1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
//! This module implements prover's zk-proof primitive.
use crate::{
circuits::{
argument::{Argument, ArgumentType},
berkeley_columns::{BerkeleyChallenges, Environment, LookupEnvironment},
constraints::zk_rows_strict_lower_bound,
expr::{self, l0_1, Constants},
gate::GateType,
lookup::{self, runtime_tables::RuntimeTable, tables::combine_table_entry},
polynomials::{
complete_add::CompleteAdd,
endomul_scalar::EndomulScalar,
endosclmul::EndosclMul,
foreign_field_add::circuitgates::ForeignFieldAdd,
foreign_field_mul::{self, circuitgates::ForeignFieldMul},
generic, permutation,
poseidon::Poseidon,
range_check::circuitgates::{RangeCheck0, RangeCheck1},
rot::Rot64,
varbasemul::VarbaseMul,
xor::Xor16,
},
wires::{COLUMNS, PERMUTS},
},
curve::KimchiCurve,
error::ProverError,
lagrange_basis_evaluations::LagrangeBasisEvaluations,
plonk_sponge::FrSponge,
proof::{
LookupCommitments, PointEvaluations, ProofEvaluations, ProverCommitments, ProverProof,
RecursionChallenge,
},
prover_index::ProverIndex,
verifier_index::VerifierIndex,
};
use ark_ff::{FftField, Field, One, PrimeField, UniformRand, Zero};
use ark_poly::{
univariate::DensePolynomial, DenseUVPolynomial, EvaluationDomain, Evaluations, Polynomial,
Radix2EvaluationDomain as D,
};
use itertools::Itertools;
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::ExtendedDensePolynomial as _;
use poly_commitment::{
commitment::{
absorb_commitment, b_poly_coefficients, BlindedCommitment, CommitmentCurve, PolyComm,
},
utils::DensePolynomialOrEvaluations,
OpenProof, SRS as _,
};
use rand_core::{CryptoRng, RngCore};
use rayon::prelude::*;
use std::{array, collections::HashMap};
/// The result of a proof creation or verification.
type Result<T> = std::result::Result<T, ProverError>;
/// Helper to quickly test if a witness satisfies a constraint
macro_rules! check_constraint {
($index:expr, $evaluation:expr) => {{
check_constraint!($index, stringify!($evaluation), $evaluation);
}};
($index:expr, $label:expr, $evaluation:expr) => {{
if cfg!(debug_assertions) {
let (_, res) = $evaluation
.interpolate_by_ref()
.divide_by_vanishing_poly($index.cs.domain.d1)
.unwrap();
if !res.is_zero() {
panic!("couldn't divide by vanishing polynomial: {}", $label);
}
}
}};
}
/// Contains variables needed for lookup in the prover algorithm.
#[derive(Default)]
struct LookupContext<G, F>
where
G: CommitmentCurve,
F: FftField,
{
/// The joint combiner used to join the columns of lookup tables
joint_combiner: Option<F>,
/// The power of the joint_combiner that can be used to add a table_id column
/// to the concatenated lookup tables.
table_id_combiner: Option<F>,
/// The combined lookup entry that can be used as dummy value
dummy_lookup_value: Option<F>,
/// The combined lookup table
joint_lookup_table: Option<DensePolynomial<F>>,
joint_lookup_table_d8: Option<Evaluations<F, D<F>>>,
/// The sorted polynomials `s` in different forms
sorted: Option<Vec<Evaluations<F, D<F>>>>,
sorted_coeffs: Option<Vec<DensePolynomial<F>>>,
sorted_comms: Option<Vec<BlindedCommitment<G>>>,
sorted8: Option<Vec<Evaluations<F, D<F>>>>,
/// The aggregation polynomial in different forms
aggreg_coeffs: Option<DensePolynomial<F>>,
aggreg_comm: Option<BlindedCommitment<G>>,
aggreg8: Option<Evaluations<F, D<F>>>,
// lookup-related evaluations
/// evaluation of lookup aggregation polynomial
pub lookup_aggregation_eval: Option<PointEvaluations<Vec<F>>>,
/// evaluation of lookup table polynomial
pub lookup_table_eval: Option<PointEvaluations<Vec<F>>>,
/// evaluation of lookup sorted polynomials
pub lookup_sorted_eval: [Option<PointEvaluations<Vec<F>>>; 5],
/// evaluation of runtime lookup table polynomial
pub runtime_lookup_table_eval: Option<PointEvaluations<Vec<F>>>,
/// Runtime table
runtime_table: Option<DensePolynomial<F>>,
runtime_table_d8: Option<Evaluations<F, D<F>>>,
runtime_table_comm: Option<BlindedCommitment<G>>,
runtime_second_col_d8: Option<Evaluations<F, D<F>>>,
}
impl<G: KimchiCurve, OpeningProof: OpenProof<G>> ProverProof<G, OpeningProof>
where
G::BaseField: PrimeField,
{
/// This function constructs prover's zk-proof from the witness & the `ProverIndex` against SRS instance
///
/// # Errors
///
/// Will give error if `create_recursive` process fails.
pub fn create<
EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
EFrSponge: FrSponge<G::ScalarField>,
RNG: RngCore + CryptoRng,
>(
groupmap: &G::Map,
witness: [Vec<G::ScalarField>; COLUMNS],
runtime_tables: &[RuntimeTable<G::ScalarField>],
index: &ProverIndex<G, OpeningProof>,
rng: &mut RNG,
) -> Result<Self>
where
VerifierIndex<G, OpeningProof>: Clone,
{
Self::create_recursive::<EFqSponge, EFrSponge, RNG>(
groupmap,
witness,
runtime_tables,
index,
Vec::new(),
None,
rng,
)
}
/// This function constructs prover's recursive zk-proof from the witness &
/// the `ProverIndex` against SRS instance
///
/// # Errors
///
/// Will give error if inputs(like `lookup_context.joint_lookup_table_d8`)
/// are None.
///
/// # Panics
///
/// Will panic if `lookup_context.joint_lookup_table_d8` is None.
pub fn create_recursive<
EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
EFrSponge: FrSponge<G::ScalarField>,
RNG: RngCore + CryptoRng,
>(
group_map: &G::Map,
mut witness: [Vec<G::ScalarField>; COLUMNS],
runtime_tables: &[RuntimeTable<G::ScalarField>],
index: &ProverIndex<G, OpeningProof>,
prev_challenges: Vec<RecursionChallenge<G>>,
blinders: Option<[Option<PolyComm<G::ScalarField>>; COLUMNS]>,
rng: &mut RNG,
) -> Result<Self>
where
VerifierIndex<G, OpeningProof>: Clone,
{
internal_tracing::checkpoint!(internal_traces; create_recursive);
let d1_size = index.cs.domain.d1.size();
let (_, endo_r) = G::endos();
let num_chunks = if d1_size < index.max_poly_size {
1
} else {
d1_size / index.max_poly_size
};
// Verify the circuit satisfiability by the computed witness (baring plookup constraints)
// Catch mistakes before proof generation.
if cfg!(debug_assertions) && !index.cs.disable_gates_checks {
let public = witness[0][0..index.cs.public].to_vec();
index.verify(&witness, &public).expect("incorrect witness");
}
//~ 1. Ensure we have room in the witness for the zero-knowledge rows.
//~ We currently expect the witness not to be of the same length as the domain,
//~ but instead be of the length of the (smaller) circuit.
//~ If we cannot add `zk_rows` rows to the columns of the witness before reaching
//~ the size of the domain, abort.
let length_witness = witness[0].len();
let length_padding = d1_size
.checked_sub(length_witness)
.ok_or(ProverError::NoRoomForZkInWitness)?;
let zero_knowledge_limit = zk_rows_strict_lower_bound(num_chunks);
// Because the lower bound is strict, the result of the function above
// is not a sufficient number of zero knowledge rows, so the error must
// be raised anytime the number of zero knowledge rows is not greater
// than the strict lower bound.
