1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
//! This module implements prover's zk-proof primitive.

use crate::{
    circuits::{
        argument::{Argument, ArgumentType},
        berkeley_columns::{BerkeleyChallenges, Environment, LookupEnvironment},
        constraints::zk_rows_strict_lower_bound,
        expr::{self, l0_1, Constants},
        gate::GateType,
        lookup::{self, runtime_tables::RuntimeTable, tables::combine_table_entry},
        polynomials::{
            complete_add::CompleteAdd,
            endomul_scalar::EndomulScalar,
            endosclmul::EndosclMul,
            foreign_field_add::circuitgates::ForeignFieldAdd,
            foreign_field_mul::{self, circuitgates::ForeignFieldMul},
            generic, permutation,
            poseidon::Poseidon,
            range_check::circuitgates::{RangeCheck0, RangeCheck1},
            rot::Rot64,
            varbasemul::VarbaseMul,
            xor::Xor16,
        },
        wires::{COLUMNS, PERMUTS},
    },
    curve::KimchiCurve,
    error::ProverError,
    lagrange_basis_evaluations::LagrangeBasisEvaluations,
    plonk_sponge::FrSponge,
    proof::{
        LookupCommitments, PointEvaluations, ProofEvaluations, ProverCommitments, ProverProof,
        RecursionChallenge,
    },
    prover_index::ProverIndex,
    verifier_index::VerifierIndex,
};
use ark_ff::{FftField, Field, One, PrimeField, UniformRand, Zero};
use ark_poly::{
    univariate::DensePolynomial, DenseUVPolynomial, EvaluationDomain, Evaluations, Polynomial,
    Radix2EvaluationDomain as D,
};
use itertools::Itertools;
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::ExtendedDensePolynomial as _;
use poly_commitment::{
    commitment::{
        absorb_commitment, b_poly_coefficients, BlindedCommitment, CommitmentCurve, PolyComm,
    },
    utils::DensePolynomialOrEvaluations,
    OpenProof, SRS as _,
};
use rand_core::{CryptoRng, RngCore};
use rayon::prelude::*;
use std::{array, collections::HashMap};

/// The result of a proof creation or verification.
type Result<T> = std::result::Result<T, ProverError>;

/// Helper to quickly test if a witness satisfies a constraint
macro_rules! check_constraint {
    ($index:expr, $evaluation:expr) => {{
        check_constraint!($index, stringify!($evaluation), $evaluation);
    }};
    ($index:expr, $label:expr, $evaluation:expr) => {{
        if cfg!(debug_assertions) {
            let (_, res) = $evaluation
                .interpolate_by_ref()
                .divide_by_vanishing_poly($index.cs.domain.d1)
                .unwrap();
            if !res.is_zero() {
                panic!("couldn't divide by vanishing polynomial: {}", $label);
            }
        }
    }};
}

/// Contains variables needed for lookup in the prover algorithm.
#[derive(Default)]
struct LookupContext<G, F>
where
    G: CommitmentCurve,
    F: FftField,
{
    /// The joint combiner used to join the columns of lookup tables
    joint_combiner: Option<F>,

    /// The power of the joint_combiner that can be used to add a table_id column
    /// to the concatenated lookup tables.
    table_id_combiner: Option<F>,

    /// The combined lookup entry that can be used as dummy value
    dummy_lookup_value: Option<F>,

    /// The combined lookup table
    joint_lookup_table: Option<DensePolynomial<F>>,
    joint_lookup_table_d8: Option<Evaluations<F, D<F>>>,

    /// The sorted polynomials `s` in different forms
    sorted: Option<Vec<Evaluations<F, D<F>>>>,
    sorted_coeffs: Option<Vec<DensePolynomial<F>>>,
    sorted_comms: Option<Vec<BlindedCommitment<G>>>,
    sorted8: Option<Vec<Evaluations<F, D<F>>>>,

    /// The aggregation polynomial in different forms
    aggreg_coeffs: Option<DensePolynomial<F>>,
    aggreg_comm: Option<BlindedCommitment<G>>,
    aggreg8: Option<Evaluations<F, D<F>>>,

    // lookup-related evaluations
    /// evaluation of lookup aggregation polynomial
    pub lookup_aggregation_eval: Option<PointEvaluations<Vec<F>>>,
    /// evaluation of lookup table polynomial
    pub lookup_table_eval: Option<PointEvaluations<Vec<F>>>,
    /// evaluation of lookup sorted polynomials
    pub lookup_sorted_eval: [Option<PointEvaluations<Vec<F>>>; 5],
    /// evaluation of runtime lookup table polynomial
    pub runtime_lookup_table_eval: Option<PointEvaluations<Vec<F>>>,

    /// Runtime table
    runtime_table: Option<DensePolynomial<F>>,
    runtime_table_d8: Option<Evaluations<F, D<F>>>,
    runtime_table_comm: Option<BlindedCommitment<G>>,
    runtime_second_col_d8: Option<Evaluations<F, D<F>>>,
}

impl<G: KimchiCurve, OpeningProof: OpenProof<G>> ProverProof<G, OpeningProof>
where
    G::BaseField: PrimeField,
{
    /// This function constructs prover's zk-proof from the witness & the `ProverIndex` against SRS instance
    ///
    /// # Errors
    ///
    /// Will give error if `create_recursive` process fails.
    pub fn create<
        EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
        EFrSponge: FrSponge<G::ScalarField>,
        RNG: RngCore + CryptoRng,
    >(
        groupmap: &G::Map,
        witness: [Vec<G::ScalarField>; COLUMNS],
        runtime_tables: &[RuntimeTable<G::ScalarField>],
        index: &ProverIndex<G, OpeningProof>,
        rng: &mut RNG,
    ) -> Result<Self>
    where
        VerifierIndex<G, OpeningProof>: Clone,
    {
        Self::create_recursive::<EFqSponge, EFrSponge, RNG>(
            groupmap,
            witness,
            runtime_tables,
            index,
            Vec::new(),
            None,
            rng,
        )
    }

    /// This function constructs prover's recursive zk-proof from the witness &
    /// the `ProverIndex` against SRS instance
    ///
    /// # Errors
    ///
    /// Will give error if inputs(like `lookup_context.joint_lookup_table_d8`)
    /// are None.
    ///
    /// # Panics
    ///
    /// Will panic if `lookup_context.joint_lookup_table_d8` is None.
    pub fn create_recursive<
        EFqSponge: Clone + FqSponge<G::BaseField, G, G::ScalarField>,
        EFrSponge: FrSponge<G::ScalarField>,
        RNG: RngCore + CryptoRng,
    >(
        group_map: &G::Map,
        mut witness: [Vec<G::ScalarField>; COLUMNS],
        runtime_tables: &[RuntimeTable<G::ScalarField>],
        index: &ProverIndex<G, OpeningProof>,
        prev_challenges: Vec<RecursionChallenge<G>>,
        blinders: Option<[Option<PolyComm<G::ScalarField>>; COLUMNS]>,
        rng: &mut RNG,
    ) -> Result<Self>
    where
        VerifierIndex<G, OpeningProof>: Clone,
    {
        internal_tracing::checkpoint!(internal_traces; create_recursive);
        let d1_size = index.cs.domain.d1.size();

        let (_, endo_r) = G::endos();

        let num_chunks = if d1_size < index.max_poly_size {
            1
        } else {
            d1_size / index.max_poly_size
        };

        // Verify the circuit satisfiability by the computed witness (baring plookup constraints)
        // Catch mistakes before proof generation.
        if cfg!(debug_assertions) && !index.cs.disable_gates_checks {
            let public = witness[0][0..index.cs.public].to_vec();
            index.verify(&witness, &public).expect("incorrect witness");
        }

        //~ 1. Ensure we have room in the witness for the zero-knowledge rows.
        //~    We currently expect the witness not to be of the same length as the domain,
        //~    but instead be of the length of the (smaller) circuit.
        //~    If we cannot add `zk_rows` rows to the columns of the witness before reaching
        //~    the size of the domain, abort.
        let length_witness = witness[0].len();
        let length_padding = d1_size
            .checked_sub(length_witness)
            .ok_or(ProverError::NoRoomForZkInWitness)?;

        let zero_knowledge_limit = zk_rows_strict_lower_bound(num_chunks);
        // Because the lower bound is strict, the result of the function above
        // is not a sufficient number of zero knowledge rows, so the error must
        // be raised anytime the number of zero knowledge rows is not greater
        // than the strict lower bound.
        // Example:
        //   for 1 chunk, `zero_knowledge_limit` is 2, and we need at least 3,
        //   thus the error should be raised and the message should say that the
        //   expected number of zero knowledge rows is 3 (hence the + 1).
        if (index.cs.zk_rows as usize) <= zero_knowledge_limit {
            return Err(ProverError::NotZeroKnowledge(
                zero_knowledge_limit + 1,
                index.cs.zk_rows as usize,
            ));
        }

        if length_padding < index.cs.zk_rows as usize {
            return Err(ProverError::NoRoomForZkInWitness);
        }

