}

fn get_bit(limbs_lsb: &[u64], i: u64) -> u64 {
    let limb = i / 64;
    let j = i % 64;
    (limbs_lsb[limb as usize] >> j) & 1
}

impl<F: PrimeField> ScalarChallenge<F> {
    pub fn to_field_with_length(&self, length_in_bits: usize, endo_coeff: &F) -> F {
        let rep = self.0.into_bigint();
        let r = rep.as_ref();

        let mut a: F = 2_u64.into();
        let mut b: F = 2_u64.into();

        let one = F::one();
        let neg_one = -one;

        for i in (0..(length_in_bits as u64 / 2)).rev() {
            a.double_in_place();
            b.double_in_place();

            let r_2i = get_bit(r, 2 * i);
            let s = if r_2i == 0 { &neg_one } else { &one };

            if get_bit(r, 2 * i + 1) == 0 {
                b += s;
            } else {
                a += s;
            }
        }

        a * endo_coeff + b
    }

    pub fn to_field(&self, endo_coeff: &F) -> F {
        let length_in_bits = 64 * CHALLENGE_LENGTH_IN_LIMBS;
        self.to_field_with_length(length_in_bits, endo_coeff)
    }
}

#[derive(Clone)]
pub struct DefaultFqSponge<P: SWCurveConfig, SC: SpongeConstants> {
    pub sponge: ArithmeticSponge<P::BaseField, SC>,
    pub last_squeezed: Vec<u64>,
}

pub struct DefaultFrSponge<Fr: Field, SC: SpongeConstants> {
    pub sponge: ArithmeticSponge<Fr, SC>,
    pub last_squeezed: Vec<u64>,
}

fn pack<B: BigInteger>(limbs_lsb: &[u64]) -> B {
    let mut res: B = 0u64.into();
    for &x in limbs_lsb.iter().rev() {
        res.muln(64);
        res.add_with_carry(&x.into());
    }
    res
}

impl<Fr: PrimeField, SC: SpongeConstants> DefaultFrSponge<Fr, SC> {
    pub fn squeeze(&mut self, num_limbs: usize) -> Fr {
        if self.last_squeezed.len() >= num_limbs {
            let last_squeezed = self.last_squeezed.clone();
            let (limbs, remaining) = last_squeezed.split_at(num_limbs);
            self.last_squeezed = remaining.to_vec();
            Fr::from(pack::<Fr::BigInt>(limbs))
        } else {
            let x = self.sponge.squeeze().into_bigint();
            self.last_squeezed
                .extend(&x.as_ref()[0..HIGH_ENTROPY_LIMBS]);
            self.squeeze(num_limbs)
        }
    }
}

impl<P: SWCurveConfig, SC: SpongeConstants> DefaultFqSponge<P, SC>
where
    P::BaseField: PrimeField,
    <P::BaseField as PrimeField>::BigInt: Into<<P::ScalarField as PrimeField>::BigInt>,
{
    pub fn squeeze_limbs(&mut self, num_limbs: usize) -> Vec<u64> {
        if self.last_squeezed.len() >= num_limbs {
            let last_squeezed = self.last_squeezed.clone();
            let (limbs, remaining) = last_squeezed.split_at(num_limbs);
            self.last_squeezed = remaining.to_vec();
            limbs.to_vec()
        } else {
            let x = self.sponge.squeeze().into_bigint();
            self.last_squeezed
                .extend(&x.as_ref()[0..HIGH_ENTROPY_LIMBS]);
            self.squeeze_limbs(num_limbs)
        }
    }

    pub fn squeeze_field(&mut self) -> P::BaseField {
        self.last_squeezed = vec![];
        self.sponge.squeeze()
    }

    pub fn squeeze(&mut self, num_limbs: usize) -> P::ScalarField {
        P::ScalarField::from_bigint(pack(&self.squeeze_limbs(num_limbs)))
            .expect("internal representation was not a valid field element")
    }
}