// Example:
// for 1 chunk, `zero_knowledge_limit` is 2, and we need at least 3,
// thus the error should be raised and the message should say that the
// expected number of zero knowledge rows is 3 (hence the + 1).
if (index.cs.zk_rows as usize) <= zero_knowledge_limit {
return Err(ProverError::NotZeroKnowledge(
zero_knowledge_limit + 1,
index.cs.zk_rows as usize,
));
}
if length_padding < index.cs.zk_rows as usize {
return Err(ProverError::NoRoomForZkInWitness);
}
//~ 1. Pad the witness columns with Zero gates to make them the same length as the domain.
//~ Then, randomize the last `zk_rows` of each columns.
internal_tracing::checkpoint!(internal_traces; pad_witness);
for w in &mut witness {
if w.len() != length_witness {
return Err(ProverError::WitnessCsInconsistent);
}
// padding
w.extend(std::iter::repeat(G::ScalarField::zero()).take(length_padding));
// zk-rows
for row in w.iter_mut().rev().take(index.cs.zk_rows as usize) {
*row = <G::ScalarField as UniformRand>::rand(rng);
}
}
//~ 1. Setup the Fq-Sponge.
internal_tracing::checkpoint!(internal_traces; set_up_fq_sponge);
let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());
//~ 1. Absorb the digest of the VerifierIndex.
let verifier_index_digest = index.verifier_index_digest::<EFqSponge>();
fq_sponge.absorb_fq(&[verifier_index_digest]);
//~ 1. Absorb the commitments of the previous challenges with the Fq-sponge.
for RecursionChallenge { comm, .. } in &prev_challenges {
absorb_commitment(&mut fq_sponge, comm)
}
//~ 1. Compute the negated public input polynomial as
//~ the polynomial that evaluates to $-p_i$ for the first `public_input_size` values of the domain,
//~ and $0$ for the rest.
let public = witness[0][0..index.cs.public].to_vec();
let public_poly = -Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
public,
index.cs.domain.d1,
)
.interpolate();
//~ 1. Commit (non-hiding) to the negated public input polynomial.
let public_comm = index.srs.commit_non_hiding(&public_poly, num_chunks);
let public_comm = {
index
.srs
.mask_custom(
public_comm.clone(),
&public_comm.map(|_| G::ScalarField::one()),
)
.unwrap()
.commitment
};
//~ 1. Absorb the commitment to the public polynomial with the Fq-Sponge.
//~
//~ Note: unlike the original PLONK protocol,
//~ the prover also provides evaluations of the public polynomial to help the verifier circuit.
//~ This is why we need to absorb the commitment to the public polynomial at this point.
absorb_commitment(&mut fq_sponge, &public_comm);
//~ 1. Commit to the witness columns by creating `COLUMNS` hidding commitments.
//~
//~ Note: since the witness is in evaluation form,
//~ we can use the `commit_evaluation` optimization.
internal_tracing::checkpoint!(internal_traces; commit_to_witness_columns);
let mut w_comm = vec![];
for col in 0..COLUMNS {
// witness coeff -> witness eval
let witness_eval =
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
witness[col].clone(),
index.cs.domain.d1,
);
let com = match blinders.as_ref().and_then(|b| b[col].as_ref()) {
// no blinders: blind the witness
None => index
.srs
.commit_evaluations(index.cs.domain.d1, &witness_eval, rng),
// blinders: blind the witness with them
Some(blinder) => {
// TODO: make this a function rather no? mask_with_custom()
let witness_com = index
.srs
.commit_evaluations_non_hiding(index.cs.domain.d1, &witness_eval);
index
.srs
.mask_custom(witness_com, blinder)
.map_err(ProverError::WrongBlinders)?
}
};
w_comm.push(com);
}
let w_comm: [BlindedCommitment<G>; COLUMNS] = w_comm
.try_into()
.expect("previous loop is of the correct length");
//~ 1. Absorb the witness commitments with the Fq-Sponge.
w_comm
.iter()
.for_each(|c| absorb_commitment(&mut fq_sponge, &c.commitment));
//~ 1. Compute the witness polynomials by interpolating each `COLUMNS` of the witness.
//~ As mentioned above, we commit using the evaluations form rather than the coefficients
//~ form so we can take advantage of the sparsity of the evaluations (i.e., there are many
//~ 0 entries and entries that have less-than-full-size field elemnts.)
let witness_poly: [DensePolynomial<G::ScalarField>; COLUMNS] = array::from_fn(|i| {
Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
witness[i].clone(),
index.cs.domain.d1,
)
.interpolate()
});
let mut lookup_context = LookupContext::default();
//~ 1. If using lookup:
if let Some(lcs) = &index.cs.lookup_constraint_system {
internal_tracing::checkpoint!(internal_traces; use_lookup, {
"uses_lookup": true,
"uses_runtime_tables": lcs.runtime_tables.is_some(),
});
//~~ * if using runtime table:
if let Some(cfg_runtime_tables) = &lcs.runtime_tables {
//~~~ * check that all the provided runtime tables have length and IDs that match the runtime table configuration of the index
//~~~ we expect the given runtime tables to be sorted as configured, this makes it easier afterwards
let expected_runtime: Vec<_> = cfg_runtime_tables
.iter()
.map(|rt| (rt.id, rt.len))
.collect();
let runtime: Vec<_> = runtime_tables
.iter()
.map(|rt| (rt.id, rt.data.len()))
.collect();
if expected_runtime != runtime {
return Err(ProverError::RuntimeTablesInconsistent);
}
//~~~ * calculate the contribution to the second column of the lookup table
//~~~ (the runtime vector)
let (runtime_table_contribution, runtime_table_contribution_d8) = {
let mut offset = lcs
.runtime_table_offset
.expect("runtime configuration missing offset");
let mut evals = vec![G::ScalarField::zero(); d1_size];
for rt in runtime_tables {
let range = offset..(offset + rt.data.len());
evals[range].copy_from_slice(&rt.data);
offset += rt.data.len();
}
// zero-knowledge
for e in evals.iter_mut().rev().take(index.cs.zk_rows as usize) {
*e = <G::ScalarField as UniformRand>::rand(rng);
}
// get coeff and evaluation form
let runtime_table_contribution =
Evaluations::from_vec_and_domain(evals, index.cs.domain.d1).interpolate();
let runtime_table_contribution_d8 =
runtime_table_contribution.evaluate_over_domain_by_ref(index.cs.domain.d8);
(runtime_table_contribution, runtime_table_contribution_d8)
};
// commit the runtime polynomial
// (and save it to the proof)
let runtime_table_comm =
index
.srs
.commit(&runtime_table_contribution, num_chunks, rng);
// absorb the commitment
absorb_commitment(&mut fq_sponge, &runtime_table_comm.commitment);
// pre-compute the updated second column of the lookup table
let mut second_column_d8 = runtime_table_contribution_d8.clone();
second_column_d8
.evals
.par_iter_mut()
.enumerate()
.for_each(|(row, e)| {
*e += lcs.lookup_table8[1][row];
});
lookup_context.runtime_table = Some(runtime_table_contribution);
lookup_context.runtime_table_d8 = Some(runtime_table_contribution_d8);
lookup_context.runtime_table_comm = Some(runtime_table_comm);
lookup_context.runtime_second_col_d8 = Some(second_column_d8);
}
//~~ * If queries involve a lookup table with multiple columns
//~~ then squeeze the Fq-Sponge to obtain the joint combiner challenge $j'$,
//~~ otherwise set the joint combiner challenge $j'$ to $0$.
let joint_combiner = if lcs.configuration.lookup_info.features.joint_lookup_used {
fq_sponge.challenge()
} else {
G::ScalarField::zero()
};
//~~ * Derive the scalar joint combiner $j$ from $j'$ using the endomorphism (TODO: specify)
let joint_combiner: G::ScalarField = ScalarChallenge(joint_combiner).to_field(endo_r);
//~~ * If multiple lookup tables are involved,
//~~ set the `table_id_combiner` as the $j^i$ with $i$ the maximum width of any used table.
