1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#![allow(clippy::type_complexity)]
#![allow(clippy::boxed_local)]

use crate::logup::LookupTableID;
use ark_ff::{Field, Zero};
use ark_poly::{
    univariate::DensePolynomial, EvaluationDomain, Evaluations, Polynomial,
    Radix2EvaluationDomain as R2D,
};
use rand::thread_rng;
use rayon::iter::{IntoParallelIterator, ParallelIterator};

use kimchi::{
    circuits::{
        berkeley_columns::BerkeleyChallenges,
        domains::EvaluationDomains,
        expr::{Constants, Expr, PolishToken},
    },
    curve::KimchiCurve,
    groupmap::GroupMap,
    plonk_sponge::FrSponge,
    proof::PointEvaluations,
};
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use poly_commitment::{
    commitment::{
        absorb_commitment, combined_inner_product, BatchEvaluationProof, Evaluation, PolyComm,
    },
    OpenProof, SRS,
};

use crate::{expr::E, proof::Proof, witness::Witness};

pub fn verify<
    G: KimchiCurve,
    OpeningProof: OpenProof<G>,
    EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
    EFrSponge: FrSponge<G::ScalarField>,
    const N_WIT: usize,
    const N_REL: usize,
    const N_DSEL: usize,
    const N_FSEL: usize,
    const NPUB: usize,
    ID: LookupTableID,
>(
    domain: EvaluationDomains<G::ScalarField>,
    srs: &OpeningProof::SRS,
    constraints: &[E<G::ScalarField>],
    fixed_selectors: Box<[Vec<G::ScalarField>; N_FSEL]>,
    proof: &Proof<N_WIT, N_REL, N_DSEL, N_FSEL, G, OpeningProof, ID>,
    public_inputs: Witness<NPUB, Vec<G::ScalarField>>,
) -> bool
where
    OpeningProof::SRS: Sync,
{
    let Proof {
        proof_comms,
        proof_evals,
        opening_proof,
    } = proof;

    ////////////////////////////////////////////////////////////////////////////
    // Re-evaluating public inputs
    ////////////////////////////////////////////////////////////////////////////

    let fixed_selectors_evals_d1: Box<[Evaluations<G::ScalarField, R2D<G::ScalarField>>; N_FSEL]> = {
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors
                .into_par_iter()
                .map(|evals| Evaluations::from_vec_and_domain(evals, domain.d1))
                .collect(),
        )
    };

    let fixed_selectors_polys: Box<[DensePolynomial<G::ScalarField>; N_FSEL]> = {
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_evals_d1
                .into_par_iter()
                .map(|evals| evals.interpolate())
                .collect(),
        )
    };

    let fixed_selectors_comms: Box<[PolyComm<G>; N_FSEL]> = {
        let comm = |poly: &DensePolynomial<G::ScalarField>| srs.commit_non_hiding(poly, 1);
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_polys
                .as_ref()
                .into_par_iter()
                .map(comm)
                .collect(),
        )
    };

    // Interpolate public input columns on d1, using trait Into.
    let public_input_evals_d1: Witness<NPUB, Evaluations<G::ScalarField, R2D<G::ScalarField>>> =
        public_inputs
            .into_par_iter()
            .map(|evals| {
                Evaluations::<G::ScalarField, R2D<G::ScalarField>>::from_vec_and_domain(
                    evals, domain.d1,
                )
            })
            .collect::<Witness<NPUB, Evaluations<G::ScalarField, R2D<G::ScalarField>>>>();

    let public_input_polys: Witness<NPUB, DensePolynomial<G::ScalarField>> = {
        let interpolate =
            |evals: Evaluations<G::ScalarField, R2D<G::ScalarField>>| evals.interpolate();
        public_input_evals_d1
            .into_par_iter()
            .map(interpolate)
            .collect::<Witness<NPUB, DensePolynomial<G::ScalarField>>>()
    };

    let public_input_comms: Witness<NPUB, PolyComm<G>> = {
        let comm = |poly: &DensePolynomial<G::ScalarField>| srs.commit_non_hiding(poly, 1);
        (&public_input_polys)
            .into_par_iter()
            .map(comm)
            .collect::<Witness<NPUB, PolyComm<G>>>()
    };

    assert!(
        NPUB <= N_WIT,
        "Number of public inputs exceeds number of witness columns"
    );
    for i in 0..NPUB {
        assert!(public_input_comms.cols[i] == proof_comms.witness_comms.cols[i]);
    }

    ////////////////////////////////////////////////////////////////////////////
    // Absorbing all the commitments to the columns
    ////////////////////////////////////////////////////////////////////////////

    let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());

    fixed_selectors_comms
        .as_ref()
        .iter()
        .chain(&proof_comms.witness_comms)
        .for_each(|comm| absorb_commitment(&mut fq_sponge, comm));

    ////////////////////////////////////////////////////////////////////////////
    // Logup
    ////////////////////////////////////////////////////////////////////////////

    let (joint_combiner, beta) = {
        if let Some(logup_comms) = &proof_comms.logup_comms {
            // First, we absorb the multiplicity polynomials
            logup_comms.m.values().for_each(|comms| {
                comms
                    .iter()
                    .for_each(|comm| absorb_commitment(&mut fq_sponge, comm))
            });

            // FIXME @volhovm it seems that the verifier does not
            // actually check that the fixed tables used in the proof
            // are the fixed tables defined in the code. In other
            // words, all the currently used "fixed" tables are
            // runtime and can be chosen freely by the prover.