        //~ 1. Pad the witness columns with Zero gates to make them the same length as the domain.
        //~    Then, randomize the last `zk_rows` of each columns.
        internal_tracing::checkpoint!(internal_traces; pad_witness);
        for w in &mut witness {
            if w.len() != length_witness {
                return Err(ProverError::WitnessCsInconsistent);
            }

            // padding
            w.extend(std::iter::repeat(G::ScalarField::zero()).take(length_padding));

            // zk-rows
            for row in w.iter_mut().rev().take(index.cs.zk_rows as usize) {
                *row = <G::ScalarField as UniformRand>::rand(rng);
            }
        }

        //~ 1. Setup the Fq-Sponge.
        internal_tracing::checkpoint!(internal_traces; set_up_fq_sponge);
        let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());

        //~ 1. Absorb the digest of the VerifierIndex.
        let verifier_index_digest = index.verifier_index_digest::<EFqSponge>();
        fq_sponge.absorb_fq(&[verifier_index_digest]);

        //~ 1. Absorb the commitments of the previous challenges with the Fq-sponge.
        for RecursionChallenge { comm, .. } in &prev_challenges {
            absorb_commitment(&mut fq_sponge, comm)
        }

        //~ 1. Compute the negated public input polynomial as
        //~    the polynomial that evaluates to $-p_i$ for the first `public_input_size` values of the domain,
        //~    and $0$ for the rest.
        let public = witness[0][0..index.cs.public].to_vec();
        let public_poly = -Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
            public,
            index.cs.domain.d1,
        )
        .interpolate();

        //~ 1. Commit (non-hiding) to the negated public input polynomial.
        let public_comm = index.srs.commit_non_hiding(&public_poly, num_chunks);
        let public_comm = {
            index
                .srs
                .mask_custom(
                    public_comm.clone(),
                    &public_comm.map(|_| G::ScalarField::one()),
                )
                .unwrap()
                .commitment
        };

        //~ 1. Absorb the commitment to the public polynomial with the Fq-Sponge.
        //~
        //~    Note: unlike the original PLONK protocol,
        //~    the prover also provides evaluations of the public polynomial to help the verifier circuit.
        //~    This is why we need to absorb the commitment to the public polynomial at this point.
        absorb_commitment(&mut fq_sponge, &public_comm);

        //~ 1. Commit to the witness columns by creating `COLUMNS` hidding commitments.
        //~
        //~    Note: since the witness is in evaluation form,
        //~    we can use the `commit_evaluation` optimization.
        internal_tracing::checkpoint!(internal_traces; commit_to_witness_columns);
        let mut w_comm = vec![];
        for col in 0..COLUMNS {
            // witness coeff -> witness eval
            let witness_eval =
                Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
                    witness[col].clone(),
                    index.cs.domain.d1,
                );

            let com = match blinders.as_ref().and_then(|b| b[col].as_ref()) {
                // no blinders: blind the witness
                None => index
                    .srs
                    .commit_evaluations(index.cs.domain.d1, &witness_eval, rng),
                // blinders: blind the witness with them
                Some(blinder) => {
                    // TODO: make this a function rather no? mask_with_custom()
                    let witness_com = index
                        .srs
                        .commit_evaluations_non_hiding(index.cs.domain.d1, &witness_eval);
                    index
                        .srs
                        .mask_custom(witness_com, blinder)
                        .map_err(ProverError::WrongBlinders)?
                }
            };

            w_comm.push(com);
        }

        let w_comm: [BlindedCommitment<G>; COLUMNS] = w_comm
            .try_into()
            .expect("previous loop is of the correct length");

        //~ 1. Absorb the witness commitments with the Fq-Sponge.
        w_comm
            .iter()
            .for_each(|c| absorb_commitment(&mut fq_sponge, &c.commitment));

        //~ 1. Compute the witness polynomials by interpolating each `COLUMNS` of the witness.
        //~    As mentioned above, we commit using the evaluations form rather than the coefficients
        //~    form so we can take advantage of the sparsity of the evaluations (i.e., there are many
        //~    0 entries and entries that have less-than-full-size field elemnts.)
        let witness_poly: [DensePolynomial<G::ScalarField>; COLUMNS] = array::from_fn(|i| {
            Evaluations::<G::ScalarField, D<G::ScalarField>>::from_vec_and_domain(
                witness[i].clone(),
                index.cs.domain.d1,
            )
            .interpolate()
        });

        let mut lookup_context = LookupContext::default();

        //~ 1. If using lookup:
        if let Some(lcs) = &index.cs.lookup_constraint_system {
            internal_tracing::checkpoint!(internal_traces; use_lookup, {
                "uses_lookup": true,
                "uses_runtime_tables": lcs.runtime_tables.is_some(),
            });
            //~~ * if using runtime table:
            if let Some(cfg_runtime_tables) = &lcs.runtime_tables {
                //~~~ * check that all the provided runtime tables have length and IDs that match the runtime table configuration of the index
                //~~~   we expect the given runtime tables to be sorted as configured, this makes it easier afterwards
                let expected_runtime: Vec<_> = cfg_runtime_tables
                    .iter()
                    .map(|rt| (rt.id, rt.len))
                    .collect();
                let runtime: Vec<_> = runtime_tables
                    .iter()
                    .map(|rt| (rt.id, rt.data.len()))
                    .collect();
                if expected_runtime != runtime {
                    return Err(ProverError::RuntimeTablesInconsistent);
                }

                //~~~ * calculate the contribution to the second column of the lookup table
                //~~~   (the runtime vector)
                let (runtime_table_contribution, runtime_table_contribution_d8) = {
                    let mut offset = lcs
                        .runtime_table_offset
                        .expect("runtime configuration missing offset");

                    let mut evals = vec![G::ScalarField::zero(); d1_size];
                    for rt in runtime_tables {
                        let range = offset..(offset + rt.data.len());
                        evals[range].copy_from_slice(&rt.data);
                        offset += rt.data.len();
                    }

                    // zero-knowledge
                    for e in evals.iter_mut().rev().take(index.cs.zk_rows as usize) {
                        *e = <G::ScalarField as UniformRand>::rand(rng);
                    }

                    // get coeff and evaluation form
                    let runtime_table_contribution =
                        Evaluations::from_vec_and_domain(evals, index.cs.domain.d1).interpolate();

                    let runtime_table_contribution_d8 =
                        runtime_table_contribution.evaluate_over_domain_by_ref(index.cs.domain.d8);

                    (runtime_table_contribution, runtime_table_contribution_d8)
                };

                // commit the runtime polynomial
                // (and save it to the proof)
                let runtime_table_comm =
                    index
                        .srs
                        .commit(&runtime_table_contribution, num_chunks, rng);

                // absorb the commitment
                absorb_commitment(&mut fq_sponge, &runtime_table_comm.commitment);

                // pre-compute the updated second column of the lookup table
                let mut second_column_d8 = runtime_table_contribution_d8.clone();
                second_column_d8
                    .evals
                    .par_iter_mut()
                    .enumerate()
                    .for_each(|(row, e)| {
                        *e += lcs.lookup_table8[1][row];
                    });

                lookup_context.runtime_table = Some(runtime_table_contribution);
                lookup_context.runtime_table_d8 = Some(runtime_table_contribution_d8);
                lookup_context.runtime_table_comm = Some(runtime_table_comm);
                lookup_context.runtime_second_col_d8 = Some(second_column_d8);
            }

            //~~ * If queries involve a lookup table with multiple columns
            //~~   then squeeze the Fq-Sponge to obtain the joint combiner challenge $j'$,
            //~~   otherwise set the joint combiner challenge $j'$ to $0$.
            let joint_combiner = if lcs.configuration.lookup_info.features.joint_lookup_used {
                fq_sponge.challenge()
            } else {
                G::ScalarField::zero()
            };

