1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
#![allow(clippy::all)]
//! The backend used by Snarky, gluing snarky to kimchi.
//! This module holds the actual logic that constructs the circuit using kimchi's gates,
//! as well as the logic that constructs the permutation,
//! and the symbolic execution trace table (both for compilation and at runtime).
use crate::{
circuits::{
gate::{CircuitGate, GateType},
polynomials::{
generic::GENERIC_COEFFS,
poseidon::{ROUNDS_PER_HASH, ROUNDS_PER_ROW, SPONGE_WIDTH},
},
wires::{Wire, COLUMNS, PERMUTS},
},
snarky::{constants::Constants, cvar::FieldVar, runner::WitnessGeneration},
};
use ark_ff::PrimeField;
use itertools::Itertools;
use std::{
borrow::Cow,
collections::{HashMap, HashSet},
};
use super::{errors::SnarkyRuntimeError, union_find::DisjointSet};
/** A row indexing in a constraint system.
Either a public input row, or a non-public input row that starts at index 0.
*/
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum Row {
PublicInput(usize),
AfterPublicInput(usize),
}
impl Row {
fn to_absolute(&self, public_input_size: usize) -> usize {
match self {
Row::PublicInput(i) => *i,
Row::AfterPublicInput(i) => *i + public_input_size,
}
}
}
/* TODO: rename module Position to Permutation/Wiring? */
/** A position represents the position of a cell in the constraint system.
A position is a row and a column. */
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Position<Row> {
row: Row,
col: usize,
}
impl Position<usize> {
fn to_rust_wire(self) -> Wire {
Wire {
row: self.row,
col: self.col,
}
}
}
#[derive(Debug, Clone)]
struct PendingGate<F, V> {
labels: Vec<Cow<'static, str>>,
loc: Cow<'static, str>,
vars: (Option<V>, Option<V>, Option<V>),
coeffs: Vec<F>,
}
/** A gate/row/constraint consists of a type (kind), a row, the other cells its columns/cells are
connected to (`wired_to`), and the selector polynomial associated with the gate. */
#[derive(Debug, Clone)]
struct GateSpec<Row, Field> {
kind: GateType,
wired_to: Vec<Position<Row>>,
coeffs: Vec<Field>,
}
impl<Row, Field> GateSpec<Row, Field> {
/** Applies a function [f] to the [row] of [t] and all the rows of its [`wired_to`]. */
fn map_rows<Row2, F: Fn(Row) -> Row2>(self, f: F) -> GateSpec<Row2, Field> {
let GateSpec {
kind,
wired_to,
coeffs,
} = self;
GateSpec {
kind,
wired_to: wired_to
.into_iter()
.map(|Position { row, col }| Position { row: f(row), col })
.collect(),
coeffs,
}
}
}
impl<Field: PrimeField> GateSpec<usize, Field> {
fn to_rust_gate(self) -> CircuitGate<Field> {
let GateSpec {
kind,
wired_to,
coeffs,
} = self;
let wires: Vec<_> = wired_to
.into_iter()
.take(PERMUTS)
.map(|x| x.to_rust_wire())
.collect();
CircuitGate::new(kind, wires.try_into().unwrap(), coeffs)
}
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct ScaleRound<A> {
pub accs: Vec<(A, A)>,
pub bits: Vec<A>,
pub ss: Vec<A>,
pub base: (A, A),
pub n_prev: A,
pub n_next: A,
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct EndoscaleRound<A> {
pub xt: A,
pub yt: A,
pub xp: A,
pub yp: A,
pub n_acc: A,
pub xr: A,
pub yr: A,
pub s1: A,
pub s3: A,
pub b1: A,
pub b2: A,
pub b3: A,
pub b4: A,
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct EndoscaleScalarRound<A> {
pub n0: A,
pub n8: A,
pub a0: A,
pub b0: A,
pub a8: A,
pub b8: A,
pub x0: A,
pub x1: A,
pub x2: A,
pub x3: A,
pub x4: A,
pub x5: A,
pub x6: A,
pub x7: A,
}
// TODO: get rid of this
#[derive(Debug)]
pub enum BasicSnarkyConstraint<Var> {
Boolean(Var),
Equal(Var, Var),
Square(Var, Var),
R1CS(Var, Var, Var),
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct BasicInput<Var, Field> {
pub l: (Field, Var),
pub r: (Field, Var),
pub o: (Field, Var),
pub m: Field,
pub c: Field,
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct PoseidonInput<Var> {
// TODO: revert back to arrays once we don't need to expose this struct to OCaml
// pub states: [[Var; SPONGE_WIDTH]; ROUNDS_PER_HASH],
// pub last: [Var; SPONGE_WIDTH],
pub states: Vec<Vec<Var>>,
pub last: Vec<Var>,
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct EcAddCompleteInput<Var> {
pub p1: (Var, Var),
pub p2: (Var, Var),
pub p3: (Var, Var),
pub inf: Var,
pub same_x: Var,
pub slope: Var,
pub inf_z: Var,
pub x21_inv: Var,
}
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
pub struct EcEndoscaleInput<Var> {
pub state: Vec<EndoscaleRound<Var>>,
pub xs: Var,
pub ys: Var,
pub n_acc: Var,
}
/** A PLONK constraint (or gate) can be [`Basic`](KimchiConstraint::Basic), [`Poseidon`](KimchiConstraint::Poseidon),
* [`EcAddComplete`](KimchiConstraint::EcAddComplete), [`EcScale`](KimchiConstraint::EcScale),
* [`EcEndoscale`](KimchiConstraint::EcEndoscale), or [`EcEndoscalar`](KimchiConstraint::EcEndoscalar). */
#[derive(Debug)]
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Enum)
)]
pub enum KimchiConstraint<Var, Field> {
Basic(BasicInput<Var, Field>),
Poseidon(Vec<Vec<Var>>),
Poseidon2(PoseidonInput<Var>),
EcAddComplete(EcAddCompleteInput<Var>),
EcScale(Vec<ScaleRound<Var>>),
EcEndoscale(EcEndoscaleInput<Var>),
EcEndoscalar(Vec<EndoscaleScalarRound<Var>>),
//[[Var; 15]; 4]
RangeCheck(Vec<Vec<Var>>),
}
/* TODO: This is a Unique_id in OCaml. */
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
struct InternalVar(usize);
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
enum V {
/** An external variable (generated by snarky, via [exists]). */
External(usize),
/** An internal variable is generated to hold an intermediate value
(e.g., in reducing linear combinations to single PLONK positions).
*/
Internal(InternalVar),
}
/** Keeps track of a circuit (which is a list of gates)
while it is being written.
*/
#[derive(Debug, Clone)]
enum Circuit<F>
where
F: PrimeField,
{
/** A circuit still being written. */
Unfinalized(Vec<GateSpec<(), F>>),
/** Once finalized, a circuit is represented as a digest
and a list of gates that corresponds to the circuit.