//~~ Essentially, this is to add a last column of table ids to the concatenated lookup tables.
let table_id_combiner: G::ScalarField = if lcs.table_ids8.as_ref().is_some() {
joint_combiner.pow([lcs.configuration.lookup_info.max_joint_size as u64])
} else {
// TODO: just set this to None in case multiple tables are not used
G::ScalarField::zero()
};
lookup_context.table_id_combiner = Some(table_id_combiner);
//~~ * Compute the dummy lookup value as the combination of the last entry of the XOR table (so `(0, 0, 0)`).
//~~ Warning: This assumes that we always use the XOR table when using lookups.
let dummy_lookup_value = lcs
.configuration
.dummy_lookup
.evaluate(&joint_combiner, &table_id_combiner);
lookup_context.dummy_lookup_value = Some(dummy_lookup_value);
//~~ * Compute the lookup table values as the combination of the lookup table entries.
let joint_lookup_table_d8 = {
let mut evals = Vec::with_capacity(d1_size);
for idx in 0..(d1_size * 8) {
let table_id = match lcs.table_ids8.as_ref() {
Some(table_ids8) => table_ids8.evals[idx],
None =>
// If there is no `table_ids8` in the constraint system,
// every table ID is identically 0.
{
G::ScalarField::zero()
}
};
let combined_entry =
if !lcs.configuration.lookup_info.features.uses_runtime_tables {
let table_row = lcs.lookup_table8.iter().map(|e| &e.evals[idx]);
combine_table_entry(
&joint_combiner,
&table_id_combiner,
table_row,
&table_id,
)
} else {
// if runtime table are used, the second row is modified
let second_col = lookup_context.runtime_second_col_d8.as_ref().unwrap();
let table_row = lcs.lookup_table8.iter().enumerate().map(|(col, e)| {
if col == 1 {
&second_col.evals[idx]
} else {
&e.evals[idx]
}
});
combine_table_entry(
&joint_combiner,
&table_id_combiner,
table_row,
&table_id,
)
};
evals.push(combined_entry);
}
Evaluations::from_vec_and_domain(evals, index.cs.domain.d8)
};
// TODO: This interpolation is avoidable.
let joint_lookup_table = joint_lookup_table_d8.interpolate_by_ref();
//~~ * Compute the sorted evaluations.
// TODO: Once we switch to committing using lagrange commitments,
// `witness` will be consumed when we interpolate, so interpolation will
// have to moved below this.
let sorted: Vec<_> = lookup::constraints::sorted(
dummy_lookup_value,
&joint_lookup_table_d8,
index.cs.domain.d1,
&index.cs.gates,
&witness,
joint_combiner,
table_id_combiner,
&lcs.configuration.lookup_info,
index.cs.zk_rows as usize,
)?;
//~~ * Randomize the last `EVALS` rows in each of the sorted polynomials
//~~ in order to add zero-knowledge to the protocol.
let sorted: Vec<_> = sorted
.into_iter()
.map(|chunk| {
lookup::constraints::zk_patch(
chunk,
index.cs.domain.d1,
index.cs.zk_rows as usize,
rng,
)
})
.collect();
//~~ * Commit each of the sorted polynomials.
let sorted_comms: Vec<_> = sorted
.iter()
.map(|v| index.srs.commit_evaluations(index.cs.domain.d1, v, rng))
.collect();
//~~ * Absorb each commitments to the sorted polynomials.
sorted_comms
.iter()
.for_each(|c| absorb_commitment(&mut fq_sponge, &c.commitment));
// precompute different forms of the sorted polynomials for later
// TODO: We can avoid storing these coefficients.
let sorted_coeffs: Vec<_> = sorted.iter().map(|e| e.clone().interpolate()).collect();
let sorted8: Vec<_> = sorted_coeffs
.iter()
.map(|v| v.evaluate_over_domain_by_ref(index.cs.domain.d8))
.collect();
lookup_context.joint_combiner = Some(joint_combiner);
lookup_context.sorted = Some(sorted);
lookup_context.sorted_coeffs = Some(sorted_coeffs);
lookup_context.sorted_comms = Some(sorted_comms);
lookup_context.sorted8 = Some(sorted8);
lookup_context.joint_lookup_table_d8 = Some(joint_lookup_table_d8);
lookup_context.joint_lookup_table = Some(joint_lookup_table);
}
//~ 1. Sample $\beta$ with the Fq-Sponge.
let beta = fq_sponge.challenge();
//~ 1. Sample $\gamma$ with the Fq-Sponge.
let gamma = fq_sponge.challenge();
//~ 1. If using lookup:
if let Some(lcs) = &index.cs.lookup_constraint_system {
//~~ * Compute the lookup aggregation polynomial.
let joint_lookup_table_d8 = lookup_context.joint_lookup_table_d8.as_ref().unwrap();
let aggreg = lookup::constraints::aggregation::<_, G::ScalarField>(
lookup_context.dummy_lookup_value.unwrap(),
joint_lookup_table_d8,
index.cs.domain.d1,
&index.cs.gates,
&witness,
&lookup_context.joint_combiner.unwrap(),
&lookup_context.table_id_combiner.unwrap(),
beta,
gamma,
lookup_context.sorted.as_ref().unwrap(),
rng,
&lcs.configuration.lookup_info,
index.cs.zk_rows as usize,
)?;
//~~ * Commit to the aggregation polynomial.
let aggreg_comm = index
.srs
.commit_evaluations(index.cs.domain.d1, &aggreg, rng);
//~~ * Absorb the commitment to the aggregation polynomial with the Fq-Sponge.
absorb_commitment(&mut fq_sponge, &aggreg_comm.commitment);
// precompute different forms of the aggregation polynomial for later
let aggreg_coeffs = aggreg.interpolate();
// TODO: There's probably a clever way to expand the domain without
// interpolating
let aggreg8 = aggreg_coeffs.evaluate_over_domain_by_ref(index.cs.domain.d8);
lookup_context.aggreg_comm = Some(aggreg_comm);
lookup_context.aggreg_coeffs = Some(aggreg_coeffs);
lookup_context.aggreg8 = Some(aggreg8);
}
//~ 1. Compute the permutation aggregation polynomial $z$.
internal_tracing::checkpoint!(internal_traces; z_permutation_aggregation_polynomial);
let z_poly = index.perm_aggreg(&witness, &beta, &gamma, rng)?;
//~ 1. Commit (hidding) to the permutation aggregation polynomial $z$.
let z_comm = index.srs.commit(&z_poly, num_chunks, rng);
//~ 1. Absorb the permutation aggregation polynomial $z$ with the Fq-Sponge.
absorb_commitment(&mut fq_sponge, &z_comm.commitment);
//~ 1. Sample $\alpha'$ with the Fq-Sponge.
let alpha_chal = ScalarChallenge(fq_sponge.challenge());
//~ 1. Derive $\alpha$ from $\alpha'$ using the endomorphism (TODO: details)
let alpha: G::ScalarField = alpha_chal.to_field(endo_r);
//~ 1. TODO: instantiate alpha?
let mut all_alphas = index.powers_of_alpha.clone();
all_alphas.instantiate(alpha);
//~ 1. Compute the quotient polynomial (the $t$ in $f = Z_H \cdot t$).
//~ The quotient polynomial is computed by adding all these polynomials together:
//~~ * the combined constraints for all the gates
//~~ * the combined constraints for the permutation
//~~ * TODO: lookup
//~~ * the negated public polynomial
//~ and by then dividing the resulting polynomial with the vanishing polynomial $Z_H$.