            //~~ * Derive the scalar joint combiner $j$ from $j'$ using the endomorphism (TODO: specify)
            let joint_combiner: G::ScalarField = ScalarChallenge(joint_combiner).to_field(endo_r);

            //~~ * If multiple lookup tables are involved,
            //~~   set the `table_id_combiner` as the $j^i$ with $i$ the maximum width of any used table.
            //~~   Essentially, this is to add a last column of table ids to the concatenated lookup tables.
            let table_id_combiner: G::ScalarField = if lcs.table_ids8.as_ref().is_some() {
                joint_combiner.pow([lcs.configuration.lookup_info.max_joint_size as u64])
            } else {
                // TODO: just set this to None in case multiple tables are not used
                G::ScalarField::zero()
            };
            lookup_context.table_id_combiner = Some(table_id_combiner);

            //~~ * Compute the dummy lookup value as the combination of the last entry of the XOR table (so `(0, 0, 0)`).
            //~~   Warning: This assumes that we always use the XOR table when using lookups.
            let dummy_lookup_value = lcs
                .configuration
                .dummy_lookup
                .evaluate(&joint_combiner, &table_id_combiner);
            lookup_context.dummy_lookup_value = Some(dummy_lookup_value);

            //~~ * Compute the lookup table values as the combination of the lookup table entries.
            let joint_lookup_table_d8 = {
                let mut evals = Vec::with_capacity(d1_size);

                for idx in 0..(d1_size * 8) {
                    let table_id = match lcs.table_ids8.as_ref() {
                        Some(table_ids8) => table_ids8.evals[idx],
                        None =>
                        // If there is no `table_ids8` in the constraint system,
                        // every table ID is identically 0.
                        {
                            G::ScalarField::zero()
                        }
                    };

                    let combined_entry =
                        if !lcs.configuration.lookup_info.features.uses_runtime_tables {
                            let table_row = lcs.lookup_table8.iter().map(|e| &e.evals[idx]);

                            combine_table_entry(
                                &joint_combiner,
                                &table_id_combiner,
                                table_row,
                                &table_id,
                            )
                        } else {
                            // if runtime table are used, the second row is modified
                            let second_col = lookup_context.runtime_second_col_d8.as_ref().unwrap();

                            let table_row = lcs.lookup_table8.iter().enumerate().map(|(col, e)| {
                                if col == 1 {
                                    &second_col.evals[idx]
                                } else {
                                    &e.evals[idx]
                                }
                            });

                            combine_table_entry(
                                &joint_combiner,
                                &table_id_combiner,
                                table_row,
                                &table_id,
                            )
                        };
                    evals.push(combined_entry);
                }

                Evaluations::from_vec_and_domain(evals, index.cs.domain.d8)
            };

            // TODO: This interpolation is avoidable.
            let joint_lookup_table = joint_lookup_table_d8.interpolate_by_ref();

            //~~ * Compute the sorted evaluations.
            // TODO: Once we switch to committing using lagrange commitments,
            // `witness` will be consumed when we interpolate, so interpolation will
            // have to moved below this.
            let sorted: Vec<_> = lookup::constraints::sorted(
                dummy_lookup_value,
                &joint_lookup_table_d8,
                index.cs.domain.d1,
                &index.cs.gates,
                &witness,
                joint_combiner,
                table_id_combiner,
                &lcs.configuration.lookup_info,
                index.cs.zk_rows as usize,
            )?;

            //~~ * Randomize the last `EVALS` rows in each of the sorted polynomials
            //~~   in order to add zero-knowledge to the protocol.
            let sorted: Vec<_> = sorted
                .into_iter()
                .map(|chunk| {
                    lookup::constraints::zk_patch(
                        chunk,
                        index.cs.domain.d1,
                        index.cs.zk_rows as usize,
                        rng,
                    )
                })
                .collect();

            //~~ * Commit each of the sorted polynomials.
            let sorted_comms: Vec<_> = sorted
                .iter()
                .map(|v| index.srs.commit_evaluations(index.cs.domain.d1, v, rng))
                .collect();

            //~~ * Absorb each commitments to the sorted polynomials.
            sorted_comms
                .iter()
                .for_each(|c| absorb_commitment(&mut fq_sponge, &c.commitment));

            // precompute different forms of the sorted polynomials for later
            // TODO: We can avoid storing these coefficients.
            let sorted_coeffs: Vec<_> = sorted.iter().map(|e| e.clone().interpolate()).collect();
            let sorted8: Vec<_> = sorted_coeffs
                .iter()
                .map(|v| v.evaluate_over_domain_by_ref(index.cs.domain.d8))
                .collect();

            lookup_context.joint_combiner = Some(joint_combiner);
            lookup_context.sorted = Some(sorted);
            lookup_context.sorted_coeffs = Some(sorted_coeffs);
            lookup_context.sorted_comms = Some(sorted_comms);
            lookup_context.sorted8 = Some(sorted8);
            lookup_context.joint_lookup_table_d8 = Some(joint_lookup_table_d8);
            lookup_context.joint_lookup_table = Some(joint_lookup_table);
        }

        //~ 1. Sample $\beta$ with the Fq-Sponge.
        let beta = fq_sponge.challenge();

        //~ 1. Sample $\gamma$ with the Fq-Sponge.
        let gamma = fq_sponge.challenge();

        //~ 1. If using lookup:
        if let Some(lcs) = &index.cs.lookup_constraint_system {
            //~~ * Compute the lookup aggregation polynomial.
            let joint_lookup_table_d8 = lookup_context.joint_lookup_table_d8.as_ref().unwrap();

            let aggreg = lookup::constraints::aggregation::<_, G::ScalarField>(
                lookup_context.dummy_lookup_value.unwrap(),
                joint_lookup_table_d8,
                index.cs.domain.d1,
                &index.cs.gates,
                &witness,
                &lookup_context.joint_combiner.unwrap(),
                &lookup_context.table_id_combiner.unwrap(),
                beta,
                gamma,
                lookup_context.sorted.as_ref().unwrap(),
                rng,
                &lcs.configuration.lookup_info,
                index.cs.zk_rows as usize,
            )?;

            //~~ * Commit to the aggregation polynomial.
            let aggreg_comm = index
                .srs
                .commit_evaluations(index.cs.domain.d1, &aggreg, rng);

            //~~ * Absorb the commitment to the aggregation polynomial with the Fq-Sponge.
            absorb_commitment(&mut fq_sponge, &aggreg_comm.commitment);

            // precompute different forms of the aggregation polynomial for later
            let aggreg_coeffs = aggreg.interpolate();
            // TODO: There's probably a clever way to expand the domain without
            // interpolating
            let aggreg8 = aggreg_coeffs.evaluate_over_domain_by_ref(index.cs.domain.d8);

            lookup_context.aggreg_comm = Some(aggreg_comm);
            lookup_context.aggreg_coeffs = Some(aggreg_coeffs);
            lookup_context.aggreg8 = Some(aggreg8);
        }

        //~ 1. Compute the permutation aggregation polynomial $z$.
        internal_tracing::checkpoint!(internal_traces; z_permutation_aggregation_polynomial);
        let z_poly = index.perm_aggreg(&witness, &beta, &gamma, rng)?;

        //~ 1. Commit (hidding) to the permutation aggregation polynomial $z$.
        let z_comm = index.srs.commit(&z_poly, num_chunks, rng);

        //~ 1. Absorb the permutation aggregation polynomial $z$ with the Fq-Sponge.
        absorb_commitment(&mut fq_sponge, &z_comm.commitment);

        //~ 1. Sample $\alpha'$ with the Fq-Sponge.
        let alpha_chal = ScalarChallenge(fq_sponge.challenge());

        //~ 1. Derive $\alpha$ from $\alpha'$ using the endomorphism (TODO: details)
        let alpha: G::ScalarField = alpha_chal.to_field(endo_r);

        //~ 1. TODO: instantiate alpha?
        let mut all_alphas = index.powers_of_alpha.clone();
        all_alphas.instantiate(alpha);

        //~ 1. Compute the quotient polynomial (the $t$ in $f = Z_H \cdot t$).
        //~    The quotient polynomial is computed by adding all these polynomials together:
        //~~ * the combined constraints for all the gates
        //~~ * the combined constraints for the permutation
        //~~ * TODO: lookup
        //~~ * the negated public polynomial
        //~    and by then dividing the resulting polynomial with the vanishing polynomial $Z_H$.
        //~    TODO: specify the split of the permutation polynomial into perm and bnd?
        let lookup_env = if let Some(lcs) = &index.cs.lookup_constraint_system {
            let joint_lookup_table_d8 = lookup_context.joint_lookup_table_d8.as_ref().unwrap();