*/
Compiled([u8; 32], Vec<CircuitGate<F>>),
}
/** The constraint system. */
#[derive(Debug, Clone)]
pub struct SnarkyConstraintSystem<Field>
where
Field: PrimeField,
{
// TODO: once we have a trait we can get these via the Curve (if we parameterize SnarkyConstraintSystem on the curve)
constants: Constants<Field>,
/** Map of cells that share the same value (enforced by to the permutation). */
equivalence_classes: HashMap<V, Vec<Position<Row>>>,
next_internal_var: usize,
/** How to compute each internal variable (as a linear combination of other variables). */
internal_vars: HashMap<InternalVar, (Vec<(Field, V)>, Option<Field>)>,
/** The variables that hold each witness value for each row, in reverse order. */
rows: Vec<Vec<Option<V>>>,
/** A circuit is described by a series of gates.
A gate is finalized once [finalize_and_get_gates](SnarkyConstraintSystem::finalize_and_get_gates) is called.
The finalized tag contains the digest of the circuit.
*/
gates: Circuit<Field>,
/** The row to use the next time we add a constraint. */
// TODO: I think we can delete this and get it from rows.len() or something
next_row: usize,
/** The size of the public input (which fills the first rows of our constraint system. */
public_input_size: Option<usize>,
/** The number of previous recursion challenges. */
prev_challenges: Option<usize>,
/// Enables the double generic gate optimization.
/// It can be useful to disable this feature for debugging.
generic_gate_optimization: bool,
/** Queue (of size 1) of generic gate. */
pending_generic_gate: Option<PendingGate<Field, V>>,
/** V.t's corresponding to constant values. We reuse them so we don't need to
use a fresh generic constraint each time to create a constant.
*/
cached_constants: HashMap<Field, V>,
/** The [equivalence_classes](SnarkyConstraintSystem::equivalence_classes) field keeps track of the positions which must be
enforced to be equivalent due to the fact that they correspond to the same V.t value.
I.e., positions that are different usages of the same [V.t].
We use a union-find data structure to track equalities that a constraint system wants
enforced *between* [V.t] values. Then, at the end, for all [V.t]s that have been unioned
together, we combine their equivalence classes in the [equivalence_classes](SnarkyConstraintSystem::equivalence_classes) table into
a single equivalence class, so that the permutation argument enforces these desired equalities
as well.
*/
union_finds: DisjointSet<V>,
}
impl<Field: PrimeField> SnarkyConstraintSystem<Field> {
/** Sets the number of public-input. It must and can only be called once. */
pub fn set_primary_input_size(&mut self, num_pub_inputs: usize) {
if self.public_input_size.is_some() {
panic!("set_primary_input_size can only be called once");
}
self.public_input_size = Some(num_pub_inputs);
}
pub fn set_prev_challenges(&mut self, prev_challenges: usize) {
if self.prev_challenges.is_some() {
panic!("set_prev_challenges can only be called once");
}
self.prev_challenges = Some(prev_challenges);
}
/** Converts the set of permutations (`equivalence_classes`) to
a hash table that maps each position to the next one.
For example, if one of the equivalence class is [pos1, pos3, pos7],
the function will return a hashtable that maps pos1 to pos3,
pos3 to pos7, and pos7 to pos1.
*/
fn equivalence_classes_to_hashtbl(&mut self) -> HashMap<Position<Row>, Position<Row>> {
let mut equivalence_classes: HashMap<usize, HashSet<Position<Row>>> = HashMap::new();
for (key, data) in &self.equivalence_classes {
let u = self.union_finds.find(*key).unwrap();
let entry = equivalence_classes.entry(u).or_insert_with(HashSet::new);
for position in data.iter() {
entry.insert(*position);
}
}
let mut res: HashMap<Position<Row>, Position<Row>> = HashMap::new();
for data in equivalence_classes.into_values() {
let mut data: Vec<_> = data.into_iter().collect();
/* HashSet uses an unstable order, so sort to avoid dealing with that. */
data.sort();
for (i, j) in (0..data.len()).zip((1..data.len()).chain(0..=0)) {
res.insert(data[i], data[j]);
}
}
res
}
pub fn compute_witness_for_ocaml(
&mut self,
public_inputs: &[Field],
private_inputs: &[Field],
) -> [Vec<Field>; COLUMNS] {
// make sure it's finalized
self.finalize();
// ensure that we have the right number of public inputs
let public_input_size = self.get_primary_input_size();
assert_eq!(public_inputs.len(), public_input_size);
// create closure that will read variables from the input
let external_values = |i| {
if i < public_input_size {
public_inputs[i]
} else {
private_inputs[i - public_input_size]
}
};
// compute witness
self.compute_witness(external_values)
}
/// Compute the witness, given the constraint system `sys`
/// and a function that converts the indexed secret inputs to their concrete values.
///
/// # Panics
///
/// Will panic if some inputs like `public_input_size` are unknown(None value).
// TODO: build the transposed version instead of this
pub fn compute_witness<FUNC>(&mut self, external_values: FUNC) -> [Vec<Field>; COLUMNS]
where
FUNC: Fn(usize) -> Field,
{
// make sure it's finalized
self.finalize();
// init execution trace table
let mut internal_values = HashMap::new();
let public_input_size = self.public_input_size.unwrap();
let num_rows = public_input_size + self.next_row;
let mut res: [_; COLUMNS] = std::array::from_fn(|_| vec![Field::zero(); num_rows]);
// obtain public input from closure
for i in 0..public_input_size {
res[0][i] = external_values(i);
}
// compute rest of execution trace table
for (i_after_input, cols) in self.rows.iter().enumerate() {
let row_idx = i_after_input + public_input_size;
for (col_idx, var) in cols.iter().enumerate() {
match var {
// keep default value of zero
None => (),
// use closure for external values
Some(V::External(var)) => res[col_idx][row_idx] = external_values(*var),
// for internal values, compute the linear combination
Some(V::Internal(var)) => {
let (lc, c) = {
match self.internal_vars.get(var) {
None => panic!("Could not find {:?}", var),
Some(x) => x,
}
};
let value = {
lc.iter().fold(c.unwrap_or(Field::zero()), |acc, (s, x)| {
let x = match x {
V::External(x) => external_values(*x),
V::Internal(x) => match internal_values.get(x) {
None => panic!("Could not find {:?}", *x),
Some(value) => *value,
},
};
acc + (*s * x)
})
};
res[col_idx][row_idx] = value;
internal_values.insert(var, value);
}
}
}
}
res
}
fn union_find(&mut self, value: V) {
self.union_finds.make_set(value);
}
fn create_internal(&mut self, constant: Option<Field>, lc: Vec<(Field, V)>) -> V {
let v = InternalVar(self.next_internal_var);
self.next_internal_var += 1;
self.union_find(V::Internal(v));
self.internal_vars.insert(v, (lc, constant));
V::Internal(v)
}
pub fn create(constants: Constants<Field>) -> Self {
Self {
// TODO: if we expect a `Field: KimchiParams` we can simply do `Field::constants()` here. But we might want to wait for Fabrizio's trait? Also we should keep this close to the OCaml stuff if we want to avoid pains when we plug this in
constants: constants,
public_input_size: None,
prev_challenges: None,
next_internal_var: 0,
internal_vars: HashMap::new(),
gates: Circuit::Unfinalized(Vec::new()),
rows: Vec::new(),
next_row: 0,
equivalence_classes: HashMap::new(),
generic_gate_optimization: true,
pending_generic_gate: None,
cached_constants: HashMap::new(),
union_finds: DisjointSet::new(),
}
}
/// Returns the number of public inputs.
