1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
use crate::{
    circuit_design::{
        capabilities::{read_column_array, write_column_array_const, write_column_const},
        ColAccessCap, ColWriteCap, LookupCap,
    },
    fec::{
        columns::{FECColumn, FECColumnInput, FECColumnInter, FECColumnOutput},
        lookups::LookupTable,
    },
    serialization::interpreter::{
        bigint_to_biguint_f, combine_carry, combine_small_to_large, fold_choice2,
        limb_decompose_biguint, limb_decompose_ff, LIMB_BITSIZE_LARGE, LIMB_BITSIZE_SMALL,
        N_LIMBS_LARGE, N_LIMBS_SMALL,
    },
};
use ark_ff::{PrimeField, Zero};
use core::marker::PhantomData;
use num_bigint::{BigInt, BigUint, ToBigInt};
use num_integer::Integer;
use num_traits::sign::Signed;
use o1_utils::field_helpers::FieldHelpers;

/// Convenience function for printing.
pub fn limbs_to_bigints<F: PrimeField, const N: usize>(input: [F; N]) -> Vec<BigInt> {
    input
        .iter()
        .map(|f| f.to_bigint_positive())
        .collect::<Vec<_>>()
}

/// When P = (xP,yP) and Q = (xQ,yQ) are not negative of each other, thus function ensures
///
/// P + Q = R where
///
/// s = (yP - yQ) / (xP - xQ)
///
/// xR = s^2 - xP - xQ and yR = -yP + s(xP - xR)
///
///
/// Equations that we check:
///   1. s (xP - xQ) - (yP - yQ) - q_1 f =  0
///   2. xR - s^2 + xP + xQ - q_2 f = 0
///   3. yR + yP - s (xP - xR) - q_3 f = 0
///
/// We will use several different "packing" format.
///
/// === Limb equations
///
/// The standard (small limb) one, using 17 limbs of 15 bits each, is
/// mostly helpful for range-checking the element, because 15-bit
/// range checks are easy to perform. Additionally, this format is
/// helpful for checking that the value is ∈ [0,f), where f is a
/// foreign field modulus.
///
/// We will additionally use a "large limb" format, where each limb is
/// 75 bits, so fitting exactly 5 small limbs. This format is
/// effective for trusted values that we do not need to range check.
/// Additionally, verifying equations on 75 bits is more effective in
/// terms of minimising constraints.
///
/// Regarding our /concrete limb/ equations, they are different from
/// the generic ones above in that they have carries. The carries are
/// stored in a third format. Let us illustrate the design on the
/// first equation of the three. Its concrete final form is as follows:
///
/// for i ∈ [0..2L-2]:
///    \sum_{j,k < L | k+j = i} s_j (xP_k - xQ_k)
///       - ((yP_i - yQ_i) if i < L else 0)
///       - q_1_sign * \sum_{j,k < L | k+j = i} q_1_j f_k
///       - (c_i * 2^B if i < 2L-2 else 0)
///       + (c_{i-1} if i > 0 else 0) = 0
///
/// First, note that the equation has turned into 2L-2 equations. This
/// is because the form of multiplication (and there are two
/// multiplications here, s*(xP-xQ) and q*f) implies quadratic number
/// of limb multiplications, but because our operations are modulo f,
/// every single element except for q in this equation is in the
/// field.
///
/// Instead of having one limb-multiplication per row (e.g.
/// q_1_5*f_6), which would lead to quadratic number of constraints,
/// and quadratic number of intermediate-representation columns, we
/// "batch" all multiplications for degree $i$ in one constraint as
/// above.
///
/// Second, note that the carries are non-uniform in the loop: for the
/// first limb, we only subtract c_0*2^B, while for the last limb we
/// only add the previous carry c_{2L-3}. This means that, as usual,
/// the number of carries is one less than the number of
/// limb-equations. In our case, every equation relies on 2L-2 "large"
/// carries.
///
/// Finally, small remark is that for simplicity we carry the sign of
/// q separately from its absolute value. Note that in the original
/// generic equation s (xP - xQ) - (yP - yQ) - q_1 f = 0 that holds
/// over the integers, the only value (except for f) that can actually
/// be outside of the field range [0,f-1) is q_1. In fact, while every
/// other value is strictly positive, q_1 can be actually negative.
/// Carrying its sign separately greatly simplifies modelling limbs at
/// the expense of just 3 extra columns per circuit. So q_1 limbs
/// actually contains the absolute value of q_1, while q_1_sign is in
/// {-1,1}.
///
/// === Data layout
///
/// Now we are ready to present the data layout and to discuss the
/// representation modes.
///
/// Let
/// L := N_LIMBS_LARGE
/// S := N_LIMBS_SMALL
///
/// variable    offset      length        comment
/// ---------------------------------------------------------------
/// xP:         0                 L          Always trusted, not range checked
/// yP:         1*L               L          Always trusted, not range checked