            Some(LookupEnvironment {
                aggreg: lookup_context.aggreg8.as_ref().unwrap(),
                sorted: lookup_context.sorted8.as_ref().unwrap(),
                selectors: &lcs.lookup_selectors,
                table: joint_lookup_table_d8,
                runtime_selector: lcs.runtime_selector.as_ref(),
                runtime_table: lookup_context.runtime_table_d8.as_ref(),
            })
        } else {
            None
        };

        internal_tracing::checkpoint!(internal_traces; eval_witness_polynomials_over_domains);
        let lagrange = index.cs.evaluate(&witness_poly, &z_poly);
        internal_tracing::checkpoint!(internal_traces; compute_index_evals);
        let env = {
            let mut index_evals = HashMap::new();
            use GateType::*;
            index_evals.insert(Generic, &index.column_evaluations.generic_selector4);
            index_evals.insert(Poseidon, &index.column_evaluations.poseidon_selector8);
            index_evals.insert(
                CompleteAdd,
                &index.column_evaluations.complete_add_selector4,
            );
            index_evals.insert(VarBaseMul, &index.column_evaluations.mul_selector8);
            index_evals.insert(EndoMul, &index.column_evaluations.emul_selector8);
            index_evals.insert(
                EndoMulScalar,
                &index.column_evaluations.endomul_scalar_selector8,
            );

            if let Some(selector) = &index.column_evaluations.range_check0_selector8.as_ref() {
                index_evals.insert(GateType::RangeCheck0, selector);
            }

            if let Some(selector) = &index.column_evaluations.range_check1_selector8.as_ref() {
                index_evals.insert(GateType::RangeCheck1, selector);
            }

            if let Some(selector) = index
                .column_evaluations
                .foreign_field_add_selector8
                .as_ref()
            {
                index_evals.insert(GateType::ForeignFieldAdd, selector);
            }

            if let Some(selector) = index
                .column_evaluations
                .foreign_field_mul_selector8
                .as_ref()
            {
                index_evals.extend(
                    foreign_field_mul::gadget::circuit_gates()
                        .iter()
                        .map(|gate_type| (*gate_type, selector)),
                );
            }

            if let Some(selector) = index.column_evaluations.xor_selector8.as_ref() {
                index_evals.insert(GateType::Xor16, selector);
            }

            if let Some(selector) = index.column_evaluations.rot_selector8.as_ref() {
                index_evals.insert(GateType::Rot64, selector);
            }

            let mds = &G::sponge_params().mds;
            Environment {
                constants: Constants {
                    endo_coefficient: index.cs.endo,
                    mds,
                    zk_rows: index.cs.zk_rows,
                },
                challenges: BerkeleyChallenges {
                    alpha,
                    beta,
                    gamma,
                    joint_combiner: lookup_context
                        .joint_combiner
                        .unwrap_or(G::ScalarField::zero()),
                },
                witness: &lagrange.d8.this.w,
                coefficient: &index.column_evaluations.coefficients8,
                vanishes_on_zero_knowledge_and_previous_rows: &index
                    .cs
                    .precomputations()
                    .vanishes_on_zero_knowledge_and_previous_rows,
                z: &lagrange.d8.this.z,
                l0_1: l0_1(index.cs.domain.d1),
                domain: index.cs.domain,
                index: index_evals,
                lookup: lookup_env,
            }
        };

        let mut cache = expr::Cache::default();

        internal_tracing::checkpoint!(internal_traces; compute_quotient_poly);

        let quotient_poly = {
            // generic
            let mut t4 = {
                let generic_constraint =
                    generic::Generic::combined_constraints(&all_alphas, &mut cache);
                let generic4 = generic_constraint.evaluations(&env);

                if cfg!(debug_assertions) {
                    let p4 = public_poly.evaluate_over_domain_by_ref(index.cs.domain.d4);
                    let gen_minus_pub = &generic4 + &p4;

                    check_constraint!(index, gen_minus_pub);
                }

                generic4
            };
            // permutation
            let (mut t8, bnd) = {
                let alphas =
                    all_alphas.get_alphas(ArgumentType::Permutation, permutation::CONSTRAINTS);
                let (perm, bnd) = index.perm_quot(&lagrange, beta, gamma, &z_poly, alphas)?;

                check_constraint!(index, perm);

                (perm, bnd)
            };

            {
                use crate::circuits::argument::DynArgument;

                let range_check0_enabled =
                    index.column_evaluations.range_check0_selector8.is_some();
                let range_check1_enabled =
                    index.column_evaluations.range_check1_selector8.is_some();
                let foreign_field_addition_enabled = index
                    .column_evaluations
                    .foreign_field_add_selector8
                    .is_some();
                let foreign_field_multiplication_enabled = index
                    .column_evaluations
                    .foreign_field_mul_selector8
                    .is_some();
                let xor_enabled = index.column_evaluations.xor_selector8.is_some();
                let rot_enabled = index.column_evaluations.rot_selector8.is_some();

                for gate in [
                    (
                        (&CompleteAdd::default() as &dyn DynArgument<G::ScalarField>),
                        true,
                    ),
                    (&VarbaseMul::default(), true),
                    (&EndosclMul::default(), true),
                    (&EndomulScalar::default(), true),
                    (&Poseidon::default(), true),
                    // Range check gates
                    (&RangeCheck0::default(), range_check0_enabled),
                    (&RangeCheck1::default(), range_check1_enabled),
                    // Foreign field addition gate
                    (&ForeignFieldAdd::default(), foreign_field_addition_enabled),
                    // Foreign field multiplication gate
                    (
                        &ForeignFieldMul::default(),
                        foreign_field_multiplication_enabled,
                    ),
                    // Xor gate
                    (&Xor16::default(), xor_enabled),
                    // Rot gate
                    (&Rot64::default(), rot_enabled),
                ]
                .into_iter()
                .filter_map(|(gate, is_enabled)| if is_enabled { Some(gate) } else { None })
                {
                    let constraint = gate.combined_constraints(&all_alphas, &mut cache);
                    let eval = constraint.evaluations(&env);
                    if eval.domain().size == t4.domain().size {
                        t4 += &eval;
                    } else if eval.domain().size == t8.domain().size {
                        t8 += &eval;
                    } else {
                        panic!("Bad evaluation")
                    }
                    check_constraint!(index, format!("{:?}", gate.argument_type()), eval);
                }
            };

            // lookup
            {
                if let Some(lcs) = index.cs.lookup_constraint_system.as_ref() {
                    let constraints = lookup::constraints::constraints(&lcs.configuration, false);
                    let constraints_len = u32::try_from(constraints.len())
                        .expect("not expecting a large amount of constraints");
                    let lookup_alphas =
                        all_alphas.get_alphas(ArgumentType::Lookup, constraints_len);

                    // as lookup constraints are computed with the expression framework,
                    // each of them can result in Evaluations of different domains
                    for (ii, (constraint, alpha_pow)) in
                        constraints.into_iter().zip_eq(lookup_alphas).enumerate()
                    {
                        let mut eval = constraint.evaluations(&env);
                        eval.evals.par_iter_mut().for_each(|x| *x *= alpha_pow);

                        if eval.domain().size == t4.domain().size {
                            t4 += &eval;
                        } else if eval.domain().size == t8.domain().size {
                            t8 += &eval;
                        } else if eval.evals.iter().all(|x| x.is_zero()) {
                            // Skip any 0-valued evaluations
                        } else {
                            panic!("Bad evaluation")
                        }

                        check_constraint!(index, format!("lookup constraint #{ii}"), eval);
                    }
                }
            }

            // public polynomial
            let mut f = t4.interpolate() + t8.interpolate();
            f += &public_poly;

            // divide contributions with vanishing polynomial
            let (mut quotient, res) = f
                .divide_by_vanishing_poly(index.cs.domain.d1)
                .ok_or(ProverError::Prover("division by vanishing polynomial"))?;
            if !res.is_zero() {
                return Err(ProverError::Prover(
                    "rest of division by vanishing polynomial",
                ));
            }

            quotient += &bnd; // already divided by Z_H
            quotient
        };