///
/// # Panics
///
/// Will panic if `public_input_size` is None.
pub fn get_primary_input_size(&self) -> usize {
self.public_input_size.expect("attempt to retrieve public input size before it was set (via `set_primary_input_size`)")
}
pub fn get_prev_challenges(&self) -> Option<usize> {
self.prev_challenges
}
/** Sets the number of public-input. It should only be called once. */
pub fn set_public_input_size(&mut self, x: usize) {
self.public_input_size = Some(x);
}
/** Adds {row; col} to the system's wiring under a specific key.
A key is an external or internal variable.
The row must be given relative to the start of the circuit
(so at the start of the public-input rows). */
fn wire_(&mut self, key: V, row: Row, col: usize) {
self.union_find(key);
self.equivalence_classes
.entry(key)
.or_insert_with(Vec::new)
.push(Position { row, col });
}
/** Same as wire', except that the row must be given relatively to the end of the public-input rows. */
fn wire(&mut self, key: V, row: usize, col: usize) {
self.wire_(key, Row::AfterPublicInput(row), col);
}
/** Adds a row/gate/constraint to a constraint system `sys`. */
fn add_row(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
vars: Vec<Option<V>>,
kind: GateType,
coeffs: Vec<Field>,
) {
// TODO: for now we can print the debug info at runtime, but in the future we should allow serialization of these things as well
// TODO: this ignores the public gates!!
if std::env::var("SNARKY_LOG_CONSTRAINTS").is_ok() {
println!("{}: {loc} - {}", self.next_row, labels.join(", "));
}
/* As we're adding a row, we're adding new cells.
If these cells (the first 7) contain variables,
make sure that they are wired
*/
let num_vars = std::cmp::min(PERMUTS, vars.len());
for (col, x) in vars.iter().take(num_vars).enumerate() {
match x {
None => (),
Some(x) => self.wire(*x, self.next_row, col),
}
}
match &mut self.gates {
Circuit::Compiled(_, _) => panic!("add_row called on finalized constraint system"),
Circuit::Unfinalized(gates) => {
gates.push(GateSpec {
kind,
wired_to: Vec::new(),
coeffs,
});
}
}
self.next_row += 1;
self.rows.push(vars);
}
/// Returns the number of rows in the constraint system.
/// Note: This is not necessarily the number of rows of the compiled circuit.
/// If the circuit has not finished compiling, you will only get the current number of rows.
pub fn get_rows_len(&self) -> usize {
self.rows.len()
}
/// Fill the `gate` values(input and output), and finalize the `circuit`.
///
/// # Panics
///
/// Will panic if `circuit` is completed.
pub fn finalize(&mut self) {
// if it's already finalized, return early
if matches!(self.gates, Circuit::Compiled(..)) {
// TODO: return an error?
return;
}
// if we still have some pending gates, deal with it first
if let Some(PendingGate {
labels,
loc,
vars: (l, r, o),
coeffs,
}) = self.pending_generic_gate.take()
{
self.pending_generic_gate = None;
self.add_row(
&labels,
&loc,
vec![l, r, o],
GateType::Generic,
coeffs.clone(),
);
}
// get gates without holding on an immutable reference
let gates = match std::mem::replace(&mut self.gates, Circuit::Unfinalized(vec![])) {
Circuit::Unfinalized(gates) => gates,
Circuit::Compiled(_, _) => panic!("we expect the gates to be unfinalized"),
};
/* Create rows for public input. */
let public_input_size = self.public_input_size.unwrap();
let pub_selectors: Vec<_> = vec![
Field::one(),
// TODO: unecessary
Field::zero(),
Field::zero(),
Field::zero(),
Field::zero(),
];
let mut public_gates = Vec::new();
for row in 0..public_input_size {
let public_var = V::External(row);
self.wire_(public_var, Row::PublicInput(row), 0);
public_gates.push(GateSpec {
kind: GateType::Generic,
wired_to: Vec::new(),
coeffs: pub_selectors.clone(),
});
}
/* Construct permutation hashmap */
let pos_map = self.equivalence_classes_to_hashtbl();
let permutation = |pos: Position<Row>| *pos_map.get(&pos).unwrap_or(&pos);
let update_gate_with_permutation_info = |row: Row, gate: GateSpec<(), Field>| {
let GateSpec {
kind,
wired_to: _,
coeffs,
} = gate;
GateSpec {
kind,
wired_to: (0..PERMUTS)
.map(|col| permutation(Position { row, col }))
.collect(),
coeffs,
}
};
let public_gates = public_gates
.into_iter()
.enumerate()
.map(|(absolute_row, gate)| {
update_gate_with_permutation_info(Row::PublicInput(absolute_row), gate)
})
.collect();
let gates = gates
.into_iter()
.enumerate()
.map(|(relative_row, gate)| {
update_gate_with_permutation_info(Row::AfterPublicInput(relative_row), gate)
})
.collect();
/* concatenate and convert to absolute rows */
let to_absolute_row =
|gate: GateSpec<_, _>| gate.map_rows(|row: Row| row.to_absolute(public_input_size));
/* convert all the gates into our Gates.t Rust vector type */
let mut rust_gates = vec![];
let mut add_gates = |gates: Vec<_>| {
for gate in gates {
let g = to_absolute_row(gate);
rust_gates.push(g.to_rust_gate());
}
};
add_gates(public_gates);
add_gates(gates);
let digest = {
use o1_utils::hasher::CryptoDigest as _;
let circuit = crate::circuits::gate::Circuit::new(public_input_size, &rust_gates);
circuit.digest()
};
self.gates = Circuit::Compiled(digest, rust_gates);
}
/// Produces a digest of the constraint system.
///
/// # Panics
///
/// Will panic if the constraint system has not previously been compiled (via [`Self::finalize`]).
pub fn digest(&mut self) -> [u8; 32] {
// make sure it's finalized
self.finalize();
match &self.gates {
Circuit::Compiled(digest, _) => *digest,
Circuit::Unfinalized(_) => unreachable!(),
}
}
// TODO: why does it return a mutable reference?
pub fn finalize_and_get_gates(&mut self) -> &mut Vec<CircuitGate<Field>> {
self.finalize();
match &mut self.gates {
Circuit::Compiled(_, gates) => gates,
Circuit::Unfinalized(_) => unreachable!(),
}
}
}
/** Regroup terms that share the same variable.