//~ TODO: specify the split of the permutation polynomial into perm and bnd?
let lookup_env = if let Some(lcs) = &index.cs.lookup_constraint_system {
let joint_lookup_table_d8 = lookup_context.joint_lookup_table_d8.as_ref().unwrap();
Some(LookupEnvironment {
aggreg: lookup_context.aggreg8.as_ref().unwrap(),
sorted: lookup_context.sorted8.as_ref().unwrap(),
selectors: &lcs.lookup_selectors,
table: joint_lookup_table_d8,
runtime_selector: lcs.runtime_selector.as_ref(),
runtime_table: lookup_context.runtime_table_d8.as_ref(),
})
} else {
None
};
internal_tracing::checkpoint!(internal_traces; eval_witness_polynomials_over_domains);
let lagrange = index.cs.evaluate(&witness_poly, &z_poly);
internal_tracing::checkpoint!(internal_traces; compute_index_evals);
let env = {
let mut index_evals = HashMap::new();
use GateType::*;
index_evals.insert(Generic, &index.column_evaluations.generic_selector4);
index_evals.insert(Poseidon, &index.column_evaluations.poseidon_selector8);
index_evals.insert(
CompleteAdd,
&index.column_evaluations.complete_add_selector4,
);
index_evals.insert(VarBaseMul, &index.column_evaluations.mul_selector8);
index_evals.insert(EndoMul, &index.column_evaluations.emul_selector8);
index_evals.insert(
EndoMulScalar,
&index.column_evaluations.endomul_scalar_selector8,
);
if let Some(selector) = &index.column_evaluations.range_check0_selector8.as_ref() {
index_evals.insert(GateType::RangeCheck0, selector);
}
if let Some(selector) = &index.column_evaluations.range_check1_selector8.as_ref() {
index_evals.insert(GateType::RangeCheck1, selector);
}
if let Some(selector) = index
.column_evaluations
.foreign_field_add_selector8
.as_ref()
{
index_evals.insert(GateType::ForeignFieldAdd, selector);
}
if let Some(selector) = index
.column_evaluations
.foreign_field_mul_selector8
.as_ref()
{
index_evals.extend(
foreign_field_mul::gadget::circuit_gates()
.iter()
.map(|gate_type| (*gate_type, selector)),
);
}
if let Some(selector) = index.column_evaluations.xor_selector8.as_ref() {
index_evals.insert(GateType::Xor16, selector);
}
if let Some(selector) = index.column_evaluations.rot_selector8.as_ref() {
index_evals.insert(GateType::Rot64, selector);
}
let mds = &G::sponge_params().mds;
Environment {
constants: Constants {
endo_coefficient: index.cs.endo,
mds,
zk_rows: index.cs.zk_rows,
},
challenges: BerkeleyChallenges {
alpha,
beta,
gamma,
joint_combiner: lookup_context
.joint_combiner
.unwrap_or(G::ScalarField::zero()),
},
witness: &lagrange.d8.this.w,
coefficient: &index.column_evaluations.coefficients8,
vanishes_on_zero_knowledge_and_previous_rows: &index
.cs
.precomputations()
.vanishes_on_zero_knowledge_and_previous_rows,
z: &lagrange.d8.this.z,
l0_1: l0_1(index.cs.domain.d1),
domain: index.cs.domain,
index: index_evals,
lookup: lookup_env,
}
};
let mut cache = expr::Cache::default();
internal_tracing::checkpoint!(internal_traces; compute_quotient_poly);
let quotient_poly = {
// generic
let mut t4 = {
let generic_constraint =
generic::Generic::combined_constraints(&all_alphas, &mut cache);
let generic4 = generic_constraint.evaluations(&env);
if cfg!(debug_assertions) {
let p4 = public_poly.evaluate_over_domain_by_ref(index.cs.domain.d4);
let gen_minus_pub = &generic4 + &p4;
check_constraint!(index, gen_minus_pub);
}
generic4
};
// permutation
let (mut t8, bnd) = {
let alphas =
all_alphas.get_alphas(ArgumentType::Permutation, permutation::CONSTRAINTS);
let (perm, bnd) = index.perm_quot(&lagrange, beta, gamma, &z_poly, alphas)?;
check_constraint!(index, perm);
(perm, bnd)
};
{
use crate::circuits::argument::DynArgument;
let range_check0_enabled =
index.column_evaluations.range_check0_selector8.is_some();
let range_check1_enabled =
index.column_evaluations.range_check1_selector8.is_some();
let foreign_field_addition_enabled = index
.column_evaluations
.foreign_field_add_selector8
.is_some();
let foreign_field_multiplication_enabled = index
.column_evaluations
.foreign_field_mul_selector8
.is_some();
let xor_enabled = index.column_evaluations.xor_selector8.is_some();
let rot_enabled = index.column_evaluations.rot_selector8.is_some();
for gate in [
(
(&CompleteAdd::default() as &dyn DynArgument<G::ScalarField>),
true,
),
(&VarbaseMul::default(), true),
(&EndosclMul::default(), true),
(&EndomulScalar::default(), true),
(&Poseidon::default(), true),
// Range check gates
(&RangeCheck0::default(), range_check0_enabled),
(&RangeCheck1::default(), range_check1_enabled),
// Foreign field addition gate
(&ForeignFieldAdd::default(), foreign_field_addition_enabled),
// Foreign field multiplication gate
(
&ForeignFieldMul::default(),
foreign_field_multiplication_enabled,
),
// Xor gate
(&Xor16::default(), xor_enabled),
// Rot gate
(&Rot64::default(), rot_enabled),
]
.into_iter()
.filter_map(|(gate, is_enabled)| if is_enabled { Some(gate) } else { None })
{
let constraint = gate.combined_constraints(&all_alphas, &mut cache);
let eval = constraint.evaluations(&env);
if eval.domain().size == t4.domain().size {
t4 += &eval;
} else if eval.domain().size == t8.domain().size {
t8 += &eval;
} else {
panic!("Bad evaluation")
}
check_constraint!(index, format!("{:?}", gate.argument_type()), eval);
}
};
// lookup
{
if let Some(lcs) = index.cs.lookup_constraint_system.as_ref() {
let constraints = lookup::constraints::constraints(&lcs.configuration, false);
let constraints_len = u32::try_from(constraints.len())
.expect("not expecting a large amount of constraints");
let lookup_alphas =
all_alphas.get_alphas(ArgumentType::Lookup, constraints_len);
// as lookup constraints are computed with the expression framework,
// each of them can result in Evaluations of different domains
for (ii, (constraint, alpha_pow)) in
constraints.into_iter().zip_eq(lookup_alphas).enumerate()
{
let mut eval = constraint.evaluations(&env);
eval.evals.par_iter_mut().for_each(|x| *x *= alpha_pow);
if eval.domain().size == t4.domain().size {
t4 += &eval;
} else if eval.domain().size == t8.domain().size {
t8 += &eval;
} else if eval.evals.iter().all(|x| x.is_zero()) {
// Skip any 0-valued evaluations
} else {
panic!("Bad evaluation")
}
check_constraint!(index, format!("lookup constraint #{ii}"), eval);
}
}
}
// public polynomial
let mut f = t4.interpolate() + t8.interpolate();
f += &public_poly;
// divide contributions with vanishing polynomial
let (mut quotient, res) = f
.divide_by_vanishing_poly(index.cs.domain.d1)
.ok_or(ProverError::Prover("division by vanishing polynomial"))?;
if !res.is_zero() {
return Err(ProverError::Prover(
"rest of division by vanishing polynomial",
));
}
quotient += &bnd; // already divided by Z_H
quotient
};
//~ 1. commit (hiding) to the quotient polynomial $t$
let t_comm = { index.srs.commit("ient_poly, 7 * num_chunks, rng) };
//~ 1. Absorb the commitment of the quotient polynomial with the Fq-Sponge.
