1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use ark_ff::{batch_inversion_and_mul, FftField};
use ark_poly::{EvaluationDomain, Evaluations, Radix2EvaluationDomain as D};
use rayon::prelude::*;

/// The evaluations of all normalized lagrange basis polynomials at a given
/// point. Can be used to evaluate an `Evaluations` form polynomial at that point.
pub struct LagrangeBasisEvaluations<F> {
    evals: Vec<Vec<F>>,
}

impl<F: FftField> LagrangeBasisEvaluations<F> {
    /// Given the evaluations form of a polynomial, directly evaluate that polynomial at a point.
    pub fn evaluate<D: EvaluationDomain<F>>(&self, p: &Evaluations<F, D>) -> Vec<F> {
        assert_eq!(p.evals.len() % self.evals[0].len(), 0);
        let stride = p.evals.len() / self.evals[0].len();
        let p_evals = &p.evals;
        (&self.evals)
            .into_par_iter()
            .map(|evals| {
                evals
                    .into_par_iter()
                    .enumerate()
                    .map(|(i, e)| p_evals[stride * i] * e)
                    .sum()
            })
            .collect()
    }

    /// Given the evaluations form of a polynomial, directly evaluate that polynomial at a point,
    /// assuming that the given evaluations are either 0 or 1 at every point of the domain.
    pub fn evaluate_boolean<D: EvaluationDomain<F>>(&self, p: &Evaluations<F, D>) -> Vec<F> {
        assert_eq!(p.evals.len() % self.evals[0].len(), 0);
        let stride = p.evals.len() / self.evals[0].len();
        self.evals
            .iter()
            .map(|evals| {
                let mut result = F::zero();
                for (i, e) in evals.iter().enumerate() {
                    if !p.evals[stride * i].is_zero() {
                        result += e;
                    }
                }
                result
            })
            .collect()
    }

    /// Compute all evaluations of the normalized lagrange basis polynomials of the
    /// given domain at the given point. Runs in time O(domain size).
    fn new_with_segment_size_1(domain: D<F>, x: F) -> LagrangeBasisEvaluations<F> {
        let n = domain.size();
        // We want to compute for all i
        // s_i = 1 / t_i
        // where
        // t_i = prod_{j != i} (omega^i - omega^j)
        //
        // Suppose we have t_0 = prod_{j = 1}^{n-1} (1 - omega^j).
        // This is a product with n-1 terms. We want to shift each term over by omega
        // so we multiply by omega^{n-1}:
        //
        // omega^{n-1} * t_0
        // = prod_{j = 1}^{n-1} omega (1 - omega^j).
        // = prod_{j = 1}^{n-1} (omega - omega^{j+1)).
        // = (omega - omega^2) (omega - omega^3) ... (omega - omega^{n-1+1})
        // = (omega - omega^2) (omega - omega^3) ... (omega - omega^0)
        // = t_1
        //
        // And generally
        // omega^{n-1} * t_i
        // = prod_{j != i} omega (omega^i - omega^j)
        // = prod_{j != i} (omega^{i + 1} - omega^{j + 1})
        // = prod_{j + 1 != i + 1} (omega^{i + 1} - omega^{j + 1})
        // = prod_{j' != i + 1} (omega^{i + 1} - omega^{j'})
        // = t_{i + 1}
        //
        // Since omega^{n-1} = omega^{-1}, we write this as
        // omega{-1} t_i = t_{i + 1}
        // and then by induction,
        // omega^{-i} t_0 = t_i

        // Now, the ith lagrange evaluation at x is
        // (1 / prod_{j != i} (omega^i - omega^j)) (x^n - 1) / (x - omega^i)
        // = (x^n - 1) / [t_i (x - omega^i)]
        // = (x^n - 1) / [omega^{-i} * t_0 * (x - omega^i)]
        //
        // We compute this using the [batch_inversion_and_mul] function.

        let t_0: F = domain
            .elements()
            .skip(1)
            .map(|omega_i| F::one() - omega_i)
            .product();

        let mut denominators: Vec<F> = {
            let omegas: Vec<F> = domain.elements().collect();
            let omega_invs: Vec<F> = (0..n).map(|i| omegas[(n - i) % n]).collect();

            omegas
                .into_par_iter()
                .zip(omega_invs)
                .map(|(omega_i, omega_i_inv)| omega_i_inv * t_0 * (x - omega_i))
                .collect()
        };

        let numerator = x.pow([n as u64]) - F::one();

        batch_inversion_and_mul(&mut denominators[..], &numerator);

        // Denominators now contains the desired result.
        LagrangeBasisEvaluations {
            evals: vec![denominators],
        }
    }

