1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
use ark_ff::{batch_inversion_and_mul, FftField};
use ark_poly::{EvaluationDomain, Evaluations, Radix2EvaluationDomain as D};
use rayon::prelude::*;
/// Evaluations of all normalized lagrange basis polynomials at a given point.
/// Can be used to evaluate an `Evaluations` form polynomial at that point.
///
/// The Lagrange basis for polynomials of degree `<= d` over a domain
/// `{ω_0,...,ω_{d-1}}` is the set of `d` polynomials `{l_0,...,l_{d-1}}` of
/// degree `d-1` that equal `1` at `ω_i` and `0` in the rest of the domain
/// terms. They can be used to evaluate polynomials in evaluation form
/// efficiently in `O(d)` time.
///
/// When chunking is in place, the domain size `n` is larger than the maximum
/// polynomial degree allowed `m`. Thus, on input `n = c·m` evaluations for `c`
/// chunks, we cannot obtain a polynomial `f` with degree `c·m-1` with the equation:
///
/// `f(X) = x_0 · l_0(X) + ... + x_{c·m-1} · l_{c·m-1}(X)`
///
/// Instead, this struct will contain the `c·m` coefficients of the polynomial
/// that is equal to the powers of the point `x` in the positions corresponding
/// to the chunk, and `0` elsewhere in the domain. This is useful to evaluate the
/// chunks of polynomials of degree `c·m-1` given in evaluation form at the point.
pub struct LagrangeBasisEvaluations<F> {
/// If no chunking:
/// - evals is a vector of length 1 containing a vector of size `n`
/// corresponding to the evaluations of the Lagrange polynomials, which
/// are the polynomials that equal `1` at `ω_i` and `0` elsewhere in the
/// domain.
/// If chunking (a vector of size `c · n`)
/// - the first index refers to the chunks
/// - the second index refers j-th coefficient of the i-th chunk of the
/// polynomial that equals the powers of the point and `0` elsewhere (and
/// the length of each such vector is `n`).
evals: Vec<Vec<F>>,
}
impl<F: FftField> LagrangeBasisEvaluations<F> {
/// Return the domain size of the individual evaluations.
///
/// Note that there is an invariant that all individual evaluation chunks
/// have the same size. It is enforced by each constructor.
///
pub fn domain_size(&self) -> usize {
self.evals[0].len()
}
/// Given the evaluations form of a polynomial, directly evaluate that
/// polynomial at a point.
///
/// The Lagrange basis evaluations can be used to evaluate a polynomial
/// given in evaluation form efficiently in `O(n)` time, where `n` is the
/// domain size, without the need of interpolating.
///
/// Recall that a polynomial can be represented as the sum of the scaled
/// Lagrange polynomials using its evaluations on the domain:
/// `f(x) = x_0 · l_0(x) + ... + x_n · l_n(x)`
///
/// But when chunking is in place, we want to evaluate a polynomial `f` of
/// degree `c · m - 1` at point `z`, expressed as
/// ```text
/// f(z) = a_0·z^0 + ... + a_{c*m}·z^{c·m}
/// = z^0 · f_0(z) + z^m · f_1(z) + ... + z^{(c-1)m} · f_{c-1}(z)
/// ```
///
/// where `f_i(X)` is the i-th chunked polynomial of degree `m-1` of `f`:
/// `f_i(x) = a_{i·m} · x^0 + ... + a_{(i+1)m-1} · x^{m-1}`
///
/// Returns the evaluation of each chunk of the polynomial at the point
/// (when there is no chunking, the result is a vector of length 1). They
/// correspond to the `f_i(z)` in the equation above.
pub fn evaluate<D: EvaluationDomain<F>>(&self, p: &Evaluations<F, D>) -> Vec<F> {
// The domain size must be a multiple of the number of evaluations so
// that the degree of the polynomial can be split into chunks of equal size.
assert_eq!(p.evals.len() % self.domain_size(), 0);
// The number of chunks c
let stride = p.evals.len() / self.domain_size();
let p_evals = &p.evals;
// Performs the operation
// ```text
// n-1
// j ∈ [0, c) : eval_{j} = Σ p_{i · c} · l_{j,i}
// i=0
// ```
// Note that in the chunking case, the Lagrange basis contains the
// coefficient form of the polynomial that evaluates to the powers of
// `z` in the chunk positions and `0` elsewhere.
//
// Then, the evaluation of `f` on `z` can be computed as the sum of the
// products of the evaluations of `f` in the domain and the Lagrange
// evaluations.