absorb_commitment(&mut fq_sponge, &t_comm.commitment);
//~ 1. Sample $\zeta'$ with the Fq-Sponge.
let zeta_chal = ScalarChallenge(fq_sponge.challenge());
//~ 1. Derive $\zeta$ from $\zeta'$ using the endomorphism (TODO: specify)
let zeta = zeta_chal.to_field(endo_r);
let omega = index.cs.domain.d1.group_gen;
let zeta_omega = zeta * omega;
//~ 1. If lookup is used, evaluate the following polynomials at $\zeta$ and $\zeta \omega$:
if index.cs.lookup_constraint_system.is_some() {
//~~ * the aggregation polynomial
let aggreg = lookup_context
.aggreg_coeffs
.as_ref()
.unwrap()
.to_chunked_polynomial(num_chunks, index.max_poly_size);
//~~ * the sorted polynomials
let sorted = lookup_context
.sorted_coeffs
.as_ref()
.unwrap()
.iter()
.map(|c| c.to_chunked_polynomial(num_chunks, index.max_poly_size))
.collect::<Vec<_>>();
//~~ * the table polynonial
let joint_table = lookup_context.joint_lookup_table.as_ref().unwrap();
let joint_table = joint_table.to_chunked_polynomial(num_chunks, index.max_poly_size);
lookup_context.lookup_aggregation_eval = Some(PointEvaluations {
zeta: aggreg.evaluate_chunks(zeta),
zeta_omega: aggreg.evaluate_chunks(zeta_omega),
});
lookup_context.lookup_table_eval = Some(PointEvaluations {
zeta: joint_table.evaluate_chunks(zeta),
zeta_omega: joint_table.evaluate_chunks(zeta_omega),
});
lookup_context.lookup_sorted_eval = array::from_fn(|i| {
if i < sorted.len() {
let sorted = &sorted[i];
Some(PointEvaluations {
zeta: sorted.evaluate_chunks(zeta),
zeta_omega: sorted.evaluate_chunks(zeta_omega),
})
} else {
None
}
});
lookup_context.runtime_lookup_table_eval =
lookup_context.runtime_table.as_ref().map(|runtime_table| {
let runtime_table =
runtime_table.to_chunked_polynomial(num_chunks, index.max_poly_size);
PointEvaluations {
zeta: runtime_table.evaluate_chunks(zeta),
zeta_omega: runtime_table.evaluate_chunks(zeta_omega),
}
});
}
//~ 1. Chunk evaluate the following polynomials at both $\zeta$ and $\zeta \omega$:
//~~ * $s_i$
//~~ * $w_i$
//~~ * $z$
//~~ * lookup (TODO, see [this issue](https://github.com/MinaProtocol/mina/issues/13886))
//~~ * generic selector
//~~ * poseidon selector
//~
//~ By "chunk evaluate" we mean that the evaluation of each polynomial can potentially be a vector of values.
//~ This is because the index's `max_poly_size` parameter dictates the maximum size of a polynomial in the protocol.
//~ If a polynomial $f$ exceeds this size, it must be split into several polynomials like so:
//~ $$f(x) = f_0(x) + x^n f_1(x) + x^{2n} f_2(x) + \cdots$$
//~
//~ And the evaluation of such a polynomial is the following list for $x \in {\zeta, \zeta\omega}$:
//~
//~ $$(f_0(x), f_1(x), f_2(x), \ldots)$$
//~
//~ TODO: do we want to specify more on that? It seems unnecessary except for the t polynomial (or if for some reason someone sets that to a low value)
internal_tracing::checkpoint!(internal_traces; lagrange_basis_eval_zeta_poly);
let zeta_evals =
LagrangeBasisEvaluations::new(index.max_poly_size, index.cs.domain.d1, zeta);
internal_tracing::checkpoint!(internal_traces; lagrange_basis_eval_zeta_omega_poly);
let zeta_omega_evals =
LagrangeBasisEvaluations::new(index.max_poly_size, index.cs.domain.d1, zeta_omega);
let chunked_evals_for_selector =
|p: &Evaluations<G::ScalarField, D<G::ScalarField>>| PointEvaluations {
zeta: zeta_evals.evaluate_boolean(p),
zeta_omega: zeta_omega_evals.evaluate_boolean(p),
};
let chunked_evals_for_evaluations =
|p: &Evaluations<G::ScalarField, D<G::ScalarField>>| PointEvaluations {
zeta: zeta_evals.evaluate(p),
zeta_omega: zeta_omega_evals.evaluate(p),
};
internal_tracing::checkpoint!(internal_traces; chunk_eval_zeta_omega_poly);
let chunked_evals = ProofEvaluations::<PointEvaluations<Vec<G::ScalarField>>> {
public: {
let chunked = public_poly.to_chunked_polynomial(num_chunks, index.max_poly_size);
Some(PointEvaluations {
zeta: chunked.evaluate_chunks(zeta),
zeta_omega: chunked.evaluate_chunks(zeta_omega),
})
},
s: array::from_fn(|i| {
chunked_evals_for_evaluations(
&index.column_evaluations.permutation_coefficients8[i],
)
}),
coefficients: array::from_fn(|i| {
chunked_evals_for_evaluations(&index.column_evaluations.coefficients8[i])
}),
w: array::from_fn(|i| {
let chunked =
witness_poly[i].to_chunked_polynomial(num_chunks, index.max_poly_size);
PointEvaluations {
zeta: chunked.evaluate_chunks(zeta),
zeta_omega: chunked.evaluate_chunks(zeta_omega),
}
}),
z: {
let chunked = z_poly.to_chunked_polynomial(num_chunks, index.max_poly_size);
PointEvaluations {
zeta: chunked.evaluate_chunks(zeta),
zeta_omega: chunked.evaluate_chunks(zeta_omega),
}
},
lookup_aggregation: lookup_context.lookup_aggregation_eval.take(),
lookup_table: lookup_context.lookup_table_eval.take(),
lookup_sorted: array::from_fn(|i| lookup_context.lookup_sorted_eval[i].take()),
runtime_lookup_table: lookup_context.runtime_lookup_table_eval.take(),
generic_selector: chunked_evals_for_selector(
&index.column_evaluations.generic_selector4,
),
poseidon_selector: chunked_evals_for_selector(
&index.column_evaluations.poseidon_selector8,
),
complete_add_selector: chunked_evals_for_selector(
&index.column_evaluations.complete_add_selector4,
),
mul_selector: chunked_evals_for_selector(&index.column_evaluations.mul_selector8),
emul_selector: chunked_evals_for_selector(&index.column_evaluations.emul_selector8),
endomul_scalar_selector: chunked_evals_for_selector(
&index.column_evaluations.endomul_scalar_selector8,
),
range_check0_selector: index
.column_evaluations
.range_check0_selector8
.as_ref()
.map(chunked_evals_for_selector),
range_check1_selector: index
.column_evaluations
.range_check1_selector8
.as_ref()
.map(chunked_evals_for_selector),
foreign_field_add_selector: index
.column_evaluations
.foreign_field_add_selector8
.as_ref()
.map(chunked_evals_for_selector),
foreign_field_mul_selector: index
.column_evaluations
.foreign_field_mul_selector8
.as_ref()
.map(chunked_evals_for_selector),
xor_selector: index
.column_evaluations
.xor_selector8
.as_ref()
.map(chunked_evals_for_selector),
rot_selector: index
.column_evaluations
.rot_selector8
.as_ref()
.map(chunked_evals_for_selector),
runtime_lookup_table_selector: index.cs.lookup_constraint_system.as_ref().and_then(
|lcs| {
lcs.runtime_selector
.as_ref()
.map(chunked_evals_for_selector)
},
),
xor_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(|lcs| {
lcs.lookup_selectors
.xor
.as_ref()
.map(chunked_evals_for_selector)
}),
lookup_gate_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
|lcs| {
lcs.lookup_selectors
.lookup
.as_ref()
.map(chunked_evals_for_selector)
},
),
range_check_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
|lcs| {
lcs.lookup_selectors
.range_check
.as_ref()
.map(chunked_evals_for_selector)
},
),
foreign_field_mul_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
|lcs| {
lcs.lookup_selectors
.ffmul
.as_ref()
.map(chunked_evals_for_selector)
},
),
};
let zeta_to_srs_len = zeta.pow([index.max_poly_size as u64]);
let zeta_omega_to_srs_len = zeta_omega.pow([index.max_poly_size as u64]);
let zeta_to_domain_size = zeta.pow([d1_size as u64]);
//~ 1. Evaluate the same polynomials without chunking them
//~ (so that each polynomial should correspond to a single value this time).
