1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
use crate::{
circuit_design::{
capabilities::{read_column_array, write_column_array_const, write_column_const},
ColAccessCap, ColWriteCap, LookupCap,
},
fec::{
columns::{FECColumn, FECColumnInput, FECColumnInter, FECColumnOutput},
lookups::LookupTable,
},
serialization::interpreter::{
bigint_to_biguint_f, combine_carry, combine_small_to_large, fold_choice2,
limb_decompose_biguint, limb_decompose_ff, LIMB_BITSIZE_LARGE, LIMB_BITSIZE_SMALL,
N_LIMBS_LARGE, N_LIMBS_SMALL,
},
};
use ark_ff::{PrimeField, Zero};
use core::marker::PhantomData;
use num_bigint::{BigInt, BigUint, ToBigInt};
use num_integer::Integer;
use num_traits::sign::Signed;
use o1_utils::field_helpers::FieldHelpers;
/// Convenience function for printing.
pub fn limbs_to_bigints<F: PrimeField, const N: usize>(input: [F; N]) -> Vec<BigInt> {
input
.iter()
.map(|f| f.to_bigint_positive())
.collect::<Vec<_>>()
}
/// When P = (xP,yP) and Q = (xQ,yQ) are not negative of each other, thus function ensures
///
/// P + Q = R where
///
/// s = (yP - yQ) / (xP - xQ)
///
/// xR = s^2 - xP - xQ and yR = -yP + s(xP - xR)
///
///
/// Equations that we check:
/// 1. s (xP - xQ) - (yP - yQ) - q_1 f = 0
/// 2. xR - s^2 + xP + xQ - q_2 f = 0
/// 3. yR + yP - s (xP - xR) - q_3 f = 0
///
/// We will use several different "packing" format.
///
/// === Limb equations
///
/// The standard (small limb) one, using 17 limbs of 15 bits each, is
/// mostly helpful for range-checking the element, because 15-bit
/// range checks are easy to perform. Additionally, this format is
/// helpful for checking that the value is ∈ [0,f), where f is a
/// foreign field modulus.
///
/// We will additionally use a "large limb" format, where each limb is
/// 75 bits, so fitting exactly 5 small limbs. This format is
/// effective for trusted values that we do not need to range check.
/// Additionally, verifying equations on 75 bits is more effective in
/// terms of minimising constraints.
///
/// Regarding our /concrete limb/ equations, they are different from
/// the generic ones above in that they have carries. The carries are
/// stored in a third format. Let us illustrate the design on the
/// first equation of the three. Its concrete final form is as follows:
///
/// for i ∈ [0..2L-2]:
/// \sum_{j,k < L | k+j = i} s_j (xP_k - xQ_k)
/// - ((yP_i - yQ_i) if i < L else 0)
/// - q_1_sign * \sum_{j,k < L | k+j = i} q_1_j f_k
/// - (c_i * 2^B if i < 2L-2 else 0)
/// + (c_{i-1} if i > 0 else 0) = 0
///
/// First, note that the equation has turned into 2L-2 equations. This
/// is because the form of multiplication (and there are two
/// multiplications here, s*(xP-xQ) and q*f) implies quadratic number
/// of limb multiplications, but because our operations are modulo f,
/// every single element except for q in this equation is in the
/// field.
///
/// Instead of having one limb-multiplication per row (e.g.
/// q_1_5*f_6), which would lead to quadratic number of constraints,
/// and quadratic number of intermediate-representation columns, we
/// "batch" all multiplications for degree $i$ in one constraint as
/// above.
///
/// Second, note that the carries are non-uniform in the loop: for the
/// first limb, we only subtract c_0*2^B, while for the last limb we
/// only add the previous carry c_{2L-3}. This means that, as usual,
/// the number of carries is one less than the number of
/// limb-equations. In our case, every equation relies on 2L-2 "large"
/// carries.
///
/// Finally, small remark is that for simplicity we carry the sign of
/// q separately from its absolute value. Note that in the original
/// generic equation s (xP - xQ) - (yP - yQ) - q_1 f = 0 that holds
/// over the integers, the only value (except for f) that can actually
/// be outside of the field range [0,f-1) is q_1. In fact, while every
/// other value is strictly positive, q_1 can be actually negative.
