1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#![allow(clippy::type_complexity)]
#![allow(clippy::boxed_local)]

use crate::{
    column_env::ColumnEnvironment,
    expr::E,
    logup,
    logup::{prover::Env, LookupProof, LookupTableID},
    proof::{Proof, ProofCommitments, ProofEvaluations, ProofInputs},
    witness::Witness,
    MAX_SUPPORTED_DEGREE,
};
use ark_ff::{Field, One, Zero};
use ark_poly::{
    univariate::DensePolynomial, EvaluationDomain, Evaluations, Polynomial,
    Radix2EvaluationDomain as R2D,
};
use kimchi::{
    circuits::{
        berkeley_columns::BerkeleyChallenges,
        domains::EvaluationDomains,
        expr::{l0_1, Constants, Expr},
    },
    curve::KimchiCurve,
    groupmap::GroupMap,
    plonk_sponge::FrSponge,
    proof::PointEvaluations,
};
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::ExtendedDensePolynomial;
use poly_commitment::{
    commitment::{absorb_commitment, PolyComm},
    utils::DensePolynomialOrEvaluations,
    OpenProof, SRS,
};
use rand::{CryptoRng, RngCore};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use thiserror::Error;

/// Errors that can arise when creating a proof
#[derive(Error, Debug, Clone)]
pub enum ProverError {
    #[error("the proof could not be constructed: {0}")]
    Generic(&'static str),

    #[error("the provided (witness) constraints was not satisfied: {0}")]
    ConstraintNotSatisfied(String),

    #[error("the provided (witness) constraint has degree {0} > allowed {1}; expr: {2}")]
    ConstraintDegreeTooHigh(u64, u64, String),
}

pub fn prove<
    G: KimchiCurve,
    OpeningProof: OpenProof<G>,
    EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
    EFrSponge: FrSponge<G::ScalarField>,
    RNG,
    const N_WIT: usize,
    const N_REL: usize,
    const N_DSEL: usize,
    const N_FSEL: usize,
    ID: LookupTableID,
>(
    domain: EvaluationDomains<G::ScalarField>,
    srs: &OpeningProof::SRS,
    constraints: &[E<G::ScalarField>],
    fixed_selectors: Box<[Vec<G::ScalarField>; N_FSEL]>,
    inputs: ProofInputs<N_WIT, G::ScalarField, ID>,
    rng: &mut RNG,
) -> Result<Proof<N_WIT, N_REL, N_DSEL, N_FSEL, G, OpeningProof, ID>, ProverError>
where
    OpeningProof::SRS: Sync,
    RNG: RngCore + CryptoRng,
{
    ////////////////////////////////////////////////////////////////////////////
    // Setting up the protocol
    ////////////////////////////////////////////////////////////////////////////

    let group_map = G::Map::setup();

    ////////////////////////////////////////////////////////////////////////////
    // Round 1: Creating and absorbing column commitments
    ////////////////////////////////////////////////////////////////////////////

    let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());

    let fixed_selectors_evals_d1: Box<[Evaluations<G::ScalarField, R2D<G::ScalarField>>; N_FSEL]> =
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors
                .into_par_iter()
                .map(|evals| Evaluations::from_vec_and_domain(evals, domain.d1))
                .collect(),
        );

    let fixed_selectors_polys: Box<[DensePolynomial<G::ScalarField>; N_FSEL]> =
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_evals_d1
                .into_par_iter()
                .map(|evals| evals.interpolate())
                .collect(),
        );

    let fixed_selectors_comms: Box<[PolyComm<G>; N_FSEL]> = {
        let comm = |poly: &DensePolynomial<G::ScalarField>| srs.commit_non_hiding(poly, 1);
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_polys
                .as_ref()
                .into_par_iter()
                .map(comm)
                .collect(),
        )
    };

    // Do not use parallelism
    (fixed_selectors_comms)
        .into_iter()
        .for_each(|comm| absorb_commitment(&mut fq_sponge, &comm));