impl<P: SWCurveConfig, SC: SpongeConstants> FqSponge<P::BaseField, Affine<P>, P::ScalarField>
    for DefaultFqSponge<P, SC>
where
    P::BaseField: PrimeField,
    <P::BaseField as PrimeField>::BigInt: Into<<P::ScalarField as PrimeField>::BigInt>,
{
    fn new(params: &'static ArithmeticSpongeParams<P::BaseField>) -> DefaultFqSponge<P, SC> {
        let sponge = ArithmeticSponge::new(params);
        DefaultFqSponge {
            sponge,
            last_squeezed: vec![],
        }
    }

    fn absorb_g(&mut self, g: &[Affine<P>]) {
        self.last_squeezed = vec![];
        for g in g.iter() {
            if g.infinity {
                // absorb a fake point (0, 0)
                let zero = P::BaseField::zero();
                self.sponge.absorb(&[zero]);
                self.sponge.absorb(&[zero]);
            } else {
                self.sponge.absorb(&[g.x]);
                self.sponge.absorb(&[g.y]);
            }
        }
    }

    fn absorb_fq(&mut self, x: &[P::BaseField]) {
        self.last_squeezed = vec![];

        for fe in x {
            self.sponge.absorb(&[*fe])
        }
    }

    fn absorb_fr(&mut self, x: &[P::ScalarField]) {
        self.last_squeezed = vec![];

        x.iter().for_each(|x| {
            let bits = x.into_bigint().to_bits_le();

            // absorb
            if <P::ScalarField as PrimeField>::MODULUS
                < <P::BaseField as PrimeField>::MODULUS.into()
            {
                let fe = P::BaseField::from_bigint(
                    <P::BaseField as PrimeField>::BigInt::from_bits_le(&bits),
                )
                .expect("padding code has a bug");
                self.sponge.absorb(&[fe]);
            } else {
                let low_bit = if bits[0] {
                    P::BaseField::one()
                } else {
                    P::BaseField::zero()
                };

                let high_bits = P::BaseField::from_bigint(
                    <P::BaseField as PrimeField>::BigInt::from_bits_le(&bits[1..bits.len()]),
                )
                .expect("padding code has a bug");

                self.sponge.absorb(&[high_bits]);
                self.sponge.absorb(&[low_bit]);
            }
        });
    }

    fn digest(mut self) -> P::ScalarField {
        let x: <P::BaseField as PrimeField>::BigInt = self.squeeze_field().into_bigint();
        // Returns zero for values that are too large.
        // This means that there is a bias for the value zero (in one of the curve).
        // An attacker could try to target that seed, in order to predict the challenges u and v produced by the Fr-Sponge.
        // This would allow the attacker to mess with the result of the aggregated evaluation proof.
        // Previously the attacker's odds were 1/q, now it's (q-p)/q.
        // Since log2(q-p) ~ 86 and log2(q) ~ 254 the odds of a successful attack are negligible.
        P::ScalarField::from_bigint(x.into()).unwrap_or_else(P::ScalarField::zero)
    }

    fn digest_fq(mut self) -> P::BaseField {
        self.squeeze_field()
    }

    fn challenge(&mut self) -> P::ScalarField {
        self.squeeze(CHALLENGE_LENGTH_IN_LIMBS)
    }

    fn challenge_fq(&mut self) -> P::BaseField {
        self.squeeze_field()
    }
}

//
// OCaml types
//

#[cfg(feature = "ocaml_types")]
pub mod caml {
    use super::*;

    //
    // ScalarChallenge<F> <-> CamlScalarChallenge<CamlF>
    //

    #[derive(Debug, Clone, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlScalarChallenge<CamlF>(pub CamlF);

    impl<F, CamlF> From<ScalarChallenge<F>> for CamlScalarChallenge<CamlF>
    where
        CamlF: From<F>,
    {
        fn from(sc: ScalarChallenge<F>) -> Self {
            Self(sc.0.into())
        }
    }

    impl<F, CamlF> From<CamlScalarChallenge<CamlF>> for ScalarChallenge<F>
    where
        CamlF: Into<F>,
    {
        fn from(caml_sc: CamlScalarChallenge<CamlF>) -> Self {
            Self(caml_sc.0.into())
        }
    }
}