1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//! The circuit-generation and witness-generation logic.
use std::borrow::Cow;
use super::{
api::Witness,
constants::Constants,
errors::{
RealSnarkyError, SnarkyCompilationError, SnarkyError, SnarkyResult, SnarkyRuntimeResult,
},
poseidon::poseidon,
range_checks::range_check,
};
use crate::{
circuits::gate::CircuitGate,
curve::KimchiCurve,
snarky::{
boolean::Boolean,
constraint_system::{BasicSnarkyConstraint, KimchiConstraint, SnarkyConstraintSystem},
cvar::FieldVar,
errors::SnarkyRuntimeError,
snarky_type::SnarkyType,
},
};
use ark_ff::PrimeField;
impl<F> Constraint<F>
where
F: PrimeField,
{
/// In witness generation, this checks if the constraint is satisfied by some witness values.
pub fn check_constraint(&self, env: &impl WitnessGeneration<F>) -> SnarkyRuntimeResult<()> {
match self {
Constraint::BasicSnarkyConstraint(c) => c.check_constraint(env),
Constraint::KimchiConstraint(c) => c.check_constraint(env),
}
}
}
/// An enum that wraps either a [`BasicSnarkyConstraint`] or a \[`KimchiConstraintSystem`\].
// TODO: we should get rid of this once basic constraint system is gone
#[derive(Debug)]
pub enum Constraint<F: PrimeField> {
/// Old R1CS-like constraints.
BasicSnarkyConstraint(BasicSnarkyConstraint<FieldVar<F>>),
/// Custom gates in kimchi.
KimchiConstraint(KimchiConstraint<FieldVar<F>, F>),
}
/// The state used when compiling a circuit in snarky, or used in witness generation as well.
#[derive(Debug)]
pub struct RunState<F>
where
F: PrimeField,
{
/// The constraint system used to build the circuit.
/// If not set, the constraint system is not built.
pub system: Option<SnarkyConstraintSystem<F>>,
/// The public input of the circuit used in witness generation.
// TODO: can we merge public_input and private_input?
public_input: Vec<F>,
// TODO: we could also just store `usize` here
pub(crate) public_output: Vec<FieldVar<F>>,
/// The private input of the circuit used in witness generation. Still not sure what that is, or why we care about this.
private_input: Vec<F>,
/// If set, the witness generation will check if the constraints are satisfied.
/// This is useful to simulate running the circuit and return an error if an assertion fails.
pub eval_constraints: bool,
/// The size of the public input part. This contains the public output as well.
// TODO: maybe remove the public output part here? This will affect OCaml-side though.
pub num_public_inputs: usize,
/// A counter used to track variables (this includes public inputs) as they're being created.
pub next_var: usize,
/// Indication that we're running the witness generation.
/// This does not necessarily mean that constraints are not created,
/// as we can do both at the same time.
// TODO: perhaps we should try to make the distinction between witness/constraint generation clearer
pub has_witness: bool,
/// Indication that we're running in prover mode.
/// In this mode, we do not want to create constraints.
// TODO: I think we should be able to safely remove this as we don't use this in Rust. Check with snarkyJS if they need this here though.
pub as_prover: bool,
/// A stack of labels, to get better errors.
labels_stack: Vec<Cow<'static, str>>,
/// This does not count exactly the number of constraints,
/// but rather the number of times we call [RunState::add_constraint].
constraints_counter: usize,
/// A map from a constraint index to a source location
/// (usually a file name and line number).
constraints_locations: Vec<Cow<'static, str>>,
}
//
// witness generation
//
/// A witness generation environment.