    // Interpolate all columns on d1, using trait Into.
    let witness_evals_d1: Witness<N_WIT, Evaluations<G::ScalarField, R2D<G::ScalarField>>> = inputs
        .evaluations
        .into_par_iter()
        .map(|evals| {
            Evaluations::<G::ScalarField, R2D<G::ScalarField>>::from_vec_and_domain(
                evals, domain.d1,
            )
        })
        .collect::<Witness<N_WIT, Evaluations<G::ScalarField, R2D<G::ScalarField>>>>();

    let witness_polys: Witness<N_WIT, DensePolynomial<G::ScalarField>> = {
        let interpolate =
            |evals: Evaluations<G::ScalarField, R2D<G::ScalarField>>| evals.interpolate();
        witness_evals_d1
            .into_par_iter()
            .map(interpolate)
            .collect::<Witness<N_WIT, DensePolynomial<G::ScalarField>>>()
    };

    let witness_comms: Witness<N_WIT, PolyComm<G>> = {
        let blinders = PolyComm {
            chunks: vec![G::ScalarField::one()],
        };
        let comm = {
            |poly: &DensePolynomial<G::ScalarField>| {
                // In case the column polynomial is all zeroes, we want to mask the commitment
                let comm = srs.commit_custom(poly, 1, &blinders).unwrap();
                comm.commitment
            }
        };
        (&witness_polys)
            .into_par_iter()
            .map(comm)
            .collect::<Witness<N_WIT, PolyComm<G>>>()
    };

    // Do not use parallelism
    (&witness_comms)
        .into_iter()
        .for_each(|comm| absorb_commitment(&mut fq_sponge, comm));

    // -- Start Logup
    let lookup_env = if !inputs.logups.is_empty() {
        Some(Env::create::<OpeningProof, EFqSponge>(
            inputs.logups,
            domain,
            &mut fq_sponge,
            srs,
        ))
    } else {
        None
    };

    let max_degree = {
        if lookup_env.is_none() {
            constraints
                .iter()
                .map(|expr| expr.degree(1, 0))
                .max()
                .unwrap_or(0)
        } else {
            8
        }
    };

    // Don't need to be absorbed. Already absorbed in logup::prover::Env::create
    // FIXME: remove clone
    let logup_comms = Option::map(lookup_env.as_ref(), |lookup_env| LookupProof {
        m: lookup_env.lookup_counters_comm_d1.clone(),
        h: lookup_env.lookup_terms_comms_d1.clone(),
        sum: lookup_env.lookup_aggregation_comm_d1.clone(),
        fixed_tables: lookup_env.fixed_lookup_tables_comms_d1.clone(),
    });

    // -- end computing the running sum in lookup_aggregation
    // -- End of Logup

    let domain_eval = if max_degree <= 4 {
        domain.d4
    } else if max_degree as usize <= MAX_SUPPORTED_DEGREE {
        domain.d8
    } else {
        panic!("We do support constraints up to {:?}", MAX_SUPPORTED_DEGREE)
    };

    let witness_evals: Witness<N_WIT, Evaluations<G::ScalarField, R2D<G::ScalarField>>> = {
        (&witness_polys)
            .into_par_iter()
            .map(|evals| evals.evaluate_over_domain_by_ref(domain_eval))
            .collect::<Witness<N_WIT, Evaluations<G::ScalarField, R2D<G::ScalarField>>>>()
    };

    let fixed_selectors_evals: Box<[Evaluations<G::ScalarField, R2D<G::ScalarField>>; N_FSEL]> = {
        o1_utils::array::vec_to_boxed_array(
            (fixed_selectors_polys.as_ref())
                .into_par_iter()
                .map(|evals| evals.evaluate_over_domain_by_ref(domain_eval))
                .collect(),
        )
    };

    ////////////////////////////////////////////////////////////////////////////
    // Round 2: Creating and committing to the quotient polynomial
    ////////////////////////////////////////////////////////////////////////////

    let (_, endo_r) = G::endos();