            // To generate the challenges
            let joint_combiner = fq_sponge.challenge();
            let beta = fq_sponge.challenge();

            // And now, we absorb the commitments to the other polynomials
            logup_comms.h.values().for_each(|comms| {
                comms
                    .iter()
                    .for_each(|comm| absorb_commitment(&mut fq_sponge, comm))
            });

            logup_comms
                .fixed_tables
                .values()
                .for_each(|comm| absorb_commitment(&mut fq_sponge, comm));

            // And at the end, the aggregation
            absorb_commitment(&mut fq_sponge, &logup_comms.sum);
            (Some(joint_combiner), beta)
        } else {
            (None, G::ScalarField::zero())
        }
    };

    // Sample α with the Fq-Sponge.
    let alpha = fq_sponge.challenge();

    ////////////////////////////////////////////////////////////////////////////
    // Quotient polynomial
    ////////////////////////////////////////////////////////////////////////////

    absorb_commitment(&mut fq_sponge, &proof_comms.t_comm);

    // -- Preparing for opening proof verification
    let zeta_chal = ScalarChallenge(fq_sponge.challenge());
    let (_, endo_r) = G::endos();
    let zeta: G::ScalarField = zeta_chal.to_field(endo_r);
    let omega = domain.d1.group_gen;
    let zeta_omega = zeta * omega;

    let mut coms_and_evaluations: Vec<Evaluation<_>> = vec![];

    coms_and_evaluations.extend(
        (&proof_comms.witness_comms)
            .into_iter()
            .zip(&proof_evals.witness_evals)
            .map(|(commitment, point_eval)| Evaluation {
                commitment: commitment.clone(),
                evaluations: vec![vec![point_eval.zeta], vec![point_eval.zeta_omega]],
            }),
    );

    coms_and_evaluations.extend(
        (fixed_selectors_comms)
            .into_iter()
            .zip(proof_evals.fixed_selectors_evals.iter())
            .map(|(commitment, point_eval)| Evaluation {
                commitment: commitment.clone(),
                evaluations: vec![vec![point_eval.zeta], vec![point_eval.zeta_omega]],
            }),
    );

    if let Some(logup_comms) = &proof_comms.logup_comms {
        coms_and_evaluations.extend(
            logup_comms
                .into_iter()
                .zip(proof_evals.logup_evals.as_ref().unwrap())
                .map(|(commitment, point_eval)| Evaluation {
                    commitment: commitment.clone(),
                    evaluations: vec![vec![point_eval.zeta], vec![point_eval.zeta_omega]],
                })
                .collect::<Vec<_>>(),
        );
    }

    // -- Absorb all coms_and_evaluations
    let fq_sponge_before_coms_and_evaluations = fq_sponge.clone();
    let mut fr_sponge = EFrSponge::new(G::sponge_params());
    fr_sponge.absorb(&fq_sponge.digest());

    for PointEvaluations { zeta, zeta_omega } in (&proof_evals.witness_evals).into_iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    for PointEvaluations { zeta, zeta_omega } in proof_evals.fixed_selectors_evals.as_ref().iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    if proof_comms.logup_comms.is_some() {
        // Logup FS
        for PointEvaluations { zeta, zeta_omega } in
            proof_evals.logup_evals.as_ref().unwrap().into_iter()
        {
            fr_sponge.absorb(zeta);
            fr_sponge.absorb(zeta_omega);
        }
    };

    // Compute [ft(X)] = \
    //   (1 - ζ^n) \
    //    ([t_0(X)] + ζ^n [t_1(X)] + ... + ζ^{kn} [t_{k}(X)])
    let ft_comm = {
        let evaluation_point_to_domain_size = zeta.pow([domain.d1.size]);
        let chunked_t_comm = proof_comms
            .t_comm
            .chunk_commitment(evaluation_point_to_domain_size);
        // (1 - ζ^n)
        let minus_vanishing_poly_at_zeta = -domain.d1.vanishing_polynomial().evaluate(&zeta);
        chunked_t_comm.scale(minus_vanishing_poly_at_zeta)
    };

    let challenges = BerkeleyChallenges::<G::ScalarField> {
        alpha,
        beta,
        gamma: G::ScalarField::zero(),
        joint_combiner: joint_combiner.unwrap_or(G::ScalarField::zero()),
    };

    let constants = Constants {
        endo_coefficient: *endo_r,
        mds: &G::sponge_params().mds,
        zk_rows: 0,
    };

    let combined_expr =
        Expr::combine_constraints(0..(constraints.len() as u32), constraints.to_vec());
    // Note the minus! ft polynomial at zeta (ft_eval0) is minus evaluation of the expression.
    let ft_eval0 = -PolishToken::evaluate(
        combined_expr.to_polish().as_slice(),
        domain.d1,
        zeta,
        proof_evals,
        &constants,
        &challenges,
    )
    .unwrap();

    coms_and_evaluations.push(Evaluation {
        commitment: ft_comm,
        evaluations: vec![vec![ft_eval0], vec![proof_evals.ft_eval1]],
    });

    fr_sponge.absorb(&proof_evals.ft_eval1);
    // -- End absorb all coms_and_evaluations

    let v_chal = fr_sponge.challenge();
    let v = v_chal.to_field(endo_r);
    let u_chal = fr_sponge.challenge();
    let u = u_chal.to_field(endo_r);

    let combined_inner_product = {
        let es: Vec<_> = coms_and_evaluations
            .iter()
            .map(|Evaluation { evaluations, .. }| evaluations.clone())
            .collect();

        combined_inner_product(&v, &u, es.as_slice())
    };

    let batch = BatchEvaluationProof {
        sponge: fq_sponge_before_coms_and_evaluations,
        evaluations: coms_and_evaluations,
        evaluation_points: vec![zeta, zeta_omega],
        polyscale: v,
        evalscale: u,
        opening: opening_proof,
        combined_inner_product,
    };

    let group_map = G::Map::setup();
    OpeningProof::verify(srs, &group_map, &mut [batch], &mut thread_rng())
}