/// This is passed to any closure in [RunState::compute] so that they can access the witness generation environment.
pub trait WitnessGeneration<F>
where
F: PrimeField,
{
/// Allows the caller to obtain the value behind a circuit variable.
fn read_var(&self, var: &FieldVar<F>) -> F;
fn constraints_counter(&self) -> usize;
}
impl<F: PrimeField, G: WitnessGeneration<F>> WitnessGeneration<F> for &G {
fn read_var(&self, var: &FieldVar<F>) -> F {
G::read_var(*self, var)
}
fn constraints_counter(&self) -> usize {
G::constraints_counter(*self)
}
}
impl<F: PrimeField> WitnessGeneration<F> for &dyn WitnessGeneration<F> {
fn read_var(&self, var: &FieldVar<F>) -> F {
(**self).read_var(var)
}
fn constraints_counter(&self) -> usize {
(**self).constraints_counter()
}
}
impl<F> WitnessGeneration<F> for RunState<F>
where
F: PrimeField,
{
fn read_var(&self, var: &FieldVar<F>) -> F {
var.eval(self)
}
fn constraints_counter(&self) -> usize {
self.constraints_counter
}
}
//
// circuit generation
//
impl<F> RunState<F>
where
F: PrimeField,
{
/// Creates a new [`Self`] based on the size of the public input,
/// and the size of the public output.
/// If `with_system` is set it will create a [SnarkyConstraintSystem] in
/// order to compile a new circuit.
pub fn new<Curve: KimchiCurve<ScalarField = F>>(
public_input_size: usize,
public_output_size: usize,
with_system: bool,
) -> Self {
// init
let num_public_inputs = public_input_size + public_output_size;
// create the CS
let constants = Constants::new::<Curve>();
let system = if with_system {
let mut system = SnarkyConstraintSystem::create(constants);
system.set_primary_input_size(num_public_inputs);
Some(system)
} else {
None
};
// create the runner
let mut sys = Self {
system,
public_input: Vec::with_capacity(num_public_inputs),
public_output: Vec::with_capacity(public_output_size),
private_input: vec![],
eval_constraints: true,
num_public_inputs,
next_var: 0,
has_witness: false,
as_prover: false,
labels_stack: vec![],
constraints_counter: 0,
constraints_locations: vec![],
};
// allocate the public inputs
for _ in 0..public_input_size {
sys.alloc_var();
}
// allocate the public output and store it
for _ in 0..public_output_size {
let cvar = sys.alloc_var();
sys.public_output.push(cvar);
}
//
sys
}
/// Used internaly to evaluate variables.
/// Can panic if used with a wrong index.
pub fn read_var_idx(&self, idx: usize) -> F {
if idx < self.num_public_inputs {
self.public_input[idx]
} else {
self.private_input[idx - self.num_public_inputs]
}
}
/// Returns the public input snarky variable.
// TODO: perhaps this should be renamed `compile_circuit` and encapsulate more logic (since this is only used to compile a given circuit)
pub fn public_input<T: SnarkyType<F>>(&self) -> T {
assert_eq!(
T::SIZE_IN_FIELD_ELEMENTS,
self.num_public_inputs - self.public_output.len()
);
let mut cvars = Vec::with_capacity(T::SIZE_IN_FIELD_ELEMENTS);
for i in 0..T::SIZE_IN_FIELD_ELEMENTS {
cvars.push(FieldVar::Var(i));
}
let aux = T::constraint_system_auxiliary();
T::from_cvars_unsafe(cvars, aux)
}
/// Allocates a new var representing a private input.
pub fn alloc_var(&mut self) -> FieldVar<F> {
let v = self.next_var;
self.next_var += 1;
FieldVar::Var(v)
}
/// Stores a field element as an unconstrained private input.
pub fn store_field_elt(&mut self, x: F) -> FieldVar<F> {
let v = self.next_var;
self.next_var += 1;
self.private_input.push(x);
FieldVar::Var(v)
}
/// Creates a new non-deterministic variable associated to a value type ([SnarkyType]),
/// and a closure that can compute it when in witness generation mode.
pub fn compute<T, FUNC>(
&mut self,
loc: Cow<'static, str>,
to_compute_value: FUNC,
) -> SnarkyResult<T>
where
T: SnarkyType<F>,
FUNC: FnOnce(&dyn WitnessGeneration<F>) -> T::OutOfCircuit,
{
self.compute_inner(true, loc, to_compute_value)
}
/// Same as [Self::compute] except that it does not attempt to constrain the value it computes.