        //~ 1. commit (hiding) to the quotient polynomial $t$
        let t_comm = { index.srs.commit(&quotient_poly, 7 * num_chunks, rng) };

        //~ 1. Absorb the commitment of the quotient polynomial with the Fq-Sponge.
        absorb_commitment(&mut fq_sponge, &t_comm.commitment);

        //~ 1. Sample $\zeta'$ with the Fq-Sponge.
        let zeta_chal = ScalarChallenge(fq_sponge.challenge());

        //~ 1. Derive $\zeta$ from $\zeta'$ using the endomorphism (TODO: specify)
        let zeta = zeta_chal.to_field(endo_r);

        let omega = index.cs.domain.d1.group_gen;
        let zeta_omega = zeta * omega;

        //~ 1. If lookup is used, evaluate the following polynomials at $\zeta$ and $\zeta \omega$:
        if index.cs.lookup_constraint_system.is_some() {
            //~~ * the aggregation polynomial
            let aggreg = lookup_context
                .aggreg_coeffs
                .as_ref()
                .unwrap()
                .to_chunked_polynomial(num_chunks, index.max_poly_size);

            //~~ * the sorted polynomials
            let sorted = lookup_context
                .sorted_coeffs
                .as_ref()
                .unwrap()
                .iter()
                .map(|c| c.to_chunked_polynomial(num_chunks, index.max_poly_size))
                .collect::<Vec<_>>();

            //~~ * the table polynonial
            let joint_table = lookup_context.joint_lookup_table.as_ref().unwrap();
            let joint_table = joint_table.to_chunked_polynomial(num_chunks, index.max_poly_size);

            lookup_context.lookup_aggregation_eval = Some(PointEvaluations {
                zeta: aggreg.evaluate_chunks(zeta),
                zeta_omega: aggreg.evaluate_chunks(zeta_omega),
            });
            lookup_context.lookup_table_eval = Some(PointEvaluations {
                zeta: joint_table.evaluate_chunks(zeta),
                zeta_omega: joint_table.evaluate_chunks(zeta_omega),
            });
            lookup_context.lookup_sorted_eval = array::from_fn(|i| {
                if i < sorted.len() {
                    let sorted = &sorted[i];
                    Some(PointEvaluations {
                        zeta: sorted.evaluate_chunks(zeta),
                        zeta_omega: sorted.evaluate_chunks(zeta_omega),
                    })
                } else {
                    None
                }
            });
            lookup_context.runtime_lookup_table_eval =
                lookup_context.runtime_table.as_ref().map(|runtime_table| {
                    let runtime_table =
                        runtime_table.to_chunked_polynomial(num_chunks, index.max_poly_size);
                    PointEvaluations {
                        zeta: runtime_table.evaluate_chunks(zeta),
                        zeta_omega: runtime_table.evaluate_chunks(zeta_omega),
                    }
                });
        }

        //~ 1. Chunk evaluate the following polynomials at both $\zeta$ and $\zeta \omega$:
        //~~ * $s_i$
        //~~ * $w_i$
        //~~ * $z$
        //~~ * lookup (TODO, see [this issue](https://github.com/MinaProtocol/mina/issues/13886))
        //~~ * generic selector
        //~~ * poseidon selector
        //~
        //~    By "chunk evaluate" we mean that the evaluation of each polynomial can potentially be a vector of values.
        //~    This is because the index's `max_poly_size` parameter dictates the maximum size of a polynomial in the protocol.
        //~    If a polynomial $f$ exceeds this size, it must be split into several polynomials like so:
        //~    $$f(x) = f_0(x) + x^n f_1(x) + x^{2n} f_2(x) + \cdots$$
        //~
        //~    And the evaluation of such a polynomial is the following list for $x \in {\zeta, \zeta\omega}$:
        //~
        //~    $$(f_0(x), f_1(x), f_2(x), \ldots)$$
        //~
        //~    TODO: do we want to specify more on that? It seems unnecessary except for the t polynomial (or if for some reason someone sets that to a low value)

        internal_tracing::checkpoint!(internal_traces; lagrange_basis_eval_zeta_poly);
        let zeta_evals =
            LagrangeBasisEvaluations::new(index.max_poly_size, index.cs.domain.d1, zeta);
        internal_tracing::checkpoint!(internal_traces; lagrange_basis_eval_zeta_omega_poly);
        let zeta_omega_evals =
            LagrangeBasisEvaluations::new(index.max_poly_size, index.cs.domain.d1, zeta_omega);

        let chunked_evals_for_selector =
            |p: &Evaluations<G::ScalarField, D<G::ScalarField>>| PointEvaluations {
                zeta: zeta_evals.evaluate_boolean(p),
                zeta_omega: zeta_omega_evals.evaluate_boolean(p),
            };

        let chunked_evals_for_evaluations =
            |p: &Evaluations<G::ScalarField, D<G::ScalarField>>| PointEvaluations {
                zeta: zeta_evals.evaluate(p),
                zeta_omega: zeta_omega_evals.evaluate(p),
            };

        internal_tracing::checkpoint!(internal_traces; chunk_eval_zeta_omega_poly);
        let chunked_evals = ProofEvaluations::<PointEvaluations<Vec<G::ScalarField>>> {
            public: {
                let chunked = public_poly.to_chunked_polynomial(num_chunks, index.max_poly_size);
                Some(PointEvaluations {
                    zeta: chunked.evaluate_chunks(zeta),
                    zeta_omega: chunked.evaluate_chunks(zeta_omega),
                })
            },
            s: array::from_fn(|i| {
                chunked_evals_for_evaluations(
                    &index.column_evaluations.permutation_coefficients8[i],
                )
            }),
            coefficients: array::from_fn(|i| {
                chunked_evals_for_evaluations(&index.column_evaluations.coefficients8[i])
            }),
            w: array::from_fn(|i| {
                let chunked =
                    witness_poly[i].to_chunked_polynomial(num_chunks, index.max_poly_size);
                PointEvaluations {
                    zeta: chunked.evaluate_chunks(zeta),
                    zeta_omega: chunked.evaluate_chunks(zeta_omega),
                }
            }),

            z: {
                let chunked = z_poly.to_chunked_polynomial(num_chunks, index.max_poly_size);
                PointEvaluations {
                    zeta: chunked.evaluate_chunks(zeta),
                    zeta_omega: chunked.evaluate_chunks(zeta_omega),
                }
            },

            lookup_aggregation: lookup_context.lookup_aggregation_eval.take(),
            lookup_table: lookup_context.lookup_table_eval.take(),
            lookup_sorted: array::from_fn(|i| lookup_context.lookup_sorted_eval[i].take()),
            runtime_lookup_table: lookup_context.runtime_lookup_table_eval.take(),
            generic_selector: chunked_evals_for_selector(
                &index.column_evaluations.generic_selector4,
            ),
            poseidon_selector: chunked_evals_for_selector(
                &index.column_evaluations.poseidon_selector8,
            ),
            complete_add_selector: chunked_evals_for_selector(
                &index.column_evaluations.complete_add_selector4,
            ),
            mul_selector: chunked_evals_for_selector(&index.column_evaluations.mul_selector8),
            emul_selector: chunked_evals_for_selector(&index.column_evaluations.emul_selector8),
            endomul_scalar_selector: chunked_evals_for_selector(
                &index.column_evaluations.endomul_scalar_selector8,
            ),

            range_check0_selector: index
                .column_evaluations
                .range_check0_selector8
                .as_ref()
                .map(chunked_evals_for_selector),
            range_check1_selector: index
                .column_evaluations
                .range_check1_selector8
                .as_ref()
                .map(chunked_evals_for_selector),
            foreign_field_add_selector: index
                .column_evaluations
                .foreign_field_add_selector8
                .as_ref()
                .map(chunked_evals_for_selector),
            foreign_field_mul_selector: index
                .column_evaluations
                .foreign_field_mul_selector8
                .as_ref()
                .map(chunked_evals_for_selector),
            xor_selector: index
                .column_evaluations
                .xor_selector8
                .as_ref()
                .map(chunked_evals_for_selector),
            rot_selector: index
                .column_evaluations
                .rot_selector8
                .as_ref()
                .map(chunked_evals_for_selector),

            runtime_lookup_table_selector: index.cs.lookup_constraint_system.as_ref().and_then(
                |lcs| {
                    lcs.runtime_selector
                        .as_ref()
                        .map(chunked_evals_for_selector)
                },
            ),
            xor_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(|lcs| {
                lcs.lookup_selectors
                    .xor
                    .as_ref()
                    .map(chunked_evals_for_selector)
            }),
            lookup_gate_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
                |lcs| {
                    lcs.lookup_selectors
                        .lookup
                        .as_ref()
                        .map(chunked_evals_for_selector)
                },
            ),
            range_check_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
                |lcs| {
                    lcs.lookup_selectors
                        .range_check
                        .as_ref()
                        .map(chunked_evals_for_selector)
                },
            ),
            foreign_field_mul_lookup_selector: index.cs.lookup_constraint_system.as_ref().and_then(
                |lcs| {
                    lcs.lookup_selectors
                        .ffmul
                        .as_ref()
                        .map(chunked_evals_for_selector)
                },
            ),
        };

        let zeta_to_srs_len = zeta.pow([index.max_poly_size as u64]);
        let zeta_omega_to_srs_len = zeta_omega.pow([index.max_poly_size as u64]);
        let zeta_to_domain_size = zeta.pow([d1_size as u64]);