For example, (3, i2) ; (2, i2) can be simplified to (5, i2).
It assumes that the list of given terms is sorted,
and that i0 is the smallest one.
For example, `i0 = 1` and `terms = [(_, 2); (_, 2); (_; 4); ...]`
Returns `(last_scalar, last_variable, terms, terms_length)`
where terms does not contain the last scalar and last variable observed.
*/
fn accumulate_terms<Field: PrimeField>(terms: Vec<(Field, usize)>) -> HashMap<usize, Field> {
let mut acc = HashMap::new();
for (x, i) in terms {
match acc.entry(i) {
std::collections::hash_map::Entry::Occupied(mut entry) => {
let res = x + entry.get();
if res.is_zero() {
entry.remove();
} else {
*entry.get_mut() = res;
}
}
std::collections::hash_map::Entry::Vacant(entry) => {
if !x.is_zero() {
entry.insert(x);
}
}
}
}
acc
}
pub trait SnarkyCvar: Clone {
type Field;
fn to_constant_and_terms(&self) -> (Option<Self::Field>, Vec<(Self::Field, usize)>);
}
pub fn canonicalize<Cvar>(x: Cvar) -> Option<(Vec<(Cvar::Field, usize)>, usize, bool)>
where
Cvar: SnarkyCvar,
Cvar::Field: PrimeField,
{
let (c, mut terms) = x.to_constant_and_terms();
/* Note: [(c, 0)] represents the field element [c] multiplied by the 0th
variable, which is held constant as [Field.one].
*/
if let Some(c) = c {
terms.push((c, 0));
}
let has_constant_term = c.is_some();
let terms = accumulate_terms(terms);
let mut terms_list: Vec<_> = terms.into_iter().map(|(key, data)| (data, key)).collect();
terms_list.sort();
terms_list.reverse();
let num_terms = terms_list.len();
Some((terms_list, num_terms, has_constant_term))
}
impl<Field: PrimeField> SnarkyConstraintSystem<Field> {
/** Adds a generic constraint to the constraint system.
As there are two generic gates per row, we queue
every other generic gate.
*/
fn add_generic_constraint(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
l: Option<V>,
r: Option<V>,
o: Option<V>,
mut coeffs: Vec<Field>,
) {
if !self.generic_gate_optimization {
assert!(coeffs.len() <= GENERIC_COEFFS);
self.add_row(labels, loc, vec![l, r, o], GateType::Generic, coeffs);
return;
}
match self.pending_generic_gate {
None => {
self.pending_generic_gate = Some(PendingGate {
labels: labels.to_vec(),
loc: loc.to_owned(),
vars: (l, r, o),
coeffs,
})
}
Some(_) => {
if let Some(PendingGate {
labels: labels2,
loc: loc2,
vars: (l2, r2, o2),
coeffs: coeffs2,
}) = std::mem::replace(&mut self.pending_generic_gate, None)
{
let labels1 = labels.join(",");
let labels2 = labels2.join(",");
let labels = vec![Cow::Owned(format!("gen1:[{}] gen2:[{}]", labels1, labels2))];
let loc = format!("gen1:[{}] gen2:[{}]", loc, loc2).into();
coeffs.extend(coeffs2);
self.add_row(
&labels,
&loc,
vec![l, r, o, l2, r2, o2],
GateType::Generic,
coeffs,
);
}
}
}
}
/** Converts a number of scaled additions \sum `s_i` * `x_i`
to as many constraints as needed,
creating temporary variables for each new row/constraint,
and returning the output variable.
For example, [(s1, x1), (s2, x2)] is transformed into:
- internal_var_1 = s1 * x1 + s2 * x2
- return (1, internal_var_1)
and [(s1, x1), (s2, x2), (s3, x3)] is transformed into:
- internal_var_1 = s1 * x1 + s2 * x2
- internal_var_2 = 1 * internal_var_1 + s3 * x3
- return (1, internal_var_2)
It assumes that the list of terms is not empty. */
fn completely_reduce<Terms>(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
terms: Terms,
) -> (Field, V)
where
Terms: IntoIterator<Item = (Field, usize)>,
<Terms as IntoIterator>::IntoIter: DoubleEndedIterator,
{
let mut res = None;
for last in terms.into_iter().rev() {
match res {
None => {
let (s, x) = last;
res = Some((s, V::External(x)));
}
Some((rs, rx)) => {
let (ls, lx) = last;
let lx = V::External(lx);
let s1x1_plus_s2x2 = self.create_internal(None, vec![(ls, lx), (rs, rx)]);
self.add_generic_constraint(
labels,
loc,
Some(lx),
Some(rx),
Some(s1x1_plus_s2x2),
vec![ls, rs, -Field::one(), Field::zero(), Field::zero()],
);
res = Some((Field::one(), s1x1_plus_s2x2));
}
}
}
res.expect("At least one term")
}
/** Converts a linear combination of variables into a set of constraints.
It returns the output variable as (1, `Var res),
unless the output is a constant, in which case it returns (c, `Constant).
*/
fn reduce_lincom<Cvar>(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
x: Cvar,
) -> (Field, ConstantOrVar)
where
Cvar: SnarkyCvar<Field = Field>,
{
let (constant, terms) = x.to_constant_and_terms();
let terms = accumulate_terms(terms);
let mut terms_list: Vec<_> = terms.into_iter().map(|(key, data)| (data, key)).collect();
terms_list.sort();
match (constant, terms_list.len()) {
(Some(c), 0) => (c, ConstantOrVar::Constant),
(None, 0) => (Field::zero(), ConstantOrVar::Constant),
(None, 1) => {
let (ls, lx) = &terms_list[0];
(*ls, ConstantOrVar::Var(V::External(*lx)))
}
(Some(c), 1) => {
let (ls, lx) = &terms_list[0];
/* res = ls * lx + c */
let res = self.create_internal(Some(c), vec![(*ls, V::External(*lx))]);
self.add_generic_constraint(
labels,
loc,
Some(V::External(*lx)),
None,
Some(res),
vec![*ls, Field::zero(), -Field::one(), Field::zero(), c],
);
(Field::one(), ConstantOrVar::Var(res))
}
_ => {
/* reduce the terms, then add the constant */
let mut terms_list_iterator = terms_list.into_iter();
let (ls, lx) = terms_list_iterator.next().unwrap();
let (rs, rx) = self.completely_reduce(labels, loc, terms_list_iterator);
let res = self.create_internal(constant, vec![(ls, V::External(lx)), (rs, rx)]);
/* res = ls * lx + rs * rx + c */
self.add_generic_constraint(
labels,
loc,
Some(V::External(lx)),
Some(rx),
Some(res),
vec![
ls,
rs,
-Field::one(),
Field::zero(),
constant.unwrap_or(Field::zero()),
],
);
(Field::one(), ConstantOrVar::Var(res))
}
}
}
/// reduce any [Cvar] to a single internal variable [V]
fn reduce_to_var<Cvar>(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
x: Cvar,
) -> V
where
Cvar: SnarkyCvar<Field = Field>,
{
match self.reduce_lincom(labels, loc, x) {
(s, ConstantOrVar::Var(x)) => {
if s == Field::one() {
x
} else {
let sx = self.create_internal(Some(s), vec![(s, x)]);
// s * x - sx = 0
self.add_generic_constraint(
labels,
loc,
Some(x),
None,
Some(sx),
vec![
s,
Field::zero(),
Field::one().neg(),
Field::zero(),
Field::zero(),
],
);
sx
}
}
(s, ConstantOrVar::Constant) => match self.cached_constants.get(&s) {
Some(x) => *x,
None => {
let x = self.create_internal(None, vec![]);
self.add_generic_constraint(
labels,
loc,
Some(x),
None,
None,
vec![
Field::one(),
Field::zero(),
Field::zero(),
Field::zero(),
s.neg(),
],
);
self.cached_constants.insert(s, x);
x
}
},
}
}
/// Applies the basic `SnarkyConstraint`.