/// This is to be used internally only, when we know that the value cannot be malformed.
pub(crate) fn compute_unsafe<T, FUNC>(
&mut self,
loc: Cow<'static, str>,
to_compute_value: FUNC,
) -> SnarkyResult<T>
where
T: SnarkyType<F>,
FUNC: Fn(&dyn WitnessGeneration<F>) -> T::OutOfCircuit,
{
self.compute_inner(false, loc, to_compute_value)
}
/// The logic called by both [Self::compute] and [Self::compute_unsafe].
fn compute_inner<T, FUNC>(
&mut self,
checked: bool,
loc: Cow<'static, str>,
to_compute_value: FUNC,
) -> SnarkyResult<T>
where
T: SnarkyType<F>,
FUNC: FnOnce(&dyn WitnessGeneration<F>) -> T::OutOfCircuit,
{
// we're in witness generation mode
if self.has_witness {
// compute the value by running the closure
let value: T::OutOfCircuit = to_compute_value(self);
// convert the value into field elements
let (fields, aux) = T::value_to_field_elements(&value);
let mut field_vars = vec![];
// convert each field element into a circuit var
for field in fields {
let v = self.store_field_elt(field);
field_vars.push(v);
}
// parse them as a snarky type
let snarky_type = T::from_cvars_unsafe(field_vars, aux);
// constrain the conversion
if checked {
snarky_type.check(self, loc)?;
}
// return the snarky type
Ok(snarky_type)
}
/* we're in constraint generation mode */
else {
// create enough variables to store the given type
let mut cvars = vec![];
for _ in 0..T::SIZE_IN_FIELD_ELEMENTS {
// TODO: rename to alloc_cvar
let v = self.alloc_var();
cvars.push(v);
}
// parse them as a snarky type
let aux = T::constraint_system_auxiliary();
let snarky_type = T::from_cvars_unsafe(cvars, aux);
// constrain the created circuit variables
if checked {
snarky_type.check(self, loc)?;
}
// return the snarky type
Ok(snarky_type)
}
}
// TODO: get rid of this.
/// Creates a constraint for `assert_eq!(a * b, c)`.
pub fn assert_r1cs(
&mut self,
label: Option<Cow<'static, str>>,
loc: Cow<'static, str>,
a: FieldVar<F>,
b: FieldVar<F>,
c: FieldVar<F>,
) -> SnarkyResult<()> {
let constraint = BasicSnarkyConstraint::R1CS(a, b, c);
self.add_constraint(Constraint::BasicSnarkyConstraint(constraint), label, loc)
}
// TODO: get rid of this
/// Creates a constraint for `assert_eq!(x, y)`;
pub fn assert_eq(
&mut self,
label: Option<Cow<'static, str>>,
loc: Cow<'static, str>,
x: FieldVar<F>,
y: FieldVar<F>,
) -> SnarkyResult<()> {
let constraint = BasicSnarkyConstraint::Equal(x, y);
self.add_constraint(Constraint::BasicSnarkyConstraint(constraint), label, loc)
}
/// Adds a list of [`Constraint`] to the circuit.
// TODO: clean up all these add constraints functions
// TODO: do I really need to pass a vec?
pub fn add_constraint(
&mut self,
constraint: Constraint<F>,
label: Option<Cow<'static, str>>,
// TODO: we don't need to pass that through all the calls down the stack, we can just save it at this point (and the latest loc in the state is the one that threw)
loc: Cow<'static, str>,
) -> SnarkyResult<()> {
self.with_label(label, |env| {
// increment the constraint counter
env.constraints_counter += 1;
// TODO:
// [START_TODO]
// my understanding is that this should work with the OCaml side,
// as `generate_witness_conv` on the OCaml side will have an empty constraint_system at this point which means constraints can't be created (see next line)
// instead, I just ensure that when we're in witness generation we don't create constraints
// I don't think we ever do both at the same time on the OCaml side side anyway.