        //~ 1. Evaluate the same polynomials without chunking them
        //~    (so that each polynomial should correspond to a single value this time).
        let evals: ProofEvaluations<PointEvaluations<G::ScalarField>> = {
            let powers_of_eval_points_for_chunks = PointEvaluations {
                zeta: zeta_to_srs_len,
                zeta_omega: zeta_omega_to_srs_len,
            };
            chunked_evals.combine(&powers_of_eval_points_for_chunks)
        };

        //~ 1. Compute the ft polynomial.
        //~    This is to implement [Maller's optimization](https://o1-labs.github.io/proof-systems/kimchi/maller_15.html).
        internal_tracing::checkpoint!(internal_traces; compute_ft_poly);
        let ft: DensePolynomial<G::ScalarField> = {
            let f_chunked = {
                // TODO: compute the linearization polynomial in evaluation form so
                // that we can drop the coefficient forms of the index polynomials from
                // the constraint system struct

                // permutation (not part of linearization yet)
                let alphas =
                    all_alphas.get_alphas(ArgumentType::Permutation, permutation::CONSTRAINTS);
                let f = index.perm_lnrz(&evals, zeta, beta, gamma, alphas);

                // the circuit polynomial
                let f = {
                    let (_lin_constant, mut lin) =
                        index.linearization.to_polynomial(&env, zeta, &evals);
                    lin += &f;
                    lin.interpolate()
                };

                drop(env);

                // see https://o1-labs.github.io/proof-systems/kimchi/maller_15.html#the-prover-side
                f.to_chunked_polynomial(num_chunks, index.max_poly_size)
                    .linearize(zeta_to_srs_len)
            };

            let t_chunked = quotient_poly
                .to_chunked_polynomial(7 * num_chunks, index.max_poly_size)
                .linearize(zeta_to_srs_len);

            &f_chunked - &t_chunked.scale(zeta_to_domain_size - G::ScalarField::one())
        };

        //~ 1. construct the blinding part of the ft polynomial commitment
        //~    [see this section](https://o1-labs.github.io/proof-systems/kimchi/maller_15.html#evaluation-proof-and-blinding-factors)
        let blinding_ft = {
            let blinding_t = t_comm.blinders.chunk_blinding(zeta_to_srs_len);
            let blinding_f = G::ScalarField::zero();

            PolyComm {
                // blinding_f - Z_H(zeta) * blinding_t
                chunks: vec![
                    blinding_f - (zeta_to_domain_size - G::ScalarField::one()) * blinding_t,
                ],
            }
        };

        //~ 1. Evaluate the ft polynomial at $\zeta\omega$ only.
        internal_tracing::checkpoint!(internal_traces; ft_eval_zeta_omega);
        let ft_eval1 = ft.evaluate(&zeta_omega);

        //~ 1. Setup the Fr-Sponge
        let fq_sponge_before_evaluations = fq_sponge.clone();
        let mut fr_sponge = EFrSponge::new(G::sponge_params());

        //~ 1. Squeeze the Fq-sponge and absorb the result with the Fr-Sponge.
        fr_sponge.absorb(&fq_sponge.digest());

        //~ 1. Absorb the previous recursion challenges.
        let prev_challenge_digest = {
            // Note: we absorb in a new sponge here to limit the scope in which we need the
            // more-expensive 'optional sponge'.
            let mut fr_sponge = EFrSponge::new(G::sponge_params());
            for RecursionChallenge { chals, .. } in &prev_challenges {
                fr_sponge.absorb_multiple(chals);
            }
            fr_sponge.digest()
        };
        fr_sponge.absorb(&prev_challenge_digest);

        //~ 1. Compute evaluations for the previous recursion challenges.
        internal_tracing::checkpoint!(internal_traces; build_polynomials);
        let polys = prev_challenges
            .iter()
            .map(|RecursionChallenge { chals, comm }| {
                (
                    DensePolynomial::from_coefficients_vec(b_poly_coefficients(chals)),
                    comm.len(),
                )
            })
            .collect::<Vec<_>>();

        //~ 1. Absorb the unique evaluation of ft: $ft(\zeta\omega)$.
        fr_sponge.absorb(&ft_eval1);

        //~ 1. Absorb all the polynomial evaluations in $\zeta$ and $\zeta\omega$:
        //~~ * the public polynomial
        //~~ * z
        //~~ * generic selector
        //~~ * poseidon selector
        //~~ * the 15 register/witness
        //~~ * 6 sigmas evaluations (the last one is not evaluated)
        fr_sponge.absorb_multiple(&chunked_evals.public.as_ref().unwrap().zeta);
        fr_sponge.absorb_multiple(&chunked_evals.public.as_ref().unwrap().zeta_omega);
        fr_sponge.absorb_evaluations(&chunked_evals);

        //~ 1. Sample $v'$ with the Fr-Sponge
        let v_chal = fr_sponge.challenge();

        //~ 1. Derive $v$ from $v'$ using the endomorphism (TODO: specify)
        let v = v_chal.to_field(endo_r);

        //~ 1. Sample $u'$ with the Fr-Sponge
        let u_chal = fr_sponge.challenge();

        //~ 1. Derive $u$ from $u'$ using the endomorphism (TODO: specify)
        let u = u_chal.to_field(endo_r);

        //~ 1. Create a list of all polynomials that will require evaluations
        //~    (and evaluation proofs) in the protocol.
        //~    First, include the previous challenges, in case we are in a recursive prover.
        let non_hiding = |n_chunks: usize| PolyComm {
            chunks: vec![G::ScalarField::zero(); n_chunks],
        };

        let fixed_hiding = |n_chunks: usize| PolyComm {
            chunks: vec![G::ScalarField::one(); n_chunks],
        };

        let coefficients_form = DensePolynomialOrEvaluations::DensePolynomial;
        let evaluations_form = |e| DensePolynomialOrEvaluations::Evaluations(e, index.cs.domain.d1);

        let mut polynomials = polys
            .iter()
            .map(|(p, n_chunks)| (coefficients_form(p), non_hiding(*n_chunks)))
            .collect::<Vec<_>>();

        //~ 1. Then, include:
        //~~ * the negated public polynomial
        //~~ * the ft polynomial
        //~~ * the permutation aggregation polynomial z polynomial
        //~~ * the generic selector
        //~~ * the poseidon selector
        //~~ * the 15 registers/witness columns
        //~~ * the 6 sigmas
        polynomials.push((coefficients_form(&public_poly), fixed_hiding(num_chunks)));
        polynomials.push((coefficients_form(&ft), blinding_ft));
        polynomials.push((coefficients_form(&z_poly), z_comm.blinders));
        polynomials.push((
            evaluations_form(&index.column_evaluations.generic_selector4),
            fixed_hiding(num_chunks),
        ));
        polynomials.push((
            evaluations_form(&index.column_evaluations.poseidon_selector8),
            fixed_hiding(num_chunks),
        ));
        polynomials.push((
            evaluations_form(&index.column_evaluations.complete_add_selector4),
            fixed_hiding(num_chunks),
        ));
        polynomials.push((
            evaluations_form(&index.column_evaluations.mul_selector8),
            fixed_hiding(num_chunks),
        ));
        polynomials.push((
            evaluations_form(&index.column_evaluations.emul_selector8),
            fixed_hiding(num_chunks),
        ));
        polynomials.push((
            evaluations_form(&index.column_evaluations.endomul_scalar_selector8),
            fixed_hiding(num_chunks),
        ));
        polynomials.extend(
            witness_poly
                .iter()
                .zip(w_comm.iter())
                .map(|(w, c)| (coefficients_form(w), c.blinders.clone()))
                .collect::<Vec<_>>(),
        );
        polynomials.extend(
            index
                .column_evaluations
                .coefficients8
                .iter()
                .map(|coefficientm| (evaluations_form(coefficientm), non_hiding(num_chunks)))
                .collect::<Vec<_>>(),
        );
        polynomials.extend(
            index.column_evaluations.permutation_coefficients8[0..PERMUTS - 1]
                .iter()
                .map(|w| (evaluations_form(w), non_hiding(num_chunks)))
                .collect::<Vec<_>>(),
        );