let evals: ProofEvaluations<PointEvaluations<G::ScalarField>> = {
let powers_of_eval_points_for_chunks = PointEvaluations {
zeta: zeta_to_srs_len,
zeta_omega: zeta_omega_to_srs_len,
};
chunked_evals.combine(&powers_of_eval_points_for_chunks)
};
//~ 1. Compute the ft polynomial.
//~ This is to implement [Maller's optimization](https://o1-labs.github.io/proof-systems/kimchi/maller_15.html).
internal_tracing::checkpoint!(internal_traces; compute_ft_poly);
let ft: DensePolynomial<G::ScalarField> = {
let f_chunked = {
// TODO: compute the linearization polynomial in evaluation form so
// that we can drop the coefficient forms of the index polynomials from
// the constraint system struct
// permutation (not part of linearization yet)
let alphas =
all_alphas.get_alphas(ArgumentType::Permutation, permutation::CONSTRAINTS);
let f = index.perm_lnrz(&evals, zeta, beta, gamma, alphas);
// the circuit polynomial
let f = {
let (_lin_constant, mut lin) =
index.linearization.to_polynomial(&env, zeta, &evals);
lin += &f;
lin.interpolate()
};
drop(env);
// see https://o1-labs.github.io/proof-systems/kimchi/maller_15.html#the-prover-side
f.to_chunked_polynomial(num_chunks, index.max_poly_size)
.linearize(zeta_to_srs_len)
};
let t_chunked = quotient_poly
.to_chunked_polynomial(7 * num_chunks, index.max_poly_size)
.linearize(zeta_to_srs_len);
&f_chunked - &t_chunked.scale(zeta_to_domain_size - G::ScalarField::one())
};
//~ 1. construct the blinding part of the ft polynomial commitment
//~ [see this section](https://o1-labs.github.io/proof-systems/kimchi/maller_15.html#evaluation-proof-and-blinding-factors)
let blinding_ft = {
let blinding_t = t_comm.blinders.chunk_blinding(zeta_to_srs_len);
let blinding_f = G::ScalarField::zero();
PolyComm {
// blinding_f - Z_H(zeta) * blinding_t
chunks: vec![
blinding_f - (zeta_to_domain_size - G::ScalarField::one()) * blinding_t,
],
}
};
//~ 1. Evaluate the ft polynomial at $\zeta\omega$ only.
internal_tracing::checkpoint!(internal_traces; ft_eval_zeta_omega);
let ft_eval1 = ft.evaluate(&zeta_omega);
//~ 1. Setup the Fr-Sponge
let fq_sponge_before_evaluations = fq_sponge.clone();
let mut fr_sponge = EFrSponge::new(G::sponge_params());
//~ 1. Squeeze the Fq-sponge and absorb the result with the Fr-Sponge.
fr_sponge.absorb(&fq_sponge.digest());
//~ 1. Absorb the previous recursion challenges.
let prev_challenge_digest = {
// Note: we absorb in a new sponge here to limit the scope in which we need the
// more-expensive 'optional sponge'.
let mut fr_sponge = EFrSponge::new(G::sponge_params());
for RecursionChallenge { chals, .. } in &prev_challenges {
fr_sponge.absorb_multiple(chals);
}
fr_sponge.digest()
};
fr_sponge.absorb(&prev_challenge_digest);
//~ 1. Compute evaluations for the previous recursion challenges.
internal_tracing::checkpoint!(internal_traces; build_polynomials);
let polys = prev_challenges
.iter()
.map(|RecursionChallenge { chals, comm }| {
(
DensePolynomial::from_coefficients_vec(b_poly_coefficients(chals)),
comm.len(),
)
})
.collect::<Vec<_>>();
//~ 1. Absorb the unique evaluation of ft: $ft(\zeta\omega)$.
fr_sponge.absorb(&ft_eval1);
//~ 1. Absorb all the polynomial evaluations in $\zeta$ and $\zeta\omega$:
//~~ * the public polynomial
//~~ * z
//~~ * generic selector
//~~ * poseidon selector
//~~ * the 15 register/witness
//~~ * 6 sigmas evaluations (the last one is not evaluated)
fr_sponge.absorb_multiple(&chunked_evals.public.as_ref().unwrap().zeta);
fr_sponge.absorb_multiple(&chunked_evals.public.as_ref().unwrap().zeta_omega);
fr_sponge.absorb_evaluations(&chunked_evals);
//~ 1. Sample $v'$ with the Fr-Sponge
let v_chal = fr_sponge.challenge();
//~ 1. Derive $v$ from $v'$ using the endomorphism (TODO: specify)
let v = v_chal.to_field(endo_r);
//~ 1. Sample $u'$ with the Fr-Sponge
let u_chal = fr_sponge.challenge();
//~ 1. Derive $u$ from $u'$ using the endomorphism (TODO: specify)
let u = u_chal.to_field(endo_r);
//~ 1. Create a list of all polynomials that will require evaluations
//~ (and evaluation proofs) in the protocol.
//~ First, include the previous challenges, in case we are in a recursive prover.