/// Carrying its sign separately greatly simplifies modelling limbs at
/// the expense of just 3 extra columns per circuit. So q_1 limbs
/// actually contains the absolute value of q_1, while q_1_sign is in
/// {-1,1}.
///
/// === Data layout
///
/// Now we are ready to present the data layout and to discuss the
/// representation modes.
///
/// Let
/// L := N_LIMBS_LARGE
/// S := N_LIMBS_SMALL
///
/// variable offset length comment
/// ---------------------------------------------------------------
/// xP: 0 L Always trusted, not range checked
/// yP: 1*L L Always trusted, not range checked
/// xQ: 2*L L Always trusted, not range checked
/// yQ: 3*L L Alawys trusted, not range checked
/// f: 4*L L Always trusted, not range checked
/// xR: 5*L S
/// yR: 5*L + 1*S S
/// s: 5*L + 2*S S
/// q_1: 5*L + 3*S S
/// q_2: 5*L + 4*S S
/// q_3: 5*L + 5*S S
/// q_2_sign: 5*L + 6*S 1
/// q_1_sign: 5*L + 6*S + 1 1
/// q_3_sign: 5*L + 6*S + 2 1
/// carry_1: 5*L + 6*S + 3 2*S+2
/// carry_2: 5*L + 8*S + 5 2*S+2
/// carry_3: 5*L + 10*S + 7 2*S+2
///----------------------------------------------------------------
///
///
/// As we said before, all elements that are either S small limbs or 1
/// are for range-checking. The only unusual part here is that the
/// carries are represented in 2*S+2 limbs. Let us explain.
///
/// As we said, we need 2*L-2 carries, which in 6. Because our
/// operations contain not just one limb multiplication, but several
/// limb multiplication and extra additions, our carries will /not/
/// fit into 75 bits. But we can prove (below) that they always fit
/// into 79 limbs. Therefore, every large carry will be represented
/// not by 5 15-bit chunks, but by 6 15-bit chunks. This gives us 6
/// bits * 6 carries = 36 chunks, and every 6th chunk is 4 bits only.
/// This matches the 2*S+2 = 36, since S = 17.
///
/// Note however since 79-bit carry is signed, we will store it as a list of
/// [15 15 15 15 15 9]-bit limbs, where limbs are signed.
/// E.g. 15-bit limbs are in [-2^14, 2^14-1]. This allows us to use
/// 14abs range checks.
///
/// === Ranges
///
/// Carries for our three equations have the following generic range
/// form (inclusive over integers). Note that all three equations look
/// exactly the same for i >= n _except_ the carry from the previous
/// limbs.
///
///
/// Eq1.
/// - i ∈ [0,n-1]: c1_i ∈ [-((i+1)*2^(b+1) - 2*i - 3),
/// (i+1)*2^(b+1) - 2*i - 3] (symmetric)
/// - i ∈ [n,2n-2]: c1_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
/// (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3] (symmetric)
///
/// Eq2.
/// - i ∈ [0,n-1]: c2_i ∈ [-((i+1)*2^(b+1) - 2*i - 4),
/// if i == 0 2^b else (i+1)*2^b - i]
/// - i ∈ [n,2n-2]: c2_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
/// (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3 - (if i == n { n-1 } else 0) ]
///
/// Eq3.
/// - i ∈ [0,n-1]: c3_i ∈ [-((i+1)*2^(b+1) - 2*i - 4),
/// (i+1)*2^b - i - 1]
/// - i ∈ [n,2n-2]: c3_i ∈ [-((2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3),
/// (2*n-i-1)*2^(b+1) - 2*(2*n-i) + 3 - (if i == n { n-1 } else 0) ]
///
/// Absolute maximum values for all carries:
/// Eq1.