(&self.evals)
.into_par_iter()
.map(|evals| {
evals
.into_par_iter()
.enumerate()
.map(|(i, e)| p_evals[stride * i] * e)
.sum()
})
.collect()
}
/// Given the evaluations form of a polynomial, directly evaluate that
/// polynomial at a point, assuming that the given evaluations are either
/// `0` or `1` at every point of the domain.
///
/// This method can particularly be useful when the polynomials represent
/// (boolean) selectors in a circuit.
pub fn evaluate_boolean<D: EvaluationDomain<F>>(&self, p: &Evaluations<F, D>) -> Vec<F> {
assert_eq!(p.evals.len() % self.domain_size(), 0);
let stride = p.evals.len() / self.domain_size();
self.evals
.iter()
.map(|evals| {
let mut result = F::zero();
for (i, e) in evals.iter().enumerate() {
if !p.evals[stride * i].is_zero() {
result += e;
}
}
result
})
.collect()
}
/// Compute all evaluations of the normalized lagrange basis polynomials of
/// the given domain at the given point. Runs in time O(domain size).
fn new_with_segment_size_1(domain: D<F>, x: F) -> LagrangeBasisEvaluations<F> {
let n = domain.size();
// We want to compute for all i
// s_i = 1 / t_i
// where
// t_i = ∏_{j ≠ i} (ω^i - ω^j)
//
// Suppose we have t_0 = ∏_{j = 1}^{n-1} (1 - ω^j).
// This is a product with n-1 terms. We want to shift each term over by
// ω so we multiply by ω^{n-1}:
//
// ω^{n-1} * t_0
// = ∏_{j = 1}^{n-1} ω (1 - ω^j).
// = ∏_{j = 1}^{n-1} (ω - ω^{j+1)).
// = (ω - ω^2) (ω - ω^3) ... (ω - ω^{n-1+1})
// = (ω - ω^2) (ω - ω^3) ... (ω - ω^0)
// = t_1
//
// And generally
// ω^{n-1} * t_i
// = ∏_{j ≠ i} ω (ω^i - ω^j)
// = ∏_{j ≠ i} (ω^{i + 1} - ω^{j + 1})
// = ∏_{j + 1 ≠ i + 1} (ω^{i + 1} - ω^{j + 1})
// = ∏_{j' ≠ i + 1} (ω^{i + 1} - ω^{j'})
// = t_{i + 1}
//
// Since ω^{n-1} = ω^{-1}, we write this as
// ω^{-1} t_i = t_{i + 1}
// and then by induction,
// ω^{-i} t_0 = t_i
// Now, the ith Lagrange evaluation at x is
// (1 / ∏_{j ≠ i} (ω^i - ω^j)) (x^n - 1) / (x - ω^i)
// = (x^n - 1) / [t_i (x - ω^i)]
// = (x^n - 1) / [ω^{-i} * t_0 * (x - ω^i)]
//
// We compute this using the [batch_inversion_and_mul] function.
let t_0: F = domain
.elements()
.skip(1)
.map(|omega_i| F::one() - omega_i)
.product();
let mut denominators: Vec<F> = {
let omegas: Vec<F> = domain.elements().collect();
let omega_invs: Vec<F> = (0..n).map(|i| omegas[(n - i) % n]).collect();
omegas
.into_par_iter()
.zip(omega_invs)
.map(|(omega_i, omega_i_inv)| omega_i_inv * t_0 * (x - omega_i))
.collect()
};
let numerator = x.pow([n as u64]) - F::one();
batch_inversion_and_mul(&mut denominators[..], &numerator);
// Denominators now contain the desired result.
LagrangeBasisEvaluations {
evals: vec![denominators],
}
}
/// Compute all evaluations of the normalized Lagrange basis polynomials of
/// the given domain at the given point `x`. Runs in time O(n log(n)) where
/// n is the domain size.
fn new_with_chunked_segments(
max_poly_size: usize,
domain: D<F>,
x: F,
) -> LagrangeBasisEvaluations<F> {
// For each chunk, this loop obtains the coefficient form of the
// polynomial that equals the powers of `x` in the positions
// corresponding to the chunk, and 0 elsewhere in the domain, using an
// iFFT operation of length n, resulting in an algorithm that runs in
// `O(c n log n)`.
//
// Example:
// ```text
// i-th chunk
// -----------------------
// chunked: [ 0, ..., 0, 1, x, x^2, ..., x^{m-1}, 0, ..., 0 ]
// indices: 0 i·m-1 i·m (i+1)m-1 (i+1)m cm-1=n-1
// ```
// A total of `n=c·m` coefficients are returned. These will be helpful to
// evaluate the chunks of polynomials of degree `n-1` at the point `x`.