    /// Compute all evaluations of the normalized lagrange basis polynomials of the
    /// given domain at the given point. Runs in time O(n log(n)) for n = domain size.
    fn new_with_chunked_segments(
        max_poly_size: usize,
        domain: D<F>,
        x: F,
    ) -> LagrangeBasisEvaluations<F> {
        let n = domain.size();
        let num_chunks = n / max_poly_size;
        let mut evals = Vec::with_capacity(num_chunks);
        for i in 0..num_chunks {
            let mut x_pow = F::one();
            let mut chunked_evals = vec![F::zero(); n];
            for j in 0..max_poly_size {
                chunked_evals[i * max_poly_size + j] = x_pow;
                x_pow *= x;
            }
            // This uses the same trick as `poly_commitment::srs::SRS::add_lagrange_basis`, but
            // applied to field elements instead of group elements.
            domain.ifft_in_place(&mut chunked_evals);
            evals.push(chunked_evals);
        }
        LagrangeBasisEvaluations { evals }
    }

    pub fn new(max_poly_size: usize, domain: D<F>, x: F) -> LagrangeBasisEvaluations<F> {
        if domain.size() <= max_poly_size {
            Self::new_with_segment_size_1(domain, x)
        } else {
            Self::new_with_chunked_segments(max_poly_size, domain, x)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use ark_ff::{One, UniformRand, Zero};
    use ark_poly::{Polynomial, Radix2EvaluationDomain};
    use mina_curves::pasta::Fp;
    use rand::{rngs::StdRng, SeedableRng};

    #[test]
    fn test_lagrange_evaluations() {
        let n = 1 << 4;
        let domain = Radix2EvaluationDomain::new(n).unwrap();
        let rng = &mut StdRng::from_seed([0u8; 32]);
        let x = Fp::rand(rng);
        let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);

        let expected = (0..n).map(|i| {
            let mut lagrange_i = vec![Fp::zero(); n];
            lagrange_i[i] = Fp::one();
            vec![Evaluations::from_vec_and_domain(lagrange_i, domain)
                .interpolate()
                .evaluate(&x)]
        });

        for (i, (expected, got)) in expected.zip(evaluator.evals).enumerate() {
            for (j, (expected, got)) in expected.iter().zip(got.iter()).enumerate() {
                if got != expected {
                    panic!("{}, {}, {}: {} != {}", line!(), i, j, got, expected);
                }
            }
        }
    }

    #[test]
    fn test_new_with_chunked_segments() {
        let n = 1 << 4;
        let domain = Radix2EvaluationDomain::new(n).unwrap();
        let rng = &mut StdRng::from_seed([0u8; 32]);
        let x = Fp::rand(rng);
        let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);
        let evaluator_chunked =
            LagrangeBasisEvaluations::new_with_chunked_segments(domain.size(), domain, x);
        for (i, (evals, evals_chunked)) in evaluator
            .evals
            .iter()
            .zip(evaluator_chunked.evals.iter())
            .enumerate()
        {
            for (j, (evals, evals_chunked)) in evals.iter().zip(evals_chunked.iter()).enumerate() {
                if evals != evals_chunked {
                    panic!("{}, {}, {}: {} != {}", line!(), i, j, evals, evals_chunked);
                }
            }
        }
    }

    #[test]
    fn test_evaluation() {
        let rng = &mut StdRng::from_seed([0u8; 32]);
        let n = 1 << 10;
        let domain = Radix2EvaluationDomain::new(n).unwrap();

        let evals = {
            let mut e = vec![];
            for _ in 0..n {
                e.push(Fp::rand(rng));
            }
            Evaluations::from_vec_and_domain(e, domain)
        };

        let x = Fp::rand(rng);

        let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);

        let y = evaluator.evaluate(&evals);
        let expected = vec![evals.interpolate().evaluate(&x)];
        assert_eq!(y, expected)
    }

    #[test]
    fn test_evaluation_boolean() {
        let rng = &mut StdRng::from_seed([0u8; 32]);
        let n = 1 << 1;
        let domain = Radix2EvaluationDomain::new(n).unwrap();

        let evals = {
            let mut e = vec![];
            for _ in 0..n {
                e.push(if bool::rand(rng) {
                    Fp::one()
                } else {
                    Fp::zero()
                });
            }
            e = vec![Fp::zero(), Fp::one()];
            Evaluations::from_vec_and_domain(e, domain)
        };

        let x = Fp::rand(rng);

        let evaluator = LagrangeBasisEvaluations::new(domain.size(), domain, x);

        let y = evaluator.evaluate_boolean(&evals);
        let expected = vec![evals.interpolate().evaluate(&x)];
        assert_eq!(y, expected)
    }
}