/// xQ:         2*L               L          Always trusted, not range checked
/// yQ:         3*L               L          Alawys trusted, not range checked
/// f:          4*L               L          Always trusted, not range checked
/// xR:         5*L               S
/// yR:         5*L + 1*S         S
/// s:          5*L + 2*S         S
/// q_1:        5*L + 3*S         S
/// q_2:        5*L + 4*S         S
/// q_3:        5*L + 5*S         S
/// q_2_sign:   5*L + 6*S         1
/// q_1_sign:   5*L + 6*S + 1     1
/// q_3_sign:   5*L + 6*S + 2     1
/// carry_1:    5*L + 6*S + 3     2*S+2
/// carry_2:    5*L + 8*S + 5     2*S+2
/// carry_3:    5*L + 10*S + 7    2*S+2
///----------------------------------------------------------------
///
///
/// As we said before, all elements that are either S small limbs or 1
/// are for range-checking. The only unusual part here is that the
/// carries are represented in 2*S+2 limbs. Let us explain.
///
/// As we said, we need 2*L-2 carries, which in 6. Because our
/// operations contain not just one limb multiplication, but several
/// limb multiplication and extra additions, our carries will /not/
/// fit into 75 bits. But we can prove (below) that they always fit
/// into 79 limbs. Therefore, every large carry will be represented
/// not by 5 15-bit chunks, but by 6 15-bit chunks. This gives us 6
/// bits * 6 carries = 36 chunks, and every 6th chunk is 4 bits only.
/// This matches the 2*S+2 = 36, since S = 17.
///
/// Note however since 79-bit carry is signed, we will store it as a list of
/// [15 15 15 15 15 9]-bit limbs, where limbs are signed.
/// E.g. 15-bit limbs are in [-2^14, 2^14-1]. This allows us to use
/// 14abs range checks.
///
/// === Ranges
///
/// Carries for our three equations have the following generic range
/// form (inclusive over integers). Note that all three equations look
/// exactly the same for i >= n _except_ the carry from the previous
/// limbs.
///
///
/// Eq1.
/// - i ∈ [0,n-1]:  c1_i ∈ [-((i+1)*2^(b+1) - 2*i - 3),
///                           (i+1)*2^(b+1) - 2*i - 3] (symmetric)
/// - i ∈ [n,2n-2]: c1_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
///                           (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3] (symmetric)
///
/// Eq2.
/// - i ∈ [0,n-1]:  c2_i ∈ [-((i+1)*2^(b+1) - 2*i - 4),
///                          if i == 0 2^b else (i+1)*2^b - i]
/// - i ∈ [n,2n-2]: c2_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
///                           (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3 - (if i == n { n-1 } else 0) ]
///
/// Eq3.
/// - i ∈ [0,n-1]:  c3_i ∈ [-((i+1)*2^(b+1) - 2*i - 4),
///                           (i+1)*2^b - i - 1]
/// - i ∈ [n,2n-2]: c3_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
///                           (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3 - (if i == n { n-1 } else 0) ]
///
/// Absolute maximum values for all carries:
/// Eq1.
/// * Upper bound = -lower bound is achieved at i = n-1, n*2^(b+1) - 2*(n-1) - 3
///   * (+-) 302231454903657293676535
///
/// Eq2 and Eq3:
/// * Upper bound is achieved at i = n, (n-1)*2^(b+1) - 2*n + 3 - n -1
///   * 226673591177742970257400
/// * Lower bound is achieved at i = n-1, n*2^(b+1) - 2*(n-1) - 4
///   * (-) 302231454903657293676534
///
/// As we can see, the values are about 2*n=8 times bigger than 2^b,
/// so concretely 4 extra bits per carry will be enough. This implies
/// that we can /definitely/ fit a large carry into 6 small limbs,
/// since it has 15 "free" bits of which we will use 4 at most.
///
/// @volhovm: Soundness-wise I am not convinced that we need to
/// enforce these more precise ranges as compared to enforcing just 4
/// bit more for the highest limb. Even checking that highest limb is
/// 15 bits could be quite sound.
pub fn constrain_ec_addition<
    F: PrimeField,
    Ff: PrimeField,
    Env: ColAccessCap<F, FECColumn> + LookupCap<F, FECColumn, LookupTable<Ff>>,
>(
    env: &mut Env,
) {
    let xp_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Input(FECColumnInput::XP(i)));
    let yp_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Input(FECColumnInput::YP(i)));
    let xq_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Input(FECColumnInput::XQ(i)));
    let yq_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Input(FECColumnInput::YQ(i)));
    let f_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::F(i)));
    let xr_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Output(FECColumnOutput::XR(i)));
    let yr_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Output(FECColumnOutput::YR(i)));
    let s_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::S(i)));