/// * Upper bound = -lower bound is achieved at i = n-1, n*2^(b+1) - 2*(n-1) - 3
/// * (+-) 302231454903657293676535
///
/// Eq2 and Eq3:
/// * Upper bound is achieved at i = n, (n-1)*2^(b+1) - 2*n + 3 - n -1
/// * 226673591177742970257400
/// * Lower bound is achieved at i = n-1, n*2^(b+1) - 2*(n-1) - 4
/// * (-) 302231454903657293676534
///
/// As we can see, the values are about 2*n=8 times bigger than 2^b,
/// so concretely 4 extra bits per carry will be enough. This implies
/// that we can /definitely/ fit a large carry into 6 small limbs,
/// since it has 15 "free" bits of which we will use 4 at most.
///
/// @volhovm: Soundness-wise I am not convinced that we need to
/// enforce these more precise ranges as compared to enforcing just 4
/// bit more for the highest limb. Even checking that highest limb is
/// 15 bits could be quite sound.
pub fn constrain_ec_addition<
F: PrimeField,
Ff: PrimeField,
Env: ColAccessCap<F, FECColumn> + LookupCap<F, FECColumn, LookupTable<Ff>>,
>(
env: &mut Env,
) {
let xp_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Input(FECColumnInput::XP(i)));
let yp_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Input(FECColumnInput::YP(i)));
let xq_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Input(FECColumnInput::XQ(i)));
let yq_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Input(FECColumnInput::YQ(i)));
let f_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::F(i)));
let xr_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Output(FECColumnOutput::XR(i)));
let yr_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Output(FECColumnOutput::YR(i)));
let s_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::S(i)));
let q1_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q1(i)));
let q2_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q2(i)));
let q3_limbs_small: [_; N_LIMBS_SMALL] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q3(i)));
let q1_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q1L(i)));
let q2_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q2L(i)));
let q3_limbs_large: [_; N_LIMBS_LARGE] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Q3L(i)));
let q1_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q1Sign));
let q2_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q2Sign));
let q3_sign = env.read_column(FECColumn::Inter(FECColumnInter::Q3Sign));
let carry1_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry1(i)));
let carry2_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry2(i)));
let carry3_limbs_small: [_; 2 * N_LIMBS_SMALL + 2] =
read_column_array(env, |i| FECColumn::Inter(FECColumnInter::Carry3(i)));
// FIXME get rid of cloning
// u128 covers our limb sizes shifts which is good
let constant_u128 = |x: u128| -> Env::Variable { Env::constant(From::from(x)) };
// Slope and result variables must be in the field.
for (i, x) in s_limbs_small
.iter()
.chain(xr_limbs_small.iter())
.chain(yr_limbs_small.iter())
.enumerate()
{
if i % N_LIMBS_SMALL == N_LIMBS_SMALL - 1 {
// If it's the highest limb, we need to check that it's representing a field element.
env.lookup(
LookupTable::RangeCheckFfHighest(PhantomData),
vec![x.clone()],
);
} else {
env.lookup(LookupTable::RangeCheck15, vec![x.clone()]);
}
}
// Quotient limbs must fit into 15 bits, but we don't care if they're in the field.
for x in q1_limbs_small
.iter()
.chain(q2_limbs_small.iter())
.chain(q3_limbs_small.iter())
{
env.lookup(LookupTable::RangeCheck15, vec![x.clone()]);
}
// Signs must be -1 or 1.
for x in [&q1_sign, &q2_sign, &q3_sign] {
env.assert_zero(x.clone() * x.clone() - Env::constant(F::one()));
}
// Carry limbs need to be in particular ranges.
for (i, x) in carry1_limbs_small
.iter()
.chain(carry2_limbs_small.iter())
.chain(carry3_limbs_small.iter())
.enumerate()
{
if i % 6 == 5 {
// This should be a different range check depending on which big-limb we're processing?