//
let n = domain.size();
assert_eq!(n % max_poly_size, 0);
let num_chunks = n / max_poly_size;
let mut evals = Vec::with_capacity(num_chunks);
for i in 0..num_chunks {
let mut x_pow = F::one();
let mut chunked_evals = vec![F::zero(); n];
for j in 0..max_poly_size {
chunked_evals[i * max_poly_size + j] = x_pow;
x_pow *= x;
}
// This uses the same trick as `poly_commitment::srs::SRS::lagrange_basis`, but
// applied to field elements instead of group elements.
domain.ifft_in_place(&mut chunked_evals);
// Check that the number of coefficients after iFFT is as expected
assert_eq!(
chunked_evals.len(),
n,
"The number of coefficients of the {}-th segment is {} but it should have been {n}",
i,
chunked_evals.len()
);
evals.push(chunked_evals);
}
// Sanity check
assert_eq!(
evals.len(),
num_chunks,
"The number of expected chunks is {num_chunks} but only {} has/have been computed",
evals.len()
);
LagrangeBasisEvaluations { evals }
}
pub fn new(max_poly_size: usize, domain: D<F>, x: F) -> LagrangeBasisEvaluations<F> {
if domain.size() <= max_poly_size {
Self::new_with_segment_size_1(domain, x)
} else {
Self::new_with_chunked_segments(max_poly_size, domain, x)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ff::{One, UniformRand, Zero};
use ark_poly::{Polynomial, Radix2EvaluationDomain};
use mina_curves::pasta::Fp;
use rand::Rng;
#[test]
fn test_lagrange_evaluations() {
let mut rng = o1_utils::tests::make_test_rng(None);
let domain_log_size = rng.gen_range(1..10);
let n = 1 << domain_log_size;
let domain = Radix2EvaluationDomain::new(n).unwrap();
let x = Fp::rand(&mut rng);
let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);
let expected = (0..n).map(|i| {
let mut lagrange_i = vec![Fp::zero(); n];
lagrange_i[i] = Fp::one();
vec![Evaluations::from_vec_and_domain(lagrange_i, domain)
.interpolate()
.evaluate(&x)]
});
for (i, (expected, got)) in expected.zip(evaluator.evals).enumerate() {
for (j, (expected, got)) in expected.iter().zip(got.iter()).enumerate() {
if got != expected {
panic!("{}, {}, {}: {} != {}", line!(), i, j, got, expected);
}
}
}
}
#[test]
fn test_new_with_chunked_segments() {
let mut rng = o1_utils::tests::make_test_rng(None);
let domain_log_size = rng.gen_range(1..10);
let n = 1 << domain_log_size;
let domain = Radix2EvaluationDomain::new(n).unwrap();
let x = Fp::rand(&mut rng);
let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);
let evaluator_chunked =
LagrangeBasisEvaluations::new_with_chunked_segments(domain.size(), domain, x);
let chunk_length = evaluator_chunked.domain_size();
for (i, (evals, evals_chunked)) in evaluator
.evals
.iter()
.zip(evaluator_chunked.evals.iter())
.enumerate()
{
// Check all chunks have the same length
assert_eq!(evals_chunked.len(), chunk_length);
for (j, (evals, evals_chunked)) in evals.iter().zip(evals_chunked.iter()).enumerate() {
if evals != evals_chunked {
panic!("{}, {}, {}: {} != {}", line!(), i, j, evals, evals_chunked);
}
}
}
}
#[test]
fn test_evaluation() {
let rng = &mut o1_utils::tests::make_test_rng(None);
let domain_log_size = rng.gen_range(1..10);
let n = 1 << domain_log_size;
let domain = Radix2EvaluationDomain::new(n).unwrap();
let evals = {
let mut e = vec![];
for _ in 0..n {
e.push(Fp::rand(rng));
}
Evaluations::from_vec_and_domain(e, domain)
};
let x = Fp::rand(rng);
let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);
let y = evaluator.evaluate(&evals);
let expected = vec![evals.interpolate().evaluate(&x)];
assert_eq!(y, expected)
}
#[test]
fn test_evaluation_boolean() {
let rng = &mut o1_utils::tests::make_test_rng(None);
let domain_log_size = rng.gen_range(1..10);
let n = 1 << domain_log_size;
let domain = Radix2EvaluationDomain::new(n).unwrap();
let evals = {
let mut e = vec![];
for _ in 0..n {
e.push(if bool::rand(rng) {
Fp::one()
} else {
Fp::zero()
});
}
Evaluations::from_vec_and_domain(e, domain)
};
let x = Fp::rand(rng);
let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);
let y = evaluator.evaluate_boolean(&evals);
let expected = vec![evals.interpolate().evaluate(&x)];
assert_eq!(y, expected)
}
}