    let q1_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q1(i)));
    let q2_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q2(i)));
    let q3_limbs_small: [_; N_LIMBS_SMALL] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q3(i)));
    let q1_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q1L(i)));
    let q2_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q2L(i)));
    let q3_limbs_large: [_; N_LIMBS_LARGE] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q3L(i)));

    let q1_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q1Sign));
    let q2_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q2Sign));
    let q3_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q3Sign));

    let carry1_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry1(i)));
    let carry2_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry2(i)));
    let carry3_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
        read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry3(i)));

    // FIXME get rid of cloning

    // u128 covers our limb sizes shifts which is good
    let constant_u128 = |x: u128| -> Env::Variable { Env::constant(From::from(x)) };

    // Slope and result variables must be in the field.
    for (i, x) in s_limbs_small
        .iter()
        .chain(xr_limbs_small.iter())
        .chain(yr_limbs_small.iter())
        .enumerate()
    {
        if i % N_LIMBS_SMALL == N_LIMBS_SMALL - 1 {
            // If it's the highest limb, we need to check that it's representing a field element.
            env.lookup(
                LookupTable::RangeCheckFfHighest(PhantomData),
                vec![x.clone()],
            );
        } else {
            env.lookup(LookupTable::RangeCheck15, vec![x.clone()]);
        }
    }

    // Quotient limbs must fit into 15 bits, but we don't care if they're in the field.
    for x in q1_limbs_small
        .iter()
        .chain(q2_limbs_small.iter())
        .chain(q3_limbs_small.iter())
    {
        env.lookup(LookupTable::RangeCheck15, vec![x.clone()]);
    }

    // Signs must be -1 or 1.
    for x in [&q1_sign, &q2_sign, &q3_sign] {
        env.assert_zero(x.clone() * x.clone() - Env::constant(F::one()));
    }

    // Carry limbs need to be in particular ranges.
    for (i, x) in carry1_limbs_small
        .iter()
        .chain(carry2_limbs_small.iter())
        .chain(carry3_limbs_small.iter())
        .enumerate()
    {
        if i % 6 == 5 {
            // This should be a different range check depending on which big-limb we're processing?
            // So instead of one type of lookup we will have 5 different ones?
            env.lookup(LookupTable::RangeCheck9Abs, vec![x.clone()]);
        } else {
            env.lookup(LookupTable::RangeCheck14Abs, vec![x.clone()]);
        }
    }