/// Simply, place the values of `selector`(`sl`, `sr`, `so` ...) and `input`(`l`, `r`, `o`, `m`).
///
/// # Panics
///
/// Will panic if `constant selector` constraints are not matching.
pub fn add_basic_snarky_constraint<Cvar>(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
constraint: BasicSnarkyConstraint<Cvar>,
) where
Cvar: SnarkyCvar<Field = Field>,
{
match constraint {
BasicSnarkyConstraint::Square(v1, v2) => {
match (
self.reduce_lincom(labels, loc, v1),
self.reduce_lincom(labels, loc, v2),
) {
((sl, ConstantOrVar::Var(xl)), (so, ConstantOrVar::Var(xo))) =>
/* (sl * xl)^2 = so * xo
sl^2 * xl * xl - so * xo = 0
*/
{
self.add_generic_constraint(
labels,
loc,
Some(xl),
Some(xl),
Some(xo),
vec![Field::zero(), Field::zero(), -so, sl * sl, Field::zero()],
);
}
((sl, ConstantOrVar::Var(xl)), (so, ConstantOrVar::Constant)) =>
/* TODO: it's hard to read the array of selector values, name them! */
{
self.add_generic_constraint(
labels,
loc,
Some(xl),
Some(xl),
None,
vec![Field::zero(), Field::zero(), Field::zero(), sl * sl, -so],
);
}
((sl, ConstantOrVar::Constant), (so, ConstantOrVar::Var(xo))) =>
/* sl^2 = so * xo */
{
self.add_generic_constraint(
labels,
loc,
None,
None,
Some(xo),
vec![Field::zero(), Field::zero(), so, Field::zero(), -(sl * sl)],
);
}
((sl, ConstantOrVar::Constant), (so, ConstantOrVar::Constant)) => {
assert_eq!(sl * sl, so);
}
}
}
BasicSnarkyConstraint::R1CS(v1, v2, v3) => match (
self.reduce_lincom(labels, loc, v1),
self.reduce_lincom(labels, loc, v2),
self.reduce_lincom(labels, loc, v3),
) {
(
(s1, ConstantOrVar::Var(x1)),
(s2, ConstantOrVar::Var(x2)),
(s3, ConstantOrVar::Var(x3)),
) =>
/* s1 x1 * s2 x2 = s3 x3
- s1 s2 (x1 x2) + s3 x3 = 0
*/
{
self.add_generic_constraint(
labels,
loc,
Some(x1),
Some(x2),
Some(x3),
vec![Field::zero(), Field::zero(), s3, (-s1) * s2, Field::zero()],
);
}
(
(s1, ConstantOrVar::Var(x1)),
(s2, ConstantOrVar::Var(x2)),
(s3, ConstantOrVar::Constant),
) => self.add_generic_constraint(
labels,
loc,
Some(x1),
Some(x2),
None,
vec![Field::zero(), Field::zero(), Field::zero(), (s1 * s2), -s3],
),
(
(s1, ConstantOrVar::Var(x1)),
(s2, ConstantOrVar::Constant),
(s3, ConstantOrVar::Var(x3)),
) =>
/* s1 x1 * s2 = s3 x3 */
{
self.add_generic_constraint(
labels,
loc,
Some(x1),
None,
Some(x3),
vec![(s1 * s2), Field::zero(), -s3, Field::zero(), Field::zero()],
);
}
(
(s1, ConstantOrVar::Constant),
(s2, ConstantOrVar::Var(x2)),
(s3, ConstantOrVar::Var(x3)),
) => self.add_generic_constraint(
labels,
loc,
None,
Some(x2),
Some(x3),
vec![Field::zero(), (s1 * s2), -s3, Field::zero(), Field::zero()],
),
(
(s1, ConstantOrVar::Var(x1)),
(s2, ConstantOrVar::Constant),
(s3, ConstantOrVar::Constant),
) => self.add_generic_constraint(
labels,
loc,
Some(x1),
None,
None,
vec![(s1 * s2), Field::zero(), Field::zero(), Field::zero(), -s3],
),
(
(s1, ConstantOrVar::Constant),
(s2, ConstantOrVar::Var(x2)),
(s3, ConstantOrVar::Constant),
) => self.add_generic_constraint(
labels,
loc,
None,
None,
Some(x2),
vec![Field::zero(), (s1 * s2), Field::zero(), Field::zero(), -s3],
),
(
(s1, ConstantOrVar::Constant),
(s2, ConstantOrVar::Constant),
(s3, ConstantOrVar::Var(x3)),
) => self.add_generic_constraint(
labels,
loc,
None,
None,
Some(x3),
vec![Field::zero(), Field::zero(), s3, Field::zero(), (-s1) * s2],
),
(
(s1, ConstantOrVar::Constant),
(s2, ConstantOrVar::Constant),
(s3, ConstantOrVar::Constant),
) => assert_eq!(s3, s1 * s2),
},
BasicSnarkyConstraint::Boolean(v) => {
let (s, x) = self.reduce_lincom(labels, loc, v);
match x {
ConstantOrVar::Var(x) =>
/* -x + x * x = 0 */
{
self.add_generic_constraint(
labels,
loc,
Some(x),
Some(x),
None,
vec![
-Field::one(),
Field::zero(),
Field::zero(),
Field::one(),
Field::zero(),
],
);
}
ConstantOrVar::Constant => assert_eq!(s, (s * s)),
}
}
BasicSnarkyConstraint::Equal(v1, v2) => {
let ((s1, x1), (s2, x2)) = (
self.reduce_lincom(labels, loc, v1),
self.reduce_lincom(labels, loc, v2),
);
match (x1, x2) {
(ConstantOrVar::Var(x1), ConstantOrVar::Var(x2)) => {
/* TODO: This logic is wrong, but matches the OCaml side. Fix both. */
if s1 == s2 {
if !s1.is_zero() {
self.union_find(x1);
self.union_find(x2);
self.union_finds.union(x1, x2).unwrap();
};
} else if
/* s1 x1 - s2 x2 = 0 */
s1 != s2 {
self.add_generic_constraint(
labels,
loc,
Some(x1),
Some(x2),
None,
vec![s1, -s2, Field::zero(), Field::zero(), Field::zero()],
);
} else {
self.add_generic_constraint(
labels,
loc,
Some(x1),
Some(x2),
None,
vec![s1, -s2, Field::zero(), Field::zero(), Field::zero()],
);
}
}
(ConstantOrVar::Var(x1), ConstantOrVar::Constant) => {
/* s1 * x1 = s2
x1 = s2 / s1
*/
let ratio = s2 / s1;
match self.cached_constants.get(&ratio) {
Some(x2) => {
let x2 = x2.clone();
self.union_find(x1);
self.union_find(x2);
self.union_finds.union(x1, x2).unwrap();
}
None => {
self.add_generic_constraint(
labels,
loc,
Some(x1),
None,
None,
vec![s1, Field::zero(), Field::zero(), Field::zero(), -s2],
);
self.cached_constants.insert(ratio, x1);
}
}
}
(ConstantOrVar::Constant, ConstantOrVar::Var(x2)) => {