        //~~ * the optional gates
        if let Some(range_check0_selector8) =
            index.column_evaluations.range_check0_selector8.as_ref()
        {
            polynomials.push((
                evaluations_form(range_check0_selector8),
                non_hiding(num_chunks),
            ));
        }
        if let Some(range_check1_selector8) =
            index.column_evaluations.range_check1_selector8.as_ref()
        {
            polynomials.push((
                evaluations_form(range_check1_selector8),
                non_hiding(num_chunks),
            ));
        }
        if let Some(foreign_field_add_selector8) = index
            .column_evaluations
            .foreign_field_add_selector8
            .as_ref()
        {
            polynomials.push((
                evaluations_form(foreign_field_add_selector8),
                non_hiding(num_chunks),
            ));
        }
        if let Some(foreign_field_mul_selector8) = index
            .column_evaluations
            .foreign_field_mul_selector8
            .as_ref()
        {
            polynomials.push((
                evaluations_form(foreign_field_mul_selector8),
                non_hiding(num_chunks),
            ));
        }
        if let Some(xor_selector8) = index.column_evaluations.xor_selector8.as_ref() {
            polynomials.push((evaluations_form(xor_selector8), non_hiding(num_chunks)));
        }
        if let Some(rot_selector8) = index.column_evaluations.rot_selector8.as_ref() {
            polynomials.push((evaluations_form(rot_selector8), non_hiding(num_chunks)));
        }

        //~~ * optionally, the runtime table
        //~ 1. if using lookup:
        if let Some(lcs) = &index.cs.lookup_constraint_system {
            //~~ * add the lookup sorted polynomials
            let sorted_poly = lookup_context.sorted_coeffs.as_ref().unwrap();
            let sorted_comms = lookup_context.sorted_comms.as_ref().unwrap();

            for (poly, comm) in sorted_poly.iter().zip(sorted_comms) {
                polynomials.push((coefficients_form(poly), comm.blinders.clone()));
            }

            //~~ * add the lookup aggreg polynomial
            let aggreg_poly = lookup_context.aggreg_coeffs.as_ref().unwrap();
            let aggreg_comm = lookup_context.aggreg_comm.as_ref().unwrap();
            polynomials.push((coefficients_form(aggreg_poly), aggreg_comm.blinders.clone()));

            //~~ * add the combined table polynomial
            let table_blinding = {
                let joint_combiner = lookup_context.joint_combiner.as_ref().unwrap();
                let table_id_combiner = lookup_context.table_id_combiner.as_ref().unwrap();
                let max_fixed_lookup_table_size = {
                    // CAUTION: This is not `lcs.configuration.lookup_info.max_joint_size` because
                    // the lookup table may be strictly narrower, and as such will not contribute
                    // the associated blinders.
                    // For example, using a runtime table with the lookup gate (width 2), but only
                    // width-1 fixed tables (e.g. range check), it would be incorrect to use the
                    // wider width (2) because there are no such contributing commitments!
                    // Note that lookup_table8 is a list of polynomials
                    lcs.lookup_table8.len()
                };
                let base_blinding = {
                    let fixed_table_blinding = if max_fixed_lookup_table_size == 0 {
                        G::ScalarField::zero()
                    } else {
                        (1..max_fixed_lookup_table_size).fold(G::ScalarField::one(), |acc, _| {
                            G::ScalarField::one() + *joint_combiner * acc
                        })
                    };
                    fixed_table_blinding + *table_id_combiner
                };
                if lcs.runtime_selector.is_some() {
                    let runtime_comm = lookup_context.runtime_table_comm.as_ref().unwrap();

                    let chunks = runtime_comm
                        .blinders
                        .into_iter()
                        .map(|blinding| *joint_combiner * *blinding + base_blinding)
                        .collect();

                    PolyComm::new(chunks)
                } else {
                    let chunks = vec![base_blinding; num_chunks];
                    PolyComm::new(chunks)
                }
            };

            let joint_lookup_table = lookup_context.joint_lookup_table.as_ref().unwrap();

            polynomials.push((coefficients_form(joint_lookup_table), table_blinding));

            //~~ * if present, add the runtime table polynomial
            if lcs.runtime_selector.is_some() {
                let runtime_table_comm = lookup_context.runtime_table_comm.as_ref().unwrap();
                let runtime_table = lookup_context.runtime_table.as_ref().unwrap();

                polynomials.push((
                    coefficients_form(runtime_table),
                    runtime_table_comm.blinders.clone(),
                ));
            }

            //~~ * the lookup selectors

            if let Some(runtime_lookup_table_selector) = lcs.runtime_selector.as_ref() {
                polynomials.push((
                    evaluations_form(runtime_lookup_table_selector),
                    non_hiding(1),
                ))
            }
            if let Some(xor_lookup_selector) = lcs.lookup_selectors.xor.as_ref() {
                polynomials.push((evaluations_form(xor_lookup_selector), non_hiding(1)))
            }
            if let Some(lookup_gate_selector) = lcs.lookup_selectors.lookup.as_ref() {
                polynomials.push((evaluations_form(lookup_gate_selector), non_hiding(1)))
            }
            if let Some(range_check_lookup_selector) = lcs.lookup_selectors.range_check.as_ref() {
                polynomials.push((evaluations_form(range_check_lookup_selector), non_hiding(1)))
            }
            if let Some(foreign_field_mul_lookup_selector) = lcs.lookup_selectors.ffmul.as_ref() {
                polynomials.push((
                    evaluations_form(foreign_field_mul_lookup_selector),
                    non_hiding(1),
                ))
            }
        }

        //~ 1. Create an aggregated evaluation proof for all of these polynomials at $\zeta$ and $\zeta\omega$ using $u$ and $v$.
        internal_tracing::checkpoint!(internal_traces; create_aggregated_ipa);
        let proof = OpenProof::open(
            &*index.srs,
            group_map,
            &polynomials,
            &[zeta, zeta_omega],
            v,
            u,
            fq_sponge_before_evaluations,
            rng,
        );

        let lookup = lookup_context
            .aggreg_comm
            .zip(lookup_context.sorted_comms)
            .map(|(a, s)| LookupCommitments {
                aggreg: a.commitment,
                sorted: s.iter().map(|c| c.commitment.clone()).collect(),
                runtime: lookup_context.runtime_table_comm.map(|x| x.commitment),
            });

        let proof = Self {
            commitments: ProverCommitments {
                w_comm: array::from_fn(|i| w_comm[i].commitment.clone()),
                z_comm: z_comm.commitment,
                t_comm: t_comm.commitment,
                lookup,
            },
            proof,
            evals: chunked_evals,
            ft_eval1,
            prev_challenges,
        };

        internal_tracing::checkpoint!(internal_traces; create_recursive_done);
        Ok(proof)
    }
}

internal_tracing::decl_traces!(internal_traces;
    pasta_fp_plonk_proof_create,
    pasta_fq_plonk_proof_create,
    create_recursive,
    pad_witness,
    set_up_fq_sponge,
    commit_to_witness_columns,
    use_lookup,
    z_permutation_aggregation_polynomial,
    eval_witness_polynomials_over_domains,
    compute_index_evals,
    compute_quotient_poly,
    lagrange_basis_eval_zeta_poly,
    lagrange_basis_eval_zeta_omega_poly,
    chunk_eval_zeta_omega_poly,
    compute_ft_poly,
    ft_eval_zeta_omega,
    build_polynomials,
    create_aggregated_ipa,
    create_recursive_done);

#[cfg(feature = "ocaml_types")]
pub mod caml {
    use super::*;
    use crate::proof::caml::{CamlProofEvaluations, CamlRecursionChallenge};
    use ark_ec::AffineRepr;
    use poly_commitment::{
        commitment::caml::CamlPolyComm,
        ipa::{caml::CamlOpeningProof, OpeningProof},
    };