    // Make sure qi_limbs_large are properly constructed from qi_limbs_small and qi_sign
    {
        let q1_limbs_large_abs_expected =
            combine_small_to_large::<_, _, Env>(q1_limbs_small.clone());
        for j in 0..N_LIMBS_LARGE {
            env.assert_zero(
                q1_limbs_large[j].clone()
                    - q1_sign.clone() * q1_limbs_large_abs_expected[j].clone(),
            );
        }
        let q2_limbs_large_abs_expected =
            combine_small_to_large::<_, _, Env>(q2_limbs_small.clone());
        for j in 0..N_LIMBS_LARGE {
            env.assert_zero(
                q2_limbs_large[j].clone()
                    - q2_sign.clone() * q2_limbs_large_abs_expected[j].clone(),
            );
        }
        let q3_limbs_large_abs_expected =
            combine_small_to_large::<_, _, Env>(q3_limbs_small.clone());
        for j in 0..N_LIMBS_LARGE {
            env.assert_zero(
                q3_limbs_large[j].clone()
                    - q3_sign.clone() * q3_limbs_large_abs_expected[j].clone(),
            );
        }
    }

    let xr_limbs_large = combine_small_to_large::<_, _, Env>(xr_limbs_small.clone());
    let yr_limbs_large = combine_small_to_large::<_, _, Env>(yr_limbs_small.clone());
    let s_limbs_large = combine_small_to_large::<_, _, Env>(s_limbs_small.clone());

    let carry1_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
        combine_carry::<F, _, Env>(carry1_limbs_small.clone());
    let carry2_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
        combine_carry::<F, _, Env>(carry2_limbs_small.clone());
    let carry3_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
        combine_carry::<F, _, Env>(carry3_limbs_small.clone());

    let limb_size_large = constant_u128(1u128 << LIMB_BITSIZE_LARGE);
    let add_extra_carries =
        |i: usize, carry_limbs_large: &[Env::Variable; 2 * N_LIMBS_LARGE - 2]| -> Env::Variable {
            if i == 0 {
                -(carry_limbs_large[0].clone() * limb_size_large.clone())
            } else if i < 2 * N_LIMBS_LARGE - 2 {
                carry_limbs_large[i - 1].clone()
                    - carry_limbs_large[i].clone() * limb_size_large.clone()
            } else if i == 2 * N_LIMBS_LARGE - 2 {
                carry_limbs_large[i - 1].clone()
            } else {
                panic!("add_extra_carries: the index {i:?} is too high")
            }
        };

    // Equation 1
    // General form:
    // \sum_{k,j | k+j = i} s_j (xP_k - xQ_k) - (yP_i - yQ_i) - \sum_{k,j} q_1_k f_j - c_i * 2^B + c_{i-1} =  0
    for i in 0..2 * N_LIMBS_LARGE - 1 {
        let mut constraint1 = fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            s_limbs_large[j].clone() * (xp_limbs_large[k].clone() - xq_limbs_large[k].clone())
        });
        if i < N_LIMBS_LARGE {
            constraint1 = constraint1 - (yp_limbs_large[i].clone() - yq_limbs_large[i].clone());
        }
        constraint1 = constraint1
            - fold_choice2(N_LIMBS_LARGE, i, |j, k| {
                q1_limbs_large[j].clone() * f_limbs_large[k].clone()
            });
        constraint1 = constraint1 + add_extra_carries(i, &carry1_limbs_large);
        env.assert_zero(constraint1);
    }

    // Equation 2
    // General form: xR_i - \sum s_j s_k + xP_i + xQ_i - \sum q_2_j f_k - c_i * 2^B + c_{i-1} =  0
    for i in 0..2 * N_LIMBS_LARGE - 1 {
        let mut constraint2 = -fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            s_limbs_large[j].clone() * s_limbs_large[k].clone()
        });
        if i < N_LIMBS_LARGE {
            constraint2 = constraint2
                + xr_limbs_large[i].clone()
                + xp_limbs_large[i].clone()
                + xq_limbs_large[i].clone();
        }
        constraint2 = constraint2
            - fold_choice2(N_LIMBS_LARGE, i, |j, k| {
                q2_limbs_large[j].clone() * f_limbs_large[k].clone()
            });
        constraint2 = constraint2 + add_extra_carries(i, &carry2_limbs_large);
        env.assert_zero(constraint2);
    }