/* s1 = s2 * x2
x2 = s1 / s2
*/
let ratio = s1 / s2;
match self.cached_constants.get(&ratio) {
Some(x1) => {
let x1 = x1.clone();
self.union_find(x1);
self.union_find(x2);
self.union_finds.union(x1, x2).unwrap();
}
None => {
self.add_generic_constraint(
labels,
loc,
None,
Some(x2),
None,
vec![Field::zero(), s2, Field::zero(), Field::zero(), -s1],
);
self.cached_constants.insert(ratio, x2);
}
}
}
(ConstantOrVar::Constant, ConstantOrVar::Constant) => assert_eq!(s1, s2),
}
}
}
}
/// Applies the `KimchiConstraint(s)` to the `circuit`.
///
/// # Panics
///
/// Will panic if `witness` fields are empty.
pub fn add_constraint<Cvar>(
&mut self,
labels: &[Cow<'static, str>],
loc: &Cow<'static, str>,
constraint: KimchiConstraint<Cvar, Field>,
) where
Cvar: SnarkyCvar<Field = Field>,
{
match constraint {
KimchiConstraint::Basic(BasicInput { l, r, o, m, c }) => {
/* 0
= l.s * l.x
+ r.s * r.x
+ o.s * o.x
+ m * (l.x * r.x)
+ c
=
l.s * l.s' * l.x'
+ r.s * r.s' * r.x'
+ o.s * o.s' * o.x'
+ m * (l.s' * l.x' * r.s' * r.x')
+ c
=
(l.s * l.s') * l.x'
+ (r.s * r.s') * r.x'
+ (o.s * o.s') * o.x'
+ (m * l.s' * r.s') * l.x' r.x'
+ c
*/
let mut c = c;
let mut red_pr = |(s, x)| match self.reduce_lincom(labels, loc, x) {
(s2, ConstantOrVar::Constant) => {
c += s * s2;
(s2, None)
}
(s2, ConstantOrVar::Var(x)) => (s2, Some((s * s2, x))),
};
/* l.s * l.x
+ r.s * r.x
+ o.s * o.x
+ m * (l.x * r.x)
+ c
=
l.s * l.s' * l.x'
+ r.s * r.x
+ o.s * o.x
+ m * (l.x * r.x)
+ c
=
*/
let (l_s, l) = red_pr(l);
let (r_s, r) = red_pr(r);
let (_, o) = red_pr(o);
let var = |x: Option<_>| x.map(|(_, x)| x);
let coeff = |x: Option<_>| x.map_or(Field::zero(), |(x, _)| x);
let m = match (l, r) {
(Some(_), Some(_)) => l_s * r_s * m,
_ => {
panic!("Must use non-constant car in plonk constraints")
}
};
self.add_generic_constraint(
labels,
loc,
var(l),
var(r),
var(o),
vec![coeff(l), coeff(r), coeff(o), m, c],
);
}
// TODO: the code in circuit-writer was better
// TODO: also `rounds` would be a better name than `state`
KimchiConstraint::Poseidon(state) => {
// we expect state to be a vector of all the intermediary round states
// (in addition to the initial and final states)
assert_eq!(state.len(), ROUNDS_PER_HASH + 1);
// where each state is three field elements
assert!(state.iter().all(|x| x.len() == SPONGE_WIDTH));
// reduce the state
let state: Vec<Vec<_>> = state
.into_iter()
.map(|vars| {
vars.into_iter()
.map(|x| self.reduce_to_var(labels, loc, x))
.collect()
})
.collect();
// retrieve the final state
let mut rev_state = state.into_iter().rev();
let final_state = rev_state.next().unwrap();
let state = rev_state.rev();
// iterate ROUNDS_PER_ROW rounds at a time
for mut round_state in &state.enumerate().chunks(5) {
let (round_0, state_0) = round_state.next().unwrap();
let (round_1, state_1) = round_state.next().unwrap();
let (round_2, state_2) = round_state.next().unwrap();
let (round_3, state_3) = round_state.next().unwrap();
let (round_4, state_4) = round_state.next().unwrap();
let vars = vec![
Some(state_0[0]),
Some(state_0[1]),
Some(state_0[2]),
// the last state is in 2nd position
Some(state_4[0]),
Some(state_4[1]),
Some(state_4[2]),
Some(state_1[0]),
Some(state_1[1]),
Some(state_1[2]),
Some(state_2[0]),
Some(state_2[1]),
Some(state_2[2]),
Some(state_3[0]),
Some(state_3[1]),
Some(state_3[2]),
];
let coeffs = vec![
self.constants.poseidon.round_constants[round_0][0],
self.constants.poseidon.round_constants[round_0][1],
self.constants.poseidon.round_constants[round_0][2],
self.constants.poseidon.round_constants[round_1][0],
self.constants.poseidon.round_constants[round_1][1],
self.constants.poseidon.round_constants[round_1][2],
self.constants.poseidon.round_constants[round_2][0],
self.constants.poseidon.round_constants[round_2][1],
self.constants.poseidon.round_constants[round_2][2],
self.constants.poseidon.round_constants[round_3][0],
self.constants.poseidon.round_constants[round_3][1],
self.constants.poseidon.round_constants[round_3][2],
self.constants.poseidon.round_constants[round_4][0],
self.constants.poseidon.round_constants[round_4][1],
self.constants.poseidon.round_constants[round_4][2],
];
self.add_row(labels, loc, vars, GateType::Poseidon, coeffs);
}
// add_last_row adds the last row containing the output
let vars = vec![
Some(final_state[0]),
Some(final_state[1]),
Some(final_state[2]),
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
];
self.add_row(labels, loc, vars, GateType::Zero, vec![]);
}
KimchiConstraint::Poseidon2(PoseidonInput { states, last }) => {
// reduce variables
let states = states
.into_iter()
.map(|round| {
round
.into_iter()
.map(|x| self.reduce_to_var(labels, loc, x))
.collect_vec()
})
.collect_vec();
// create the rows
for rounds in &states
.into_iter()
// TODO: poseidon constants should really be passed instead of living in the constraint system as a cfg no? annoying clone fosho
.zip(self.constants.poseidon.round_constants.clone())
.chunks(ROUNDS_PER_ROW)
{
let (vars, coeffs) = rounds
.into_iter()