// Note: if we want to address the TODO below, I think we should instead do this:
// have an enum: 1) compile 2) witness generation 3) both
// and have the both enum variant be used from an API that does both
// [END_TODO]
env.constraints_locations.push(loc.clone());
// We check the constraint
// TODO: this is checked at the front end level, perhaps we should check at the constraint system / backend level so that we can tell exactly what row is messed up? (for internal debugging that would really help)
if env.has_witness && env.eval_constraints {
constraint
.check_constraint(env)
.map_err(|e| env.runtime_error(*e))?;
}
if !env.has_witness {
// TODO: we should have a mode "don't create constraints" instead of having an option here
let cs = match &mut env.system {
Some(cs) => cs,
None => return Ok(()),
};
match constraint {
Constraint::BasicSnarkyConstraint(c) => {
cs.add_basic_snarky_constraint(&env.labels_stack, &loc, c);
}
Constraint::KimchiConstraint(c) => {
cs.add_constraint(&env.labels_stack, &loc, c);
}
}
}
Ok(())
})
}
/// Adds a constraint that returns `then_` if `b` is `true`, `else_` otherwise.
/// Equivalent to `if b { then_ } else { else_ }`.
// TODO: move this out
pub fn if_(
&mut self,
loc: Cow<'static, str>,
b: Boolean<F>,
then_: FieldVar<F>,
else_: FieldVar<F>,
) -> SnarkyResult<FieldVar<F>> {
// r = e + b (t - e)
// r - e = b (t - e)
let cvars = b.to_cvars().0;
let b = &cvars[0];
if let FieldVar::Constant(b) = b {
if b.is_one() {
return Ok(then_);
} else {
return Ok(else_);
}
}
match (&then_, &else_) {
(FieldVar::Constant(t), FieldVar::Constant(e)) => {
let t_times_b = b.scale(*t);
let one_minus_b = FieldVar::Constant(F::one()) - b;
Ok(t_times_b + &one_minus_b.scale(*e))
}
_ => {
let b_clone = b.clone();
let then_clone = then_.clone();
let else_clone = else_.clone();
let res: FieldVar<F> = self.compute(loc.clone(), move |env| {
let b = env.read_var(&b_clone);
let res_var = if b == F::one() {
&then_clone
} else {
&else_clone
};
let res: F = res_var.read(env);
res
})?;
let then_ = &then_ - &else_;
let else_ = &res - &else_;
// TODO: annotation?
self.assert_r1cs(Some("if_".into()), loc, b.clone(), then_, else_)?;
Ok(res)
}
}
}
/// Wires the given snarky variable to the public output part of the public input.
pub(crate) fn wire_public_output(
&mut self,
return_var: impl SnarkyType<F>,
) -> SnarkyResult<()> {
// obtain cvars for the returned vars
let (return_cvars, _aux) = return_var.to_cvars();
// obtain the vars involved in the public output part of the public input
let public_output_cvars = self.public_output.clone();
if return_cvars.len() != public_output_cvars.len() {
return Err(self.runtime_error(SnarkyRuntimeError::CircuitReturnVar(
return_cvars.len(),
public_output_cvars.len(),
)));
}
// wire these to the public output part of the public input
// note: this will reduce the cvars contained in the output vars
for (a, b) in return_cvars
.into_iter()
.zip(public_output_cvars.into_iter())
{
self.assert_eq(
Some("wiring public output".into()),
"this should never error".into(),
a,
b,
)?;
}
Ok(())
}
/// Finalizes the public output using the actual variables returned by the circuit.
pub(crate) fn wire_output_and_compile(
&mut self,
return_var: impl SnarkyType<F>,
) -> SnarkyResult<&[CircuitGate<F>]> {
// wire output
self.wire_public_output(return_var)?;
// compile
if let Some(cs) = &mut self.system {
Ok(cs.finalize_and_get_gates())
} else {
// TODO: do we really want to panic here?
panic!("woot");
}
}
/// Getter for the OCaml side.
#[cfg(feature = "ocaml_types")]
pub fn get_private_inputs(&self) -> Vec<F> {
self.private_input.clone()
}
/// This adds a label in the stack of labels.
/// Every error from now one will contain this label,
/// until the label is popped (via [Self::pop_label]).
pub fn add_label(&mut self, label: Cow<'static, str>) {
self.labels_stack.push(label);
}
/// This removes a label from any error that could come up from now on.