    // Equation 3
    // General form: yR_i + yP_i - \sum s_j (xP_k - xR_k) - \sum q_3_j f_k - c_i * 2^B + c_{i-1} = 0
    for i in 0..2 * N_LIMBS_LARGE - 1 {
        let mut constraint3 = -fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            s_limbs_large[j].clone() * (xp_limbs_large[k].clone() - xr_limbs_large[k].clone())
        });
        if i < N_LIMBS_LARGE {
            constraint3 = constraint3 + yr_limbs_large[i].clone() + yp_limbs_large[i].clone();
        }
        constraint3 = constraint3
            - fold_choice2(N_LIMBS_LARGE, i, |j, k| {
                q3_limbs_large[j].clone() * f_limbs_large[k].clone()
            });
        constraint3 = constraint3 + add_extra_carries(i, &carry3_limbs_large);
        env.assert_zero(constraint3)
    }
}

/// Creates a witness for adding two points, p and q, each represented
/// as a pair of foreign field elements. Returns a point.
///
/// This function is witness-generation counterpart (called by the prover) of
/// `constrain_ec_addition` -- see the documentation of the latter.
pub fn ec_add_circuit<
    F: PrimeField,
    Ff: PrimeField,
    Env: ColWriteCap<F, FECColumn> + LookupCap<F, FECColumn, LookupTable<Ff>>,
>(
    env: &mut Env,
    xp: Ff,
    yp: Ff,
    xq: Ff,
    yq: Ff,
) -> (Ff, Ff) {
    let slope: Ff = (yq - yp) / (xq - xp);
    let xr: Ff = slope * slope - xp - xq;
    let yr: Ff = slope * (xp - xr) - yp;

    let two_bi: BigInt = BigInt::from(2);

    let large_limb_size: F = From::from(1u128 << LIMB_BITSIZE_LARGE);

    // Foreign field modulus
    let f_bui: BigUint = TryFrom::try_from(Ff::MODULUS).unwrap();
    let f_bi: BigInt = f_bui.to_bigint().unwrap();

    // Native field modulus (prime)
    let n_bui: BigUint = TryFrom::try_from(F::MODULUS).unwrap();
    let n_bi: BigInt = n_bui.to_bigint().unwrap();
    let n_half_bi = &n_bi / &two_bi;

    let xp_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xp);
    let yp_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yp);
    let xq_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xq);
    let yq_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yq);
    let f_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(f_bui.clone());
    let xr_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xr);
    let yr_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yr);

    let xr_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&xr);
    let yr_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&yr);
    let slope_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&slope);
    let slope_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&slope);

    write_column_array_const(env, &xp_limbs_large, |i| {
        FECColumn::Input(FECColumnInput::XP(i))
    });
    write_column_array_const(env, &yp_limbs_large, |i| {
        FECColumn::Input(FECColumnInput::YP(i))
    });
    write_column_array_const(env, &xq_limbs_large, |i| {
        FECColumn::Input(FECColumnInput::XQ(i))
    });
    write_column_array_const(env, &yq_limbs_large, |i| {
        FECColumn::Input(FECColumnInput::YQ(i))
    });
    write_column_array_const(env, &f_limbs_large, |i| {
        FECColumn::Inter(FECColumnInter::F(i))
    });
    write_column_array_const(env, &xr_limbs_small, |i| {
        FECColumn::Output(FECColumnOutput::XR(i))
    });
    write_column_array_const(env, &yr_limbs_small, |i| {
        FECColumn::Output(FECColumnOutput::YR(i))
    });
    write_column_array_const(env, &slope_limbs_small, |i| {
        FECColumn::Inter(FECColumnInter::S(i))
    });

    let xp_bi: BigInt = FieldHelpers::to_bigint_positive(&xp);
    let yp_bi: BigInt = FieldHelpers::to_bigint_positive(&yp);
    let xq_bi: BigInt = FieldHelpers::to_bigint_positive(&xq);
    let yq_bi: BigInt = FieldHelpers::to_bigint_positive(&yq);
    let slope_bi: BigInt = FieldHelpers::to_bigint_positive(&slope);
    let xr_bi: BigInt = FieldHelpers::to_bigint_positive(&xr);
    let yr_bi: BigInt = FieldHelpers::to_bigint_positive(&yr);