// So instead of one type of lookup we will have 5 different ones?
env.lookup(LookupTable::RangeCheck9Abs, vec![x.clone()]);
} else {
env.lookup(LookupTable::RangeCheck14Abs, vec![x.clone()]);
}
}
// Make sure qi_limbs_large are properly constructed from qi_limbs_small and qi_sign
{
let q1_limbs_large_abs_expected =
combine_small_to_large::<_, _, Env>(q1_limbs_small.clone());
for j in 0..N_LIMBS_LARGE {
env.assert_zero(
q1_limbs_large[j].clone()
- q1_sign.clone() * q1_limbs_large_abs_expected[j].clone(),
);
}
let q2_limbs_large_abs_expected =
combine_small_to_large::<_, _, Env>(q2_limbs_small.clone());
for j in 0..N_LIMBS_LARGE {
env.assert_zero(
q2_limbs_large[j].clone()
- q2_sign.clone() * q2_limbs_large_abs_expected[j].clone(),
);
}
let q3_limbs_large_abs_expected =
combine_small_to_large::<_, _, Env>(q3_limbs_small.clone());
for j in 0..N_LIMBS_LARGE {
env.assert_zero(
q3_limbs_large[j].clone()
- q3_sign.clone() * q3_limbs_large_abs_expected[j].clone(),
);
}
}
let xr_limbs_large = combine_small_to_large::<_, _, Env>(xr_limbs_small.clone());
let yr_limbs_large = combine_small_to_large::<_, _, Env>(yr_limbs_small.clone());
let s_limbs_large = combine_small_to_large::<_, _, Env>(s_limbs_small.clone());
let carry1_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
combine_carry::<F, _, Env>(carry1_limbs_small.clone());
let carry2_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
combine_carry::<F, _, Env>(carry2_limbs_small.clone());
let carry3_limbs_large: [_; 2 * N_LIMBS_LARGE - 2] =
combine_carry::<F, _, Env>(carry3_limbs_small.clone());
let limb_size_large = constant_u128(1u128 << LIMB_BITSIZE_LARGE);
let add_extra_carries =
|i: usize, carry_limbs_large: &[Env::Variable; 2 * N_LIMBS_LARGE - 2]| -> Env::Variable {
if i == 0 {
-(carry_limbs_large[0].clone() * limb_size_large.clone())
} else if i < 2 * N_LIMBS_LARGE - 2 {
carry_limbs_large[i - 1].clone()
- carry_limbs_large[i].clone() * limb_size_large.clone()
} else if i == 2 * N_LIMBS_LARGE - 2 {
carry_limbs_large[i - 1].clone()
} else {
panic!("add_extra_carries: the index {i:?} is too high")
}
};
// Equation 1
// General form:
// \sum_{k,j | k+j = i} s_j (xP_k - xQ_k) - (yP_i - yQ_i) - \sum_{k,j} q_1_k f_j - c_i * 2^B + c_{i-1} = 0
for i in 0..2 * N_LIMBS_LARGE - 1 {
let mut constraint1 = fold_choice2(N_LIMBS_LARGE, i, |j, k| {
s_limbs_large[j].clone() * (xp_limbs_large[k].clone() - xq_limbs_large[k].clone())
});
if i < N_LIMBS_LARGE {
constraint1 = constraint1 - (yp_limbs_large[i].clone() - yq_limbs_large[i].clone());
}
constraint1 = constraint1
- fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q1_limbs_large[j].clone() * f_limbs_large[k].clone()
});
constraint1 = constraint1 + add_extra_carries(i, &carry1_limbs_large);
env.assert_zero(constraint1);
}
// Equation 2
// General form: xR_i - \sum s_j s_k + xP_i + xQ_i - \sum q_2_j f_k - c_i * 2^B + c_{i-1} = 0
for i in 0..2 * N_LIMBS_LARGE - 1 {
let mut constraint2 = -fold_choice2(N_LIMBS_LARGE, i, |j, k| {
s_limbs_large[j].clone() * s_limbs_large[k].clone()
});
if i < N_LIMBS_LARGE {
constraint2 = constraint2
+ xr_limbs_large[i].clone()
+ xp_limbs_large[i].clone()
+ xq_limbs_large[i].clone();
}
constraint2 = constraint2
- fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q2_limbs_large[j].clone() * f_limbs_large[k].clone()
});
constraint2 = constraint2 + add_extra_carries(i, &carry2_limbs_large);
env.assert_zero(constraint2);
}
// Equation 3
// General form: yR_i + yP_i - \sum s_j (xP_k - xR_k) - \sum q_3_j f_k - c_i * 2^B + c_{i-1} = 0
for i in 0..2 * N_LIMBS_LARGE - 1 {
let mut constraint3 = -fold_choice2(N_LIMBS_LARGE, i, |j, k| {
s_limbs_large[j].clone() * (xp_limbs_large[k].clone() - xr_limbs_large[k].clone())
});
if i < N_LIMBS_LARGE {
constraint3 = constraint3 + yr_limbs_large[i].clone() + yp_limbs_large[i].clone();
}
constraint3 = constraint3
- fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q3_limbs_large[j].clone() * f_limbs_large[k].clone()
});
constraint3 = constraint3 + add_extra_carries(i, &carry3_limbs_large);
env.assert_zero(constraint3)
}
}
/// Creates a witness for adding two points, p and q, each represented
/// as a pair of foreign field elements. Returns a point.