.flat_map(|(round, round_constants)| {
round
.into_iter()
.map(Option::Some)
.zip(round_constants.into_iter())
})
.unzip();
self.add_row(labels, loc, vars, GateType::Poseidon, coeffs);
}
// last row is a zero gate to save as output
let last = last
.into_iter()
.map(|x| self.reduce_to_var(labels, loc, x))
.map(Some)
.collect_vec();
self.add_row(labels, loc, last, GateType::Zero, vec![]);
}
KimchiConstraint::EcAddComplete(EcAddCompleteInput {
p1,
p2,
p3,
inf,
same_x,
slope,
inf_z,
x21_inv,
}) => {
let mut reduce_curve_point = |(x, y)| {
(
self.reduce_to_var(labels, loc, x),
self.reduce_to_var(labels, loc, y),
)
};
// 0 1 2 3 4 5 6 7 8 9
// x1 y1 x2 y2 x3 y3 inf same_x s inf_z x21_inv
let (x1, y1) = reduce_curve_point(p1);
let (x2, y2) = reduce_curve_point(p2);
let (x3, y3) = reduce_curve_point(p3);
let vars = vec![
Some(x1),
Some(y1),
Some(x2),
Some(y2),
Some(x3),
Some(y3),
Some(self.reduce_to_var(labels, loc, inf)),
Some(self.reduce_to_var(labels, loc, same_x)),
Some(self.reduce_to_var(labels, loc, slope)),
Some(self.reduce_to_var(labels, loc, inf_z)),
Some(self.reduce_to_var(labels, loc, x21_inv)),
];
self.add_row(labels, loc, vars, GateType::CompleteAdd, vec![]);
}
KimchiConstraint::EcScale(state) => {
for ScaleRound {
accs,
bits,
ss,
base,
n_prev,
n_next,
} in state
{
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
// xT yT x0 y0 n n' x1 y1 x2 y2 x3 y3 x4 y4
// x5 y5 b0 b1 b2 b3 b4 s0 s1 s2 s3 s4
let curr_row = vec![
Some(self.reduce_to_var(labels, loc, base.0)),
Some(self.reduce_to_var(labels, loc, base.1)),
Some(self.reduce_to_var(labels, loc, accs[0].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[0].1.clone())),
Some(self.reduce_to_var(labels, loc, n_prev)),
Some(self.reduce_to_var(labels, loc, n_next)),
None,
Some(self.reduce_to_var(labels, loc, accs[1].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[1].1.clone())),
Some(self.reduce_to_var(labels, loc, accs[2].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[2].1.clone())),
Some(self.reduce_to_var(labels, loc, accs[3].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[3].1.clone())),
Some(self.reduce_to_var(labels, loc, accs[4].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[4].1.clone())),
];
self.add_row(labels, loc, curr_row, GateType::VarBaseMul, vec![]);
let next_row = vec![
Some(self.reduce_to_var(labels, loc, accs[5].0.clone())),
Some(self.reduce_to_var(labels, loc, accs[5].1.clone())),
Some(self.reduce_to_var(labels, loc, bits[0].clone())),
Some(self.reduce_to_var(labels, loc, bits[1].clone())),
Some(self.reduce_to_var(labels, loc, bits[2].clone())),
Some(self.reduce_to_var(labels, loc, bits[3].clone())),
Some(self.reduce_to_var(labels, loc, bits[4].clone())),
Some(self.reduce_to_var(labels, loc, ss[0].clone())),
Some(self.reduce_to_var(labels, loc, ss[1].clone())),
Some(self.reduce_to_var(labels, loc, ss[2].clone())),
Some(self.reduce_to_var(labels, loc, ss[3].clone())),
Some(self.reduce_to_var(labels, loc, ss[4].clone())),
];
self.add_row(labels, loc, next_row, GateType::Zero, vec![]);
}
}
KimchiConstraint::EcEndoscale(EcEndoscaleInput {
state,
xs,
ys,
n_acc,
}) => {
for round in state {
let vars = vec![
Some(self.reduce_to_var(labels, loc, round.xt)),
Some(self.reduce_to_var(labels, loc, round.yt)),
None,
None,
Some(self.reduce_to_var(labels, loc, round.xp)),
Some(self.reduce_to_var(labels, loc, round.yp)),
Some(self.reduce_to_var(labels, loc, round.n_acc)),
Some(self.reduce_to_var(labels, loc, round.xr)),
Some(self.reduce_to_var(labels, loc, round.yr)),
Some(self.reduce_to_var(labels, loc, round.s1)),
Some(self.reduce_to_var(labels, loc, round.s3)),
Some(self.reduce_to_var(labels, loc, round.b1)),
Some(self.reduce_to_var(labels, loc, round.b2)),
Some(self.reduce_to_var(labels, loc, round.b3)),
Some(self.reduce_to_var(labels, loc, round.b4)),
];
self.add_row(labels, loc, vars, GateType::EndoMul, vec![]);
}
// last row
let vars = vec![
None,
None,
None,
None,
Some(self.reduce_to_var(labels, loc, xs)),
Some(self.reduce_to_var(labels, loc, ys)),
Some(self.reduce_to_var(labels, loc, n_acc)),
];
self.add_row(labels, loc, vars, GateType::Zero, vec![]);
}
KimchiConstraint::EcEndoscalar(state) => {
for round in state {
let vars = vec![
Some(self.reduce_to_var(labels, loc, round.n0)),
Some(self.reduce_to_var(labels, loc, round.n8)),
Some(self.reduce_to_var(labels, loc, round.a0)),
Some(self.reduce_to_var(labels, loc, round.b0)),
Some(self.reduce_to_var(labels, loc, round.a8)),
Some(self.reduce_to_var(labels, loc, round.b8)),
Some(self.reduce_to_var(labels, loc, round.x0)),
Some(self.reduce_to_var(labels, loc, round.x1)),
Some(self.reduce_to_var(labels, loc, round.x2)),
Some(self.reduce_to_var(labels, loc, round.x3)),
Some(self.reduce_to_var(labels, loc, round.x4)),
Some(self.reduce_to_var(labels, loc, round.x5)),
Some(self.reduce_to_var(labels, loc, round.x6)),
Some(self.reduce_to_var(labels, loc, round.x7)),
];
self.add_row(labels, loc, vars, GateType::EndoMulScalar, vec![]);
}
}
KimchiConstraint::RangeCheck(rows) => {