    // Equation 1: s (xP - xQ) - (yP - yQ) - q_1 f =  0
    let (q1_bi, r1_bi) = (&slope_bi * (&xp_bi - &xq_bi) - (&yp_bi - &yq_bi)).div_rem(&f_bi);
    assert!(r1_bi.is_zero());
    // Storing negative numbers is a mess.
    let (q1_bi, q1_sign): (BigInt, F) = if q1_bi.is_negative() {
        (-q1_bi, -F::one())
    } else {
        (q1_bi, F::one())
    };

    // Equation 2: xR - s^2 + xP + xQ - q_2 f = 0
    let (q2_bi, r2_bi) = (&xr_bi - &slope_bi * &slope_bi + &xp_bi + &xq_bi).div_rem(&f_bi);
    assert!(r2_bi.is_zero());
    let (q2_bi, q2_sign): (BigInt, F) = if q2_bi.is_negative() {
        (-q2_bi, -F::one())
    } else {
        (q2_bi, F::one())
    };

    // Equation 3: yR + yP - s (xP - xR) - q_3 f = 0
    let (q3_bi, r3_bi) = (&yr_bi + &yp_bi - &slope_bi * (&xp_bi - &xr_bi)).div_rem(&f_bi);
    assert!(r3_bi.is_zero());
    let (q3_bi, q3_sign): (BigInt, F) = if q3_bi.is_negative() {
        (-q3_bi, -F::one())
    } else {
        (q3_bi, F::one())
    };

    // TODO can this be better?
    // Used for witness computation
    // Big limbs /have/ sign in them.
    let q1_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q1_bi.to_biguint().unwrap())
            .into_iter()
            .map(|v| v * q1_sign)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
    let q2_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q2_bi.to_biguint().unwrap())
            .into_iter()
            .map(|v| v * q2_sign)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
    let q3_limbs_large: [F; N_LIMBS_LARGE] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q3_bi.to_biguint().unwrap())
            .into_iter()
            .map(|v| v * q3_sign)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();

    // Written into the columns
    // small limbs are signless 15-bit
    let q1_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q1_bi.to_biguint().unwrap());
    let q2_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q2_bi.to_biguint().unwrap());
    let q3_limbs_small: [F; N_LIMBS_SMALL] =
        limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q3_bi.to_biguint().unwrap());

    write_column_array_const(env, &q1_limbs_small, |i| {
        FECColumn::Inter(FECColumnInter::Q1(i))
    });
    write_column_array_const(env, &q2_limbs_small, |i| {
        FECColumn::Inter(FECColumnInter::Q2(i))
    });
    write_column_array_const(env, &q3_limbs_small, |i| {
        FECColumn::Inter(FECColumnInter::Q3(i))
    });

    write_column_const(env, FECColumn::Inter(FECColumnInter::Q1Sign), &q1_sign);
    write_column_const(env, FECColumn::Inter(FECColumnInter::Q2Sign), &q2_sign);
    write_column_const(env, FECColumn::Inter(FECColumnInter::Q3Sign), &q3_sign);

    write_column_array_const(env, &q1_limbs_large, |i| {
        FECColumn::Inter(FECColumnInter::Q1L(i))
    });
    write_column_array_const(env, &q2_limbs_large, |i| {
        FECColumn::Inter(FECColumnInter::Q2L(i))
    });
    write_column_array_const(env, &q3_limbs_large, |i| {
        FECColumn::Inter(FECColumnInter::Q3L(i))
    });

    let mut carry1: F = From::from(0u64);
    let mut carry2: F = From::from(0u64);
    let mut carry3: F = From::from(0u64);