    // Sample α with the Fq-Sponge.
    let alpha: G::ScalarField = fq_sponge.challenge();

    let zk_rows = 0;
    let column_env: ColumnEnvironment<'_, N_WIT, N_REL, N_DSEL, N_FSEL, _, _> = {
        let challenges = BerkeleyChallenges {
            alpha,
            // NB: as there is no permutation argument, we do use the beta
            // field instead of a new one for the evaluation point.
            beta: Option::map(lookup_env.as_ref(), |x| x.beta).unwrap_or(G::ScalarField::zero()),
            gamma: G::ScalarField::zero(),
            joint_combiner: Option::map(lookup_env.as_ref(), |x| x.joint_combiner)
                .unwrap_or(G::ScalarField::zero()),
        };
        ColumnEnvironment {
            constants: Constants {
                endo_coefficient: *endo_r,
                mds: &G::sponge_params().mds,
                zk_rows,
            },
            challenges,
            witness: &witness_evals,
            fixed_selectors: &fixed_selectors_evals,
            l0_1: l0_1(domain.d1),
            lookup: Option::map(lookup_env.as_ref(), |lookup_env| {
                logup::prover::QuotientPolynomialEnvironment {
                    lookup_terms_evals_d8: &lookup_env.lookup_terms_evals_d8,
                    lookup_aggregation_evals_d8: &lookup_env.lookup_aggregation_evals_d8,
                    lookup_counters_evals_d8: &lookup_env.lookup_counters_evals_d8,
                    fixed_tables_evals_d8: &lookup_env.fixed_lookup_tables_evals_d8,
                }
            }),
            domain,
        }
    };

    let quotient_poly: DensePolynomial<G::ScalarField> = {
        let mut last_constraint_failed = None;
        // Only for debugging purposes
        for expr in constraints.iter() {
            let fail_q_division =
                ProverError::ConstraintNotSatisfied(format!("Unsatisfied expression: {:}", expr));
            // Check this expression are witness satisfied
            let (_, res) = expr
                .evaluations(&column_env)
                .interpolate_by_ref()
                .divide_by_vanishing_poly(domain.d1)
                .ok_or(fail_q_division.clone())?;
            if !res.is_zero() {
                eprintln!("Unsatisfied expression: {}", expr);
                //return Err(fail_q_division);
                last_constraint_failed = Some(expr.clone());
            }
        }
        if let Some(expr) = last_constraint_failed {
            return Err(ProverError::ConstraintNotSatisfied(format!(
                "Unsatisfied expression: {:}",
                expr
            )));
        }

        // Compute ∑ α^i constraint_i as an expression
        let combined_expr =
            Expr::combine_constraints(0..(constraints.len() as u32), constraints.to_vec());

        // We want to compute the quotient polynomial, i.e.
        // t(X) = (∑ α^i constraint_i(X)) / Z_H(X).
        // The sum of the expressions is called the "constraint polynomial".
        // We will use the evaluations points of the individual witness and
        // lookup columns.
        // Note that as the constraints might be of higher degree than N, the
        // size of the set H we want the constraints to be verified on, we must
        // have more than N evaluations points for each columns. This is handled
        // in the ColumnEnvironment structure.
        // Reminder: to compute P(X) = P_{1}(X) * P_{2}(X), from the evaluations
        // of P_{1} and P_{2}, with deg(P_{1}) = deg(P_{2}(X)) = N, we must have
        // 2N evaluation points to compute P as deg(P(X)) <= 2N.
        let expr_evaluation: Evaluations<G::ScalarField, R2D<G::ScalarField>> =
            combined_expr.evaluations(&column_env);

        // And we interpolate using the evaluations
        let expr_evaluation_interpolated = expr_evaluation.interpolate();

        let fail_final_q_division = || {
            panic!("Division by vanishing poly must not fail at this point, we checked it before")
        };
        // We compute the polynomial t(X) by dividing the constraints polynomial
        // by the vanishing polynomial, i.e. Z_H(X).
        let (quotient, res) = expr_evaluation_interpolated
            .divide_by_vanishing_poly(domain.d1)
            .unwrap_or_else(fail_final_q_division);
        // As the constraints must be verified on H, the rest of the division
        // must be equal to 0 as the constraints polynomial and Z_H(X) are both
        // equal on H.
        if !res.is_zero() {
            fail_final_q_division();
        }

        quotient
    };

    let num_chunks: usize = if max_degree == 1 {
        1
    } else {
        (max_degree - 1) as usize
    };

    //~ 1. commit to the quotient polynomial $t$.
    let t_comm = srs.commit_non_hiding(&quotient_poly, num_chunks);

    ////////////////////////////////////////////////////////////////////////////
    // Round 3: Evaluations at ζ and ζω
    ////////////////////////////////////////////////////////////////////////////

    //~ 1. Absorb the commitment of the quotient polynomial with the Fq-Sponge.
    absorb_commitment(&mut fq_sponge, &t_comm);