///
/// This function is witness-generation counterpart (called by the prover) of
/// `constrain_ec_addition` -- see the documentation of the latter.
pub fn ec_add_circuit<
F: PrimeField,
Ff: PrimeField,
Env: ColWriteCap<F, FECColumn> + LookupCap<F, FECColumn, LookupTable<Ff>>,
>(
env: &mut Env,
xp: Ff,
yp: Ff,
xq: Ff,
yq: Ff,
) -> (Ff, Ff) {
let slope: Ff = (yq - yp) / (xq - xp);
let xr: Ff = slope * slope - xp - xq;
let yr: Ff = slope * (xp - xr) - yp;
let two_bi: BigInt = BigInt::from(2);
let large_limb_size: F = From::from(1u128 << LIMB_BITSIZE_LARGE);
// Foreign field modulus
let f_bui: BigUint = TryFrom::try_from(Ff::MODULUS).unwrap();
let f_bi: BigInt = f_bui.to_bigint().unwrap();
// Native field modulus (prime)
let n_bui: BigUint = TryFrom::try_from(F::MODULUS).unwrap();
let n_bi: BigInt = n_bui.to_bigint().unwrap();
let n_half_bi = &n_bi / &two_bi;
let xp_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xp);
let yp_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yp);
let xq_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xq);
let yq_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yq);
let f_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(f_bui.clone());
let xr_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&xr);
let yr_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&yr);
let xr_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&xr);
let yr_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&yr);
let slope_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(&slope);
let slope_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_ff::<F, Ff, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(&slope);
write_column_array_const(env, &xp_limbs_large, |i| {
FECColumn::Input(FECColumnInput::XP(i))
});
write_column_array_const(env, &yp_limbs_large, |i| {
FECColumn::Input(FECColumnInput::YP(i))
});
write_column_array_const(env, &xq_limbs_large, |i| {
FECColumn::Input(FECColumnInput::XQ(i))
});
write_column_array_const(env, &yq_limbs_large, |i| {
FECColumn::Input(FECColumnInput::YQ(i))
});
write_column_array_const(env, &f_limbs_large, |i| {
FECColumn::Inter(FECColumnInter::F(i))
});
write_column_array_const(env, &xr_limbs_small, |i| {
FECColumn::Output(FECColumnOutput::XR(i))
});
write_column_array_const(env, &yr_limbs_small, |i| {
FECColumn::Output(FECColumnOutput::YR(i))
});
write_column_array_const(env, &slope_limbs_small, |i| {
FECColumn::Inter(FECColumnInter::S(i))
});
let xp_bi: BigInt = FieldHelpers::to_bigint_positive(&xp);
let yp_bi: BigInt = FieldHelpers::to_bigint_positive(&yp);
let xq_bi: BigInt = FieldHelpers::to_bigint_positive(&xq);
let yq_bi: BigInt = FieldHelpers::to_bigint_positive(&yq);
let slope_bi: BigInt = FieldHelpers::to_bigint_positive(&slope);
let xr_bi: BigInt = FieldHelpers::to_bigint_positive(&xr);
let yr_bi: BigInt = FieldHelpers::to_bigint_positive(&yr);
// Equation 1: s (xP - xQ) - (yP - yQ) - q_1 f = 0
let (q1_bi, r1_bi) = (&slope_bi * (&xp_bi - &xq_bi) - (&yp_bi - &yq_bi)).div_rem(&f_bi);
assert!(r1_bi.is_zero());
// Storing negative numbers is a mess.