let non_hiding = |n_chunks: usize| PolyComm {
chunks: vec![G::ScalarField::zero(); n_chunks],
};
let fixed_hiding = |n_chunks: usize| PolyComm {
chunks: vec![G::ScalarField::one(); n_chunks],
};
let coefficients_form = DensePolynomialOrEvaluations::DensePolynomial;
let evaluations_form = |e| DensePolynomialOrEvaluations::Evaluations(e, index.cs.domain.d1);
let mut polynomials = polys
.iter()
.map(|(p, n_chunks)| (coefficients_form(p), non_hiding(*n_chunks)))
.collect::<Vec<_>>();
//~ 1. Then, include:
//~~ * the negated public polynomial
//~~ * the ft polynomial
//~~ * the permutation aggregation polynomial z polynomial
//~~ * the generic selector
//~~ * the poseidon selector
//~~ * the 15 registers/witness columns
//~~ * the 6 sigmas
polynomials.push((coefficients_form(&public_poly), fixed_hiding(num_chunks)));
polynomials.push((coefficients_form(&ft), blinding_ft));
polynomials.push((coefficients_form(&z_poly), z_comm.blinders));
polynomials.push((
evaluations_form(&index.column_evaluations.generic_selector4),
fixed_hiding(num_chunks),
));
polynomials.push((
evaluations_form(&index.column_evaluations.poseidon_selector8),
fixed_hiding(num_chunks),
));
polynomials.push((
evaluations_form(&index.column_evaluations.complete_add_selector4),
fixed_hiding(num_chunks),
));
polynomials.push((
evaluations_form(&index.column_evaluations.mul_selector8),
fixed_hiding(num_chunks),
));
polynomials.push((
evaluations_form(&index.column_evaluations.emul_selector8),
fixed_hiding(num_chunks),
));
polynomials.push((
evaluations_form(&index.column_evaluations.endomul_scalar_selector8),
fixed_hiding(num_chunks),
));
polynomials.extend(
witness_poly
.iter()
.zip(w_comm.iter())
.map(|(w, c)| (coefficients_form(w), c.blinders.clone()))
.collect::<Vec<_>>(),
);
polynomials.extend(
index
.column_evaluations
.coefficients8
.iter()
.map(|coefficientm| (evaluations_form(coefficientm), non_hiding(num_chunks)))
.collect::<Vec<_>>(),
);
polynomials.extend(
index.column_evaluations.permutation_coefficients8[0..PERMUTS - 1]
.iter()
.map(|w| (evaluations_form(w), non_hiding(num_chunks)))
.collect::<Vec<_>>(),
);
//~~ * the optional gates
if let Some(range_check0_selector8) =
index.column_evaluations.range_check0_selector8.as_ref()
{
polynomials.push((
evaluations_form(range_check0_selector8),
non_hiding(num_chunks),
));
}
if let Some(range_check1_selector8) =
index.column_evaluations.range_check1_selector8.as_ref()
{
polynomials.push((
evaluations_form(range_check1_selector8),
non_hiding(num_chunks),
));
}
if let Some(foreign_field_add_selector8) = index
.column_evaluations
.foreign_field_add_selector8
.as_ref()
{
polynomials.push((
evaluations_form(foreign_field_add_selector8),
non_hiding(num_chunks),
));
}
if let Some(foreign_field_mul_selector8) = index
.column_evaluations
.foreign_field_mul_selector8
.as_ref()
{
polynomials.push((
evaluations_form(foreign_field_mul_selector8),
non_hiding(num_chunks),
));
}
if let Some(xor_selector8) = index.column_evaluations.xor_selector8.as_ref() {
polynomials.push((evaluations_form(xor_selector8), non_hiding(num_chunks)));
}
if let Some(rot_selector8) = index.column_evaluations.rot_selector8.as_ref() {
polynomials.push((evaluations_form(rot_selector8), non_hiding(num_chunks)));
}
//~~ * optionally, the runtime table
//~ 1. if using lookup:
if let Some(lcs) = &index.cs.lookup_constraint_system {
//~~ * add the lookup sorted polynomials
let sorted_poly = lookup_context.sorted_coeffs.as_ref().unwrap();
let sorted_comms = lookup_context.sorted_comms.as_ref().unwrap();
for (poly, comm) in sorted_poly.iter().zip(sorted_comms) {
polynomials.push((coefficients_form(poly), comm.blinders.clone()));
}
//~~ * add the lookup aggreg polynomial
let aggreg_poly = lookup_context.aggreg_coeffs.as_ref().unwrap();
let aggreg_comm = lookup_context.aggreg_comm.as_ref().unwrap();
polynomials.push((coefficients_form(aggreg_poly), aggreg_comm.blinders.clone()));
//~~ * add the combined table polynomial
let table_blinding = {
let joint_combiner = lookup_context.joint_combiner.as_ref().unwrap();
let table_id_combiner = lookup_context.table_id_combiner.as_ref().unwrap();
let max_fixed_lookup_table_size = {
// CAUTION: This is not `lcs.configuration.lookup_info.max_joint_size` because
// the lookup table may be strictly narrower, and as such will not contribute
// the associated blinders.
// For example, using a runtime table with the lookup gate (width 2), but only
// width-1 fixed tables (e.g. range check), it would be incorrect to use the
// wider width (2) because there are no such contributing commitments!
// Note that lookup_table8 is a list of polynomials
lcs.lookup_table8.len()
};
let base_blinding = {
let fixed_table_blinding = if max_fixed_lookup_table_size == 0 {
G::ScalarField::zero()
} else {
(1..max_fixed_lookup_table_size).fold(G::ScalarField::one(), |acc, _| {
G::ScalarField::one() + *joint_combiner * acc
})
};
fixed_table_blinding + *table_id_combiner
};
if lcs.runtime_selector.is_some() {
let runtime_comm = lookup_context.runtime_table_comm.as_ref().unwrap();
let chunks = runtime_comm
.blinders
.into_iter()
.map(|blinding| *joint_combiner * *blinding + base_blinding)
.collect();
PolyComm::new(chunks)
} else {
let chunks = vec![base_blinding; num_chunks];
PolyComm::new(chunks)
}
};
let joint_lookup_table = lookup_context.joint_lookup_table.as_ref().unwrap();
polynomials.push((coefficients_form(joint_lookup_table), table_blinding));
//~~ * if present, add the runtime table polynomial
if lcs.runtime_selector.is_some() {
let runtime_table_comm = lookup_context.runtime_table_comm.as_ref().unwrap();
let runtime_table = lookup_context.runtime_table.as_ref().unwrap();
polynomials.push((
coefficients_form(runtime_table),
runtime_table_comm.blinders.clone(),
));
}
//~~ * the lookup selectors
if let Some(runtime_lookup_table_selector) = lcs.runtime_selector.as_ref() {
polynomials.push((
evaluations_form(runtime_lookup_table_selector),
non_hiding(1),
))
}
if let Some(xor_lookup_selector) = lcs.lookup_selectors.xor.as_ref() {
polynomials.push((evaluations_form(xor_lookup_selector), non_hiding(1)))
}
if let Some(lookup_gate_selector) = lcs.lookup_selectors.lookup.as_ref() {
polynomials.push((evaluations_form(lookup_gate_selector), non_hiding(1)))
}
if let Some(range_check_lookup_selector) = lcs.lookup_selectors.range_check.as_ref() {
polynomials.push((evaluations_form(range_check_lookup_selector), non_hiding(1)))
}
if let Some(foreign_field_mul_lookup_selector) = lcs.lookup_selectors.ffmul.as_ref() {
polynomials.push((
evaluations_form(foreign_field_mul_lookup_selector),
non_hiding(1),
))
}
}
//~ 1. Create an aggregated evaluation proof for all of these polynomials at $\zeta$ and $\zeta\omega$ using $u$ and $v$.
internal_tracing::checkpoint!(internal_traces; create_aggregated_ipa);
let proof = OpenProof::open(
&*index.srs,
group_map,
&polynomials,
&[zeta, zeta_omega],
v,
u,
fq_sponge_before_evaluations,
rng,
);
let lookup = lookup_context
.aggreg_comm
.zip(lookup_context.sorted_comms)
.map(|(a, s)| LookupCommitments {
aggreg: a.commitment,
sorted: s.iter().map(|c| c.commitment.clone()).collect(),
runtime: lookup_context.runtime_table_comm.map(|x| x.commitment),
});
let proof = Self {
commitments: ProverCommitments {
w_comm: array::from_fn(|i| w_comm[i].commitment.clone()),
z_comm: z_comm.commitment,
t_comm: t_comm.commitment,
lookup,
},
proof,
evals: chunked_evals,
ft_eval1,
prev_challenges,
};
internal_tracing::checkpoint!(internal_traces; create_recursive_done);
Ok(proof)
}
}
internal_tracing::decl_traces!(internal_traces;
pasta_fp_plonk_proof_create,
pasta_fq_plonk_proof_create,
create_recursive,
pad_witness,
set_up_fq_sponge,
commit_to_witness_columns,
use_lookup,
z_permutation_aggregation_polynomial,
eval_witness_polynomials_over_domains,
compute_index_evals,
compute_quotient_poly,
lagrange_basis_eval_zeta_poly,
lagrange_basis_eval_zeta_omega_poly,
chunk_eval_zeta_omega_poly,
compute_ft_poly,
ft_eval_zeta_omega,
build_polynomials,
create_aggregated_ipa,
create_recursive_done);
#[cfg(feature = "ocaml_types")]
pub mod caml {
use super::*;
use crate::proof::caml::{CamlProofEvaluations, CamlRecursionChallenge};
use ark_ec::AffineRepr;
use poly_commitment::{
commitment::caml::CamlPolyComm,
ipa::{caml::CamlOpeningProof, OpeningProof},
};
#[cfg(feature = "internal_tracing")]
pub use internal_traces::caml::CamlTraces as CamlProverTraces;
#[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlProofWithPublic<CamlG, CamlF> {
pub public_evals: Option<PointEvaluations<Vec<CamlF>>>,
pub proof: CamlProverProof<CamlG, CamlF>,
}
//
// CamlProverProof<CamlG, CamlF>
//
#[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlProverProof<CamlG, CamlF> {
pub commitments: CamlProverCommitments<CamlG>,
pub proof: CamlOpeningProof<CamlG, CamlF>,
// OCaml doesn't have sized arrays, so we have to convert to a tuple..