    #[cfg(feature = "internal_tracing")]
    pub use internal_traces::caml::CamlTraces as CamlProverTraces;

    #[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlProofWithPublic<CamlG, CamlF> {
        pub public_evals: Option<PointEvaluations<Vec<CamlF>>>,
        pub proof: CamlProverProof<CamlG, CamlF>,
    }

    //
    // CamlProverProof<CamlG, CamlF>
    //

    #[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlProverProof<CamlG, CamlF> {
        pub commitments: CamlProverCommitments<CamlG>,
        pub proof: CamlOpeningProof<CamlG, CamlF>,
        // OCaml doesn't have sized arrays, so we have to convert to a tuple..
        pub evals: CamlProofEvaluations<CamlF>,
        pub ft_eval1: CamlF,
        pub public: Vec<CamlF>,
        //Vec<(Vec<CamlF>, CamlPolyComm<CamlG>)>,
        pub prev_challenges: Vec<CamlRecursionChallenge<CamlG, CamlF>>,
    }

    //
    // CamlProverCommitments<CamlG>
    //

    #[derive(Clone, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlLookupCommitments<CamlG> {
        pub sorted: Vec<CamlPolyComm<CamlG>>,
        pub aggreg: CamlPolyComm<CamlG>,
        pub runtime: Option<CamlPolyComm<CamlG>>,
    }

    #[allow(clippy::type_complexity)]
    #[derive(Clone, ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
    pub struct CamlProverCommitments<CamlG> {
        // polynomial commitments
        pub w_comm: (
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
            CamlPolyComm<CamlG>,
        ),
        pub z_comm: CamlPolyComm<CamlG>,
        pub t_comm: CamlPolyComm<CamlG>,
        pub lookup: Option<CamlLookupCommitments<CamlG>>,
    }

    // These implementations are handy for conversions such as:
    // InternalType <-> Ocaml::Value
    //
    // It does this by hiding the required middle conversion step:
    // InternalType <-> CamlInternalType <-> Ocaml::Value
    //
    // Note that some conversions are not always possible to shorten,
    // because we don't always know how to convert the types.
    // For example, to implement the conversion
    // ProverCommitments<G> -> CamlProverCommitments<CamlG>
    // we need to know how to convert G to CamlG.
    // we don't know that information, unless we implemented some trait (e.g. ToCaml)
    // we can do that, but instead we implemented the From trait for the reverse
    // operations (From<G> for CamlG).
    // it reduces the complexity, but forces us to do the conversion in two
    // phases instead of one.

    //
    // CamlLookupCommitments<CamlG> <-> LookupCommitments<G>
    //

    impl<G, CamlG> From<LookupCommitments<G>> for CamlLookupCommitments<CamlG>
    where
        G: AffineRepr,
        CamlPolyComm<CamlG>: From<PolyComm<G>>,
    {
        fn from(
            LookupCommitments {
                aggreg,
                sorted,
                runtime,
            }: LookupCommitments<G>,
        ) -> Self {
            Self {
                aggreg: aggreg.into(),
                sorted: sorted.into_iter().map(Into::into).collect(),
                runtime: runtime.map(Into::into),
            }
        }
    }

    impl<G, CamlG> From<CamlLookupCommitments<CamlG>> for LookupCommitments<G>
    where
        G: AffineRepr,
        PolyComm<G>: From<CamlPolyComm<CamlG>>,
    {
        fn from(
            CamlLookupCommitments {
                aggreg,
                sorted,
                runtime,
            }: CamlLookupCommitments<CamlG>,
        ) -> LookupCommitments<G> {
            LookupCommitments {
                aggreg: aggreg.into(),
                sorted: sorted.into_iter().map(Into::into).collect(),
                runtime: runtime.map(Into::into),
            }
        }
    }

    //
    // CamlProverCommitments<CamlG> <-> ProverCommitments<G>
    //

    impl<G, CamlG> From<ProverCommitments<G>> for CamlProverCommitments<CamlG>
    where
        G: AffineRepr,
        CamlPolyComm<CamlG>: From<PolyComm<G>>,
    {
        fn from(prover_comm: ProverCommitments<G>) -> Self {
            let [w_comm0, w_comm1, w_comm2, w_comm3, w_comm4, w_comm5, w_comm6, w_comm7, w_comm8, w_comm9, w_comm10, w_comm11, w_comm12, w_comm13, w_comm14] =
                prover_comm.w_comm;
            Self {
                w_comm: (
                    w_comm0.into(),
                    w_comm1.into(),
                    w_comm2.into(),
                    w_comm3.into(),
                    w_comm4.into(),
                    w_comm5.into(),
                    w_comm6.into(),
                    w_comm7.into(),
                    w_comm8.into(),
                    w_comm9.into(),
                    w_comm10.into(),
                    w_comm11.into(),
                    w_comm12.into(),
                    w_comm13.into(),
                    w_comm14.into(),
                ),
                z_comm: prover_comm.z_comm.into(),
                t_comm: prover_comm.t_comm.into(),
                lookup: prover_comm.lookup.map(Into::into),
            }
        }
    }

    impl<G, CamlG> From<CamlProverCommitments<CamlG>> for ProverCommitments<G>
    where
        G: AffineRepr,
        PolyComm<G>: From<CamlPolyComm<CamlG>>,
    {
        fn from(caml_prover_comm: CamlProverCommitments<CamlG>) -> ProverCommitments<G> {
            let (
                w_comm0,
                w_comm1,
                w_comm2,
                w_comm3,
                w_comm4,
                w_comm5,
                w_comm6,
                w_comm7,
                w_comm8,
                w_comm9,
                w_comm10,
                w_comm11,
                w_comm12,
                w_comm13,
                w_comm14,
            ) = caml_prover_comm.w_comm;
            ProverCommitments {
                w_comm: [
                    w_comm0.into(),
                    w_comm1.into(),
                    w_comm2.into(),
                    w_comm3.into(),
                    w_comm4.into(),
                    w_comm5.into(),
                    w_comm6.into(),
                    w_comm7.into(),
                    w_comm8.into(),
                    w_comm9.into(),
                    w_comm10.into(),
                    w_comm11.into(),
                    w_comm12.into(),
                    w_comm13.into(),
                    w_comm14.into(),
                ],
                z_comm: caml_prover_comm.z_comm.into(),
                t_comm: caml_prover_comm.t_comm.into(),
                lookup: caml_prover_comm.lookup.map(Into::into),
            }
        }
    }

    //
    // ProverProof<G> <-> CamlProofWithPublic<CamlG, CamlF>
    //

    impl<G, CamlG, CamlF> From<(ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)>
        for CamlProofWithPublic<CamlG, CamlF>
    where
        G: AffineRepr,
        CamlG: From<G>,
        CamlF: From<G::ScalarField>,
    {
        fn from(pp: (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)) -> Self {
            let (public_evals, evals) = pp.0.evals.into();
            CamlProofWithPublic {
                public_evals,
                proof: CamlProverProof {
                    commitments: pp.0.commitments.into(),
                    proof: pp.0.proof.into(),
                    evals,
                    ft_eval1: pp.0.ft_eval1.into(),
                    public: pp.1.into_iter().map(Into::into).collect(),
                    prev_challenges: pp.0.prev_challenges.into_iter().map(Into::into).collect(),
                },
            }
        }
    }

    impl<G, CamlG, CamlF> From<CamlProofWithPublic<CamlG, CamlF>>
        for (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>)
    where
        CamlF: Clone,
        G: AffineRepr + From<CamlG>,
        G::ScalarField: From<CamlF>,
    {
        fn from(
            caml_pp: CamlProofWithPublic<CamlG, CamlF>,
        ) -> (ProverProof<G, OpeningProof<G>>, Vec<G::ScalarField>) {
            let CamlProofWithPublic {
                public_evals,
                proof: caml_pp,
            } = caml_pp;
            let proof = ProverProof {
                commitments: caml_pp.commitments.into(),
                proof: caml_pp.proof.into(),
                evals: (public_evals, caml_pp.evals).into(),
                ft_eval1: caml_pp.ft_eval1.into(),
                prev_challenges: caml_pp
                    .prev_challenges
                    .into_iter()
                    .map(Into::into)
                    .collect(),
            };

            (proof, caml_pp.public.into_iter().map(Into::into).collect())
        }
    }
}