let (q1_bi, q1_sign): (BigInt, F) = if q1_bi.is_negative() {
(-q1_bi, -F::one())
} else {
(q1_bi, F::one())
};
// Equation 2: xR - s^2 + xP + xQ - q_2 f = 0
let (q2_bi, r2_bi) = (&xr_bi - &slope_bi * &slope_bi + &xp_bi + &xq_bi).div_rem(&f_bi);
assert!(r2_bi.is_zero());
let (q2_bi, q2_sign): (BigInt, F) = if q2_bi.is_negative() {
(-q2_bi, -F::one())
} else {
(q2_bi, F::one())
};
// Equation 3: yR + yP - s (xP - xR) - q_3 f = 0
let (q3_bi, r3_bi) = (&yr_bi + &yp_bi - &slope_bi * (&xp_bi - &xr_bi)).div_rem(&f_bi);
assert!(r3_bi.is_zero());
let (q3_bi, q3_sign): (BigInt, F) = if q3_bi.is_negative() {
(-q3_bi, -F::one())
} else {
(q3_bi, F::one())
};
// TODO can this be better?
// Used for witness computation
// Big limbs /have/ sign in them.
let q1_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q1_bi.to_biguint().unwrap())
.into_iter()
.map(|v| v * q1_sign)
.collect::<Vec<_>>()
.try_into()
.unwrap();
let q2_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q2_bi.to_biguint().unwrap())
.into_iter()
.map(|v| v * q2_sign)
.collect::<Vec<_>>()
.try_into()
.unwrap();
let q3_limbs_large: [F; N_LIMBS_LARGE] =
limb_decompose_biguint::<F, LIMB_BITSIZE_LARGE, N_LIMBS_LARGE>(q3_bi.to_biguint().unwrap())
.into_iter()
.map(|v| v * q3_sign)
.collect::<Vec<_>>()
.try_into()
.unwrap();
// Written into the columns
// small limbs are signless 15-bit
let q1_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q1_bi.to_biguint().unwrap());
let q2_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q2_bi.to_biguint().unwrap());
let q3_limbs_small: [F; N_LIMBS_SMALL] =
limb_decompose_biguint::<F, LIMB_BITSIZE_SMALL, N_LIMBS_SMALL>(q3_bi.to_biguint().unwrap());
write_column_array_const(env, &q1_limbs_small, |i| {
FECColumn::Inter(FECColumnInter::Q1(i))
});
write_column_array_const(env, &q2_limbs_small, |i| {
FECColumn::Inter(FECColumnInter::Q2(i))
});
write_column_array_const(env, &q3_limbs_small, |i| {
FECColumn::Inter(FECColumnInter::Q3(i))
});
write_column_const(env, FECColumn::Inter(FECColumnInter::Q1Sign), &q1_sign);
write_column_const(env, FECColumn::Inter(FECColumnInter::Q2Sign), &q2_sign);
write_column_const(env, FECColumn::Inter(FECColumnInter::Q3Sign), &q3_sign);
write_column_array_const(env, &q1_limbs_large, |i| {
FECColumn::Inter(FECColumnInter::Q1L(i))
});
write_column_array_const(env, &q2_limbs_large, |i| {
FECColumn::Inter(FECColumnInter::Q2L(i))
});
write_column_array_const(env, &q3_limbs_large, |i| {
FECColumn::Inter(FECColumnInter::Q3L(i))
});
let mut carry1: F = From::from(0u64);
let mut carry2: F = From::from(0u64);
let mut carry3: F = From::from(0u64);
for i in 0..N_LIMBS_LARGE * 2 - 1 {
let compute_carry = |res: F| -> F {
// TODO enforce this as an integer division
let mut res_bi = res.to_bigint_positive();
if res_bi > n_half_bi {
res_bi -= &n_bi;
}
let (div, rem) = res_bi.div_rem(&large_limb_size.to_bigint_positive());
assert!(
rem.is_zero(),
"Cannot compute carry for step {i:?}: div {div:?}, rem {rem:?}"
);
let carry_f: BigUint = bigint_to_biguint_f(div, &n_bi);
F::from_biguint(&carry_f).unwrap()
};
fn assign_carry<F, Env, ColMap>(
env: &mut Env,
n_half_bi: &BigInt,
i: usize,
newcarry: F,
carryvar: &mut F,
column_mapper: ColMap,
) where
F: PrimeField,
Env: ColWriteCap<F, FECColumn>,
ColMap: Fn(usize) -> FECColumn,
{
// Last carry should be zero, otherwise we record it
if i < N_LIMBS_LARGE * 2 - 2 {
// Carries will often not fit into 5 limbs, but they /should/ fit in 6 limbs I think.