let rows: Result<[Vec<Cvar>; 4], _> = rows.try_into();
let rows: Result<[[Cvar; 15]; 4], _> = rows.map(|rows| {
rows.map(|r| {
let r = r.try_into();
match r {
Ok(r) => r,
Err(_) => {
panic!("size of row is != 15");
}
}
})
});
let rows = match rows {
Ok(rows) => rows,
Err(_) => {
panic!("wrong number of rows");
}
};
let vars = |cvars: [Cvar; 15]| {
cvars
.map(|v| self.reduce_to_var(labels, loc, v))
.map(Some)
.to_vec()
};
let [r0, r1, r2, r3] = rows.map(vars);
self.add_row(labels, loc, r0, GateType::RangeCheck0, vec![Field::zero()]);
self.add_row(labels, loc, r1, GateType::RangeCheck0, vec![Field::zero()]);
self.add_row(labels, loc, r2, GateType::RangeCheck1, vec![]);
self.add_row(labels, loc, r3, GateType::Zero, vec![]);
}
}
}
pub(crate) fn sponge_params(&self) -> mina_poseidon::poseidon::ArithmeticSpongeParams<Field> {
self.constants.poseidon.clone()
}
}
enum ConstantOrVar {
Constant,
Var(V),
}
impl<F> BasicSnarkyConstraint<FieldVar<F>>
where
F: PrimeField,
{
pub fn check_constraint(
&self,
env: &impl WitnessGeneration<F>,
) -> Result<(), Box<SnarkyRuntimeError>> {
let result = match self {
BasicSnarkyConstraint::Boolean(v) => {
let v = env.read_var(v);
if !(v.is_one() || v.is_zero()) {
Err(SnarkyRuntimeError::UnsatisfiedBooleanConstraint(
env.constraints_counter(),
v.to_string(),
))
} else {
Ok(())
}
}
BasicSnarkyConstraint::Equal(v1, v2) => {
let v1 = env.read_var(v1);
let v2 = env.read_var(v2);
if v1 != v2 {
Err(SnarkyRuntimeError::UnsatisfiedEqualConstraint(
env.constraints_counter(),
v1.to_string(),
v2.to_string(),
))
} else {
Ok(())
}
}
BasicSnarkyConstraint::Square(v1, v2) => {
let v1 = env.read_var(v1);
let v2 = env.read_var(v2);
let square = v1.square();
if square != v2 {
Err(SnarkyRuntimeError::UnsatisfiedSquareConstraint(
env.constraints_counter(),
v1.to_string(),
v2.to_string(),
))
} else {
Ok(())
}
}
BasicSnarkyConstraint::R1CS(v1, v2, v3) => {
let v1 = env.read_var(v1);
let v2 = env.read_var(v2);
let v3 = env.read_var(v3);
let mul = v1 * v2;
if mul != v3 {
Err(SnarkyRuntimeError::UnsatisfiedR1CSConstraint(
env.constraints_counter(),
v1.to_string(),
v2.to_string(),
v3.to_string(),
))
} else {
Ok(())
}
}
};
result.map_err(Box::new)
}
}
impl<F> KimchiConstraint<FieldVar<F>, F>
where
F: PrimeField,
{
pub fn check_constraint(
&self,
env: &impl WitnessGeneration<F>,
) -> Result<(), Box<SnarkyRuntimeError>> {
match self {
// we only check the basic gate
KimchiConstraint::Basic(BasicInput {
l: (c0, l_var),
r: (c1, r_var),
o: (c2, o_var),
m: c3,
c: c4,
}) => {
let l = env.read_var(l_var);
let r = env.read_var(r_var);
let o = env.read_var(o_var);
let res = *c0 * l + *c1 * r + *c2 * o + l * r * c3 + c4;
if !res.is_zero() {
// TODO: return different errors depending on the type of generic gate (e.g. addition, cst, mul, etc.)
return Err(Box::new(SnarkyRuntimeError::UnsatisfiedGenericConstraint(
c0.to_string(),
l.to_string(),
c1.to_string(),
r.to_string(),
c2.to_string(),
o.to_string(),
c3.to_string(),
c4.to_string(),
env.constraints_counter(),
)));
}
}
// we trust the witness generation to be correct for other gates,
// or that the gadgets will do the check
KimchiConstraint::Poseidon { .. }
| KimchiConstraint::Poseidon2 { .. }
| KimchiConstraint::EcAddComplete { .. }
| KimchiConstraint::EcScale { .. }
| KimchiConstraint::EcEndoscale { .. }
| KimchiConstraint::EcEndoscalar { .. }
| KimchiConstraint::RangeCheck { .. } => (),
};
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use mina_curves::pasta::{Fp, Vesta};
fn setup(public_input_size: usize) -> SnarkyConstraintSystem<Fp> {
let constants = Constants::new::<Vesta>();
let mut state = SnarkyConstraintSystem::<Fp>::create(constants);
state.set_primary_input_size(public_input_size);
state
}
#[test]
fn test_permutation_equal() {
let mut state = setup(0);
let x = FieldVar::Var(0);
let y = FieldVar::Var(1);
let z = FieldVar::Var(2);
let labels = &vec![];
let loc = &Cow::Borrowed("");
// x * y = z
state.add_basic_snarky_constraint(
labels,
loc,
BasicSnarkyConstraint::R1CS(x.clone(), y.clone(), z),
);
// x = y
state.add_basic_snarky_constraint(labels, loc, BasicSnarkyConstraint::Equal(x, y));
let gates = state.finalize_and_get_gates();
for col in 0..PERMUTS {
assert_eq!(gates[0].wires[col].row, 0);
}
assert_eq!(gates[0].wires[0].col, 1);
assert_eq!(gates[0].wires[1].col, 0);
}
#[test]
fn test_permutation_public() {
let mut state = setup(1);
let public = FieldVar::Var(0);
let x = FieldVar::Var(1);
let y = FieldVar::Var(2);
let labels = &vec![];
let loc = &Cow::Borrowed("");
// x * y = z
state.add_basic_snarky_constraint(
labels,
loc,
BasicSnarkyConstraint::R1CS(x.clone(), y.clone(), public),
);
// x = y
state.add_basic_snarky_constraint(labels, loc, BasicSnarkyConstraint::Equal(x, y));
state.finalize();
let gates = state.finalize_and_get_gates();
assert_eq!(gates[1].wires[0].col, 1);
assert_eq!(gates[1].wires[1].col, 0);
assert_eq!(gates[0].wires[0], Wire { row: 1, col: 2 });
assert_eq!(gates[1].wires[2], Wire { row: 0, col: 0 });
}
}