    //~ 1. Sample ζ with the Fq-Sponge.
    let zeta_chal = ScalarChallenge(fq_sponge.challenge());

    let zeta = zeta_chal.to_field(endo_r);

    let omega = domain.d1.group_gen;
    // We will also evaluate at ζω as lookups do require to go to the next row.
    let zeta_omega = zeta * omega;

    // Evaluate the polynomials at ζ and ζω -- Columns
    let witness_evals: Witness<N_WIT, PointEvaluations<_>> = {
        let eval = |p: &DensePolynomial<_>| PointEvaluations {
            zeta: p.evaluate(&zeta),
            zeta_omega: p.evaluate(&zeta_omega),
        };
        (&witness_polys)
            .into_par_iter()
            .map(eval)
            .collect::<Witness<N_WIT, PointEvaluations<_>>>()
    };

    let fixed_selectors_evals: Box<[PointEvaluations<_>; N_FSEL]> = {
        let eval = |p: &DensePolynomial<_>| PointEvaluations {
            zeta: p.evaluate(&zeta),
            zeta_omega: p.evaluate(&zeta_omega),
        };
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_polys
                .as_ref()
                .into_par_iter()
                .map(eval)
                .collect::<_>(),
        )
    };

    // IMPROVEME: move this into the logup module
    let logup_evals = lookup_env.as_ref().map(|lookup_env| LookupProof {
        m: lookup_env
            .lookup_counters_poly_d1
            .iter()
            .map(|(id, polys)| {
                (
                    *id,
                    polys
                        .iter()
                        .map(|poly| {
                            let zeta = poly.evaluate(&zeta);
                            let zeta_omega = poly.evaluate(&zeta_omega);
                            PointEvaluations { zeta, zeta_omega }
                        })
                        .collect(),
                )
            })
            .collect(),
        h: lookup_env
            .lookup_terms_poly_d1
            .iter()
            .map(|(id, polys)| {
                let polys_evals: Vec<_> = polys
                    .iter()
                    .map(|poly| PointEvaluations {
                        zeta: poly.evaluate(&zeta),
                        zeta_omega: poly.evaluate(&zeta_omega),
                    })
                    .collect();
                (*id, polys_evals)
            })
            .collect(),
        sum: PointEvaluations {
            zeta: lookup_env.lookup_aggregation_poly_d1.evaluate(&zeta),
            zeta_omega: lookup_env.lookup_aggregation_poly_d1.evaluate(&zeta_omega),
        },
        fixed_tables: {
            lookup_env
                .fixed_lookup_tables_poly_d1
                .iter()
                .map(|(id, poly)| {
                    let zeta = poly.evaluate(&zeta);
                    let zeta_omega = poly.evaluate(&zeta_omega);
                    (*id, PointEvaluations { zeta, zeta_omega })
                })
                .collect()
        },
    });

    ////////////////////////////////////////////////////////////////////////////
    // Round 4: Opening proof w/o linearization polynomial
    ////////////////////////////////////////////////////////////////////////////

    // Fiat Shamir - absorbing evaluations
    let fq_sponge_before_evaluations = fq_sponge.clone();
    let mut fr_sponge = EFrSponge::new(G::sponge_params());
    fr_sponge.absorb(&fq_sponge.digest());

    for PointEvaluations { zeta, zeta_omega } in (&witness_evals).into_iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    for PointEvaluations { zeta, zeta_omega } in fixed_selectors_evals.as_ref().iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    if lookup_env.is_some() {
        for PointEvaluations { zeta, zeta_omega } in logup_evals.as_ref().unwrap().into_iter() {
            fr_sponge.absorb(zeta);
            fr_sponge.absorb(zeta_omega);
        }
    }