let newcarry_sign = if &newcarry.to_bigint_positive() > n_half_bi {
F::zero() - F::one()
} else {
F::one()
};
let newcarry_abs_bui = (newcarry * newcarry_sign).to_biguint();
// Our big carries are at most 79 bits, so we need 6 small limbs per each.
// But limbs are signed, so we split into 14-bit /signed/ limbs. + last chunk is signed 9 bit.
let newcarry_limbs: [F; 6] =
limb_decompose_biguint::<F, { LIMB_BITSIZE_SMALL - 1 }, 6>(
newcarry_abs_bui.clone(),
);
for (j, limb) in newcarry_limbs.iter().enumerate() {
write_column_const(env, column_mapper(6 * i + j), &(newcarry_sign * limb));
}
*carryvar = newcarry;
} else {
// should this be in circiut?
assert!(newcarry.is_zero(), "Last carry is non-zero");
}
}
// Equation 1: s (xP - xQ) - (yP - yQ) - q_1 f = 0
let mut res1 = fold_choice2(N_LIMBS_LARGE, i, |j, k| {
slope_limbs_large[j] * (xp_limbs_large[k] - xq_limbs_large[k])
});
if i < N_LIMBS_LARGE {
res1 -= yp_limbs_large[i] - yq_limbs_large[i];
}
res1 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q1_limbs_large[j] * f_limbs_large[k]
});
res1 += carry1;
let newcarry1 = compute_carry(res1);
assign_carry(env, &n_half_bi, i, newcarry1, &mut carry1, |i| {
FECColumn::Inter(FECColumnInter::Carry1(i))
});
// Equation 2: xR - s^2 + xP + xQ - q_2 f = 0
let mut res2 = F::zero();
res2 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
slope_limbs_large[j] * slope_limbs_large[k]
});
if i < N_LIMBS_LARGE {
res2 += xr_limbs_large[i] + xp_limbs_large[i] + xq_limbs_large[i];
}
res2 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q2_limbs_large[j] * f_limbs_large[k]
});
res2 += carry2;
let newcarry2 = compute_carry(res2);
assign_carry(env, &n_half_bi, i, newcarry2, &mut carry2, |i| {
FECColumn::Inter(FECColumnInter::Carry2(i))
});
// Equation 3: yR + yP - s (xP - xR) - q_3 f = 0
let mut res3 = F::zero();
res3 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
slope_limbs_large[j] * (xp_limbs_large[k] - xr_limbs_large[k])
});
if i < N_LIMBS_LARGE {
res3 += yr_limbs_large[i] + yp_limbs_large[i];
}
res3 -= fold_choice2(N_LIMBS_LARGE, i, |j, k| {
q3_limbs_large[j] * f_limbs_large[k]
});
res3 += carry3;
let newcarry3 = compute_carry(res3);
assign_carry(env, &n_half_bi, i, newcarry3, &mut carry3, |i| {
FECColumn::Inter(FECColumnInter::Carry3(i))
});
}
constrain_ec_addition::<F, Ff, Env>(env);
(xr, yr)
}