    for i in 0..N_LIMBS_LARGE * 2 - 1 {
        let compute_carry = |res: F| -> F {
            // TODO enforce this as an integer division
            let mut res_bi = res.to_bigint_positive();
            if res_bi > n_half_bi {
                res_bi -= &n_bi;
            }
            let (div, rem) = res_bi.div_rem(&large_limb_size.to_bigint_positive());
            assert!(
                rem.is_zero(),
                "Cannot compute carry for step {i:?}: div {div:?}, rem {rem:?}"
            );
            let carry_f: BigUint = bigint_to_biguint_f(div, &n_bi);
            F::from_biguint(&carry_f).unwrap()
        };

        fn assign_carry<F, Env, ColMap>(
            env: &mut Env,
            n_half_bi: &BigInt,
            i: usize,
            newcarry: F,
            carryvar: &mut F,
            column_mapper: ColMap,
        ) where
            F: PrimeField,
            Env: ColWriteCap<F, FECColumn>,
            ColMap: Fn(usize) -> FECColumn,
        {
            // Last carry should be zero, otherwise we record it
            if i < N_LIMBS_LARGE * 2 - 2 {
                // Carries will often not fit into 5 limbs, but they /should/ fit in 6 limbs I think.
                let newcarry_sign = if &newcarry.to_bigint_positive() > n_half_bi {
                    F::zero() - F::one()
                } else {
                    F::one()
                };
                let newcarry_abs_bui = (newcarry * newcarry_sign).to_biguint();
                // Our big carries are at most 79 bits, so we need 6 small limbs per each.
                // But limbs are signed, so we split into 14-bit /signed/ limbs. + last chunk is signed 9 bit.
                let newcarry_limbs: [F; 6] =
                    limb_decompose_biguint::<F, { LIMB_BITSIZE_SMALL - 1 }, 6>(
                        newcarry_abs_bui.clone(),
                    );

                for (j, limb) in newcarry_limbs.iter().enumerate() {
                    write_column_const(env, column_mapper(6 * i + j), &(newcarry_sign * limb));
                }

                *carryvar = newcarry;
            } else {
                // should this be in circiut?
                assert!(newcarry.is_zero(), "Last carry is non-zero");
            }
        }

        // Equation 1: s (xP - xQ) - (yP - yQ) - q_1 f =  0
        let mut res1 = fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            slope_limbs_large[j] * (xp_limbs_large[k] - xq_limbs_large[k])
        });
        if i < N_LIMBS_LARGE {
            res1 -= yp_limbs_large[i] - yq_limbs_large[i];
        }
        res1 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            q1_limbs_large[j] * f_limbs_large[k]
        });
        res1 += carry1;
        let newcarry1 = compute_carry(res1);
        assign_carry(env, &n_half_bi, i, newcarry1, &mut carry1, |i| {
            FECColumn::Inter(FECColumnInter::Carry1(i))
        });

        // Equation 2: xR - s^2 + xP + xQ - q_2 f = 0
        let mut res2 = F::zero();
        res2 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            slope_limbs_large[j] * slope_limbs_large[k]
        });
        if i < N_LIMBS_LARGE {
            res2 += xr_limbs_large[i] + xp_limbs_large[i] + xq_limbs_large[i];
        }
        res2 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            q2_limbs_large[j] * f_limbs_large[k]
        });
        res2 += carry2;
        let newcarry2 = compute_carry(res2);
        assign_carry(env, &n_half_bi, i, newcarry2, &mut carry2, |i| {
            FECColumn::Inter(FECColumnInter::Carry2(i))
        });

        // Equation 3: yR + yP - s (xP - xR) - q_3 f = 0
        let mut res3 = F::zero();
        res3 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            slope_limbs_large[j] * (xp_limbs_large[k] - xr_limbs_large[k])
        });
        if i < N_LIMBS_LARGE {
            res3 += yr_limbs_large[i] + yp_limbs_large[i];
        }
        res3 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
            q3_limbs_large[j] * f_limbs_large[k]
        });
        res3 += carry3;
        let newcarry3 = compute_carry(res3);
        assign_carry(env, &n_half_bi, i, newcarry3, &mut carry3, |i| {
            FECColumn::Inter(FECColumnInter::Carry3(i))
        });
    }

    constrain_ec_addition::<F, Ff, Env>(env);

    (xr, yr)
}