    // Compute ft(X) = \
    //   (1 - ζ^n) \
    //    (t_0(X) + ζ^n t_1(X) + ... + ζ^{kn} t_{k}(X))
    // where \sum_i t_i(X) X^{i n} = t(X), and t(X) is the quotient polynomial.
    // At the end, we get the (partial) evaluation of the constraint polynomial
    // in ζ.
    let ft: DensePolynomial<G::ScalarField> = {
        let evaluation_point_to_domain_size = zeta.pow([domain.d1.size]);
        // Compute \sum_i t_i(X) ζ^{i n}
        // First we split t in t_i, and we reduce to degree (n - 1) after using `linearize`
        let t_chunked: DensePolynomial<G::ScalarField> = quotient_poly
            .to_chunked_polynomial(num_chunks, domain.d1.size as usize)
            .linearize(evaluation_point_to_domain_size);
        // -Z_H = (1 - ζ^n)
        let minus_vanishing_poly_at_zeta = -domain.d1.vanishing_polynomial().evaluate(&zeta);
        // Multiply the polynomial \sum_i t_i(X) ζ^{i n} by -Z_H(ζ)
        // (the evaluation in ζ of the vanishing polynomial)
        t_chunked.scale(minus_vanishing_poly_at_zeta)
    };

    // We only evaluate at ζω as the verifier can compute the
    // evaluation at ζ from the independent evaluations at ζ of the
    // witness columns because ft(X) is the constraint polynomial, built from
    // the public constraints.
    // We evaluate at ζω because the lookup argument requires to compute
    // \phi(Xω) - \phi(X).
    let ft_eval1 = ft.evaluate(&zeta_omega);

    // Absorb ft(ζω)
    fr_sponge.absorb(&ft_eval1);

    let v_chal = fr_sponge.challenge();
    let v = v_chal.to_field(endo_r);
    let u_chal = fr_sponge.challenge();
    let u = u_chal.to_field(endo_r);

    let coefficients_form = DensePolynomialOrEvaluations::DensePolynomial;
    let non_hiding = |n_chunks| PolyComm {
        chunks: vec![G::ScalarField::zero(); n_chunks],
    };
    let hiding = |n_chunks| PolyComm {
        chunks: vec![G::ScalarField::one(); n_chunks],
    };

    // Gathering all polynomials to use in the opening proof
    let mut polynomials: Vec<_> = (&witness_polys)
        .into_par_iter()
        .map(|poly| (coefficients_form(poly), hiding(1)))
        .collect();

    // @volhovm: I'm not sure we need to prove opening of fixed
    // selectors in the commitment.
    polynomials.extend(
        fixed_selectors_polys
            .as_ref()
            .into_par_iter()
            .map(|poly| (coefficients_form(poly), non_hiding(1)))
            .collect::<Vec<_>>(),
    );

    // Adding Logup
    if let Some(ref lookup_env) = lookup_env {
        // -- first m(X)
        polynomials.extend(
            lookup_env
                .lookup_counters_poly_d1
                .values()
                .flat_map(|polys| {
                    polys
                        .iter()
                        .map(|poly| (coefficients_form(poly), non_hiding(1)))
                        .collect::<Vec<_>>()
                })
                .collect::<Vec<_>>(),
        );
        // -- after that the partial sums
        polynomials.extend({
            let polys = lookup_env.lookup_terms_poly_d1.values().map(|polys| {
                polys
                    .iter()
                    .map(|poly| (coefficients_form(poly), non_hiding(1)))
                    .collect::<Vec<_>>()
            });
            let polys: Vec<_> = polys.flatten().collect();
            polys
        });
        // -- after that the running sum
        polynomials.push((
            coefficients_form(&lookup_env.lookup_aggregation_poly_d1),
            non_hiding(1),
        ));
        // -- Adding fixed lookup tables
        polynomials.extend(
            lookup_env
                .fixed_lookup_tables_poly_d1
                .values()
                .map(|poly| (coefficients_form(poly), non_hiding(1)))
                .collect::<Vec<_>>(),
        );
    }
    polynomials.push((coefficients_form(&ft), non_hiding(1)));

    let opening_proof = OpenProof::open::<_, _, R2D<G::ScalarField>>(
        srs,
        &group_map,
        polynomials.as_slice(),
        &[zeta, zeta_omega],
        v,
        u,
        fq_sponge_before_evaluations,
        rng,
    );

    let proof_evals: ProofEvaluations<N_WIT, N_REL, N_DSEL, N_FSEL, G::ScalarField, ID> = {
        ProofEvaluations {
            witness_evals,
            fixed_selectors_evals,
            logup_evals,
            ft_eval1,
        }
    };

    Ok(Proof {
        proof_comms: ProofCommitments {
            witness_comms,
            logup_comms,
            t_comm,
        },
        proof_evals,
        opening_proof,
    })
}