/// Normally used shortly after [Self::add_label].
pub fn pop_label(&mut self) {
self.labels_stack.pop();
}
/// A wrapper around code that needs to be labeled
/// (for better errors).
pub fn with_label<FUNC, T>(&mut self, label: Option<Cow<'static, str>>, closure: FUNC) -> T
where
FUNC: FnOnce(&mut Self) -> T,
{
let need_to_pop = label.is_some();
if let Some(label) = label {
self.add_label(label);
}
let res = closure(self);
if need_to_pop {
self.pop_label();
}
res
}
/// Creates an [RealSnarkyError] using the current context.
pub fn error(&self, error: SnarkyError) -> RealSnarkyError {
let loc = if self.constraints_counter == 0 {
"error during initialization".into()
} else {
self.constraints_locations[self.constraints_counter - 1].clone()
};
RealSnarkyError::new_with_ctx(error, loc, self.labels_stack.clone())
}
/// Creates a runtime error.
pub fn runtime_error(&self, error: SnarkyRuntimeError) -> Box<RealSnarkyError> {
Box::new(self.error(SnarkyError::RuntimeError(error)))
}
/// Crates a compilation error.
pub fn compilation_error(&self, error: SnarkyCompilationError) -> Box<RealSnarkyError> {
Box::new(self.error(SnarkyError::CompilationError(error)))
}
pub fn generate_witness_init(&mut self, mut public_input: Vec<F>) -> SnarkyResult<()> {
// check that the given public_input is of the correct length
// (not including the public output)
let obtained = public_input.len();
let expected = self.num_public_inputs - self.public_output.len();
if expected != obtained {
return Err(
self.runtime_error(SnarkyRuntimeError::PubInputMismatch(obtained, expected))
);
}
// pad with zeros for the public output part
public_input.extend(std::iter::repeat(F::zero()).take(self.public_output.len()));
// re-initialize `next_var` (which will grow every time we compile or generate a witness)
self.next_var = self.num_public_inputs;
// set the mode to "witness generation"
self.has_witness = true;
// set the public inputs
self.public_input = public_input;
// reset the private inputs
self.private_input = Vec::with_capacity(self.private_input.len());
// reset the constraint counter for better debugging
self.constraints_counter = 0;
// reset the constraints' locations
// we have to do this to imitate what the OCaml side does
// (the OCaml side always starts with a fresh state)
self.constraints_locations = Vec::with_capacity(self.constraints_locations.len());
Ok(())
}
/// Returns the public output generated after running the circuit,
/// and the witness of the execution trace.
pub fn generate_witness(&mut self) -> Witness<F> {
// TODO: asserting this is dumb.. what if there's no private input : D
assert!(!self.private_input.is_empty());
// TODO: do we really want to panic here?
let system = self.system.as_mut().unwrap();
let get_one = |var_idx| {
if var_idx < self.num_public_inputs {
self.public_input[var_idx]
} else {
self.private_input[var_idx - self.num_public_inputs]
}
};
// compute witness
// TODO: can we avoid passing a closure here? a reference to a Inputs struct would be better perhaps.
let witness = system.compute_witness(get_one);
// clear state (TODO: find better solution)
self.public_input = vec![];
self.next_var = self.num_public_inputs;
// return public output and witness
Witness(witness)
}
pub(crate) fn poseidon_params(&self) -> mina_poseidon::poseidon::ArithmeticSpongeParams<F> {
// TODO: do we really want to panic here?
self.system.as_ref().map(|sys| sys.sponge_params()).unwrap()
}
pub fn poseidon(
&mut self,
loc: Cow<'static, str>,
preimage: (FieldVar<F>, FieldVar<F>),
) -> (FieldVar<F>, FieldVar<F>) {
poseidon(self, loc, preimage)
}
///constrains the 3 provided values to fit in 88 bits
pub fn range_check(
&mut self,
loc: Cow<'static, str>,
v0: FieldVar<F>,
v1: FieldVar<F>,
v2: FieldVar<F>,
) -> SnarkyResult<()> {
range_check(self, loc, v0, v1, v2)
}
}