pub evals: CamlProofEvaluations<CamlF>,
pub ft_eval1: CamlF,
pub public: Vec<CamlF>,
//Vec<(Vec<CamlF>, CamlPolyComm<CamlG>)>,
pub prev_challenges: Vec<CamlRecursionChallenge<CamlG, CamlF>>,
}
//
// CamlProverCommitments<CamlG>
//
#[derive(Clone, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlLookupCommitments<CamlG> {
pub sorted: Vec<CamlPolyComm<CamlG>>,
pub aggreg: CamlPolyComm<CamlG>,
pub runtime: Option<CamlPolyComm<CamlG>>,
}
#[allow(clippy::type_complexity)]
#[derive(Clone, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlProverCommitments<CamlG> {
// polynomial commitments
pub w_comm: (
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
CamlPolyComm<CamlG>,
),
pub z_comm: CamlPolyComm<CamlG>,
pub t_comm: CamlPolyComm<CamlG>,
pub lookup: Option<CamlLookupCommitments<CamlG>>,
}
// These implementations are handy for conversions such as:
// InternalType <-> Ocaml::Value
//
// It does this by hiding the required middle conversion step:
// InternalType <-> CamlInternalType <-> Ocaml::Value
//
// Note that some conversions are not always possible to shorten,
// because we don't always know how to convert the types.
// For example, to implement the conversion
// ProverCommitments<G> -> CamlProverCommitments<CamlG>
// we need to know how to convert G to CamlG.
// we don't know that information, unless we implemented some trait (e.g. ToCaml)
// we can do that, but instead we implemented the From trait for the reverse
// operations (From<G> for CamlG).
// it reduces the complexity, but forces us to do the conversion in two
// phases instead of one.
//
// CamlLookupCommitments<CamlG> <-> LookupCommitments<G>
//
impl<G, CamlG> From<LookupCommitments<G>> for CamlLookupCommitments<CamlG>
where
G: AffineRepr,
CamlPolyComm<CamlG>: From<PolyComm<G>>,
{
fn from(
LookupCommitments {
aggreg,
sorted,
runtime,
}: LookupCommitments<G>,
) -> Self {
Self {
aggreg: aggreg.into(),
sorted: sorted.into_iter().map(Into::into).collect(),
runtime: runtime.map(Into::into),
}
}
}
impl<G, CamlG> From<CamlLookupCommitments<CamlG>> for LookupCommitments<G>
where
G: AffineRepr,
PolyComm<G>: From<CamlPolyComm<CamlG>>,
{
fn from(
CamlLookupCommitments {
aggreg,
sorted,
runtime,
}: CamlLookupCommitments<CamlG>,
) -> LookupCommitments<G> {
LookupCommitments {
aggreg: aggreg.into(),
sorted: sorted.into_iter().map(Into::into).collect(),
runtime: runtime.map(Into::into),
}
}
}
//
// CamlProverCommitments<CamlG> <-> ProverCommitments<G>
//
impl<G, CamlG> From<ProverCommitments<G>> for CamlProverCommitments<CamlG>
where
G: AffineRepr,
CamlPolyComm<CamlG>: From<PolyComm<G>>,
{
fn from(prover_comm: ProverCommitments<G>) -> Self {
let [w_comm0, w_comm1, w_comm2, w_comm3, w_comm4, w_comm5, w_comm6, w_comm7, w_comm8, w_comm9, w_comm10, w_comm11, w_comm12, w_comm13, w_comm14] =
prover_comm.w_comm;
Self {
w_comm: (
w_comm0.into(),
w_comm1.into(),
w_comm2.into(),
w_comm3.into(),
w_comm4.into(),
w_comm5.into(),
w_comm6.into(),
w_comm7.into(),
w_comm8.into(),
w_comm9.into(),
w_comm10.into(),
w_comm11.into(),
w_comm12.into(),
w_comm13.into(),
w_comm14.into(),
),
z_comm: prover_comm.z_comm.into(),
t_comm: prover_comm.t_comm.into(),
lookup: prover_comm.lookup.map(Into::into),
}
}
}
impl<G, CamlG> From<CamlProverCommitments<CamlG>> for ProverCommitments<G>
where
G: AffineRepr,
PolyComm<G>: From<CamlPolyComm<CamlG>>,
{
fn from(caml_prover_comm: CamlProverCommitments<CamlG>) -> ProverCommitments<G> {
let (
w_comm0,
w_comm1,
w_comm2,
w_comm3,
w_comm4,
w_comm5,
w_comm6,
w_comm7,
w_comm8,
w_comm9,
w_comm10,
w_comm11,
w_comm12,
w_comm13,
w_comm14,
) = caml_prover_comm.w_comm;
ProverCommitments {
w_comm: [
w_comm0.into(),
w_comm1.into(),
w_comm2.into(),
w_comm3.into(),
w_comm4.into(),
w_comm5.into(),
w_comm6.into(),
w_comm7.into(),
w_comm8.into(),
w_comm9.into(),
w_comm10.into(),
w_comm11.into(),
w_comm12.into(),
w_comm13.into(),
w_comm14.into(),
],
z_comm: caml_prover_comm.z_comm.into(),
t_comm: caml_prover_comm.t_comm.into(),
lookup: caml_prover_comm.lookup.map(Into::into),
}
}
}
//
// ProverProof<G> <-> CamlProofWithPublic<CamlG, CamlF>
//
impl<G, CamlG, CamlF> From<(ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)>
for CamlProofWithPublic<CamlG, CamlF>
where
G: AffineRepr,
CamlG: From<G>,
CamlF: From<G::ScalarField>,
{
fn from(pp: (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)) -> Self {
let (public_evals, evals) = pp.0.evals.into();
CamlProofWithPublic {
public_evals,
proof: CamlProverProof {
commitments: pp.0.commitments.into(),
proof: pp.0.proof.into(),
evals,
ft_eval1: pp.0.ft_eval1.into(),
public: pp.1.into_iter().map(Into::into).collect(),
prev_challenges: pp.0.prev_challenges.into_iter().map(Into::into).collect(),
},
}
}
}
impl<G, CamlG, CamlF> From<CamlProofWithPublic<CamlG, CamlF>>
for (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)
where
CamlF: Clone,
G: AffineRepr + From<CamlG>,
G::ScalarField: From<CamlF>,
{
fn from(
caml_pp: CamlProofWithPublic<CamlG, CamlF>,
) -> (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>) {
let CamlProofWithPublic {
public_evals,
proof: caml_pp,
} = caml_pp;
let proof = ProverProof {
commitments: caml_pp.commitments.into(),
proof: caml_pp.proof.into(),
evals: (public_evals, caml_pp.evals).into(),
ft_eval1: caml_pp.ft_eval1.into(),
prev_challenges: caml_pp
.prev_challenges
.into_iter()
.map(Into::into)
.collect(),
};
(proof, caml_pp.public.into_iter().map(Into::into).collect())
}
}
}