1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
//! This module includes the definition of the XOR gadget for 64, 32, and 16 bits,
//! the definition of the constraints of the `Xor16` circuit gate,
//! and the code for witness generation for the XOR gadget.
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
expr::{constraints::ExprOps, Cache},
gate::{CircuitGate, Connect, GateType},
lookup::{
self,
tables::{GateLookupTable, LookupTable},
},
polynomial::COLUMNS,
wires::Wire,
witness::{self, ConstantCell, CopyBitsCell, VariableBitsCell, Variables, WitnessCell},
},
variable_map,
};
use ark_ff::PrimeField;
use num_bigint::BigUint;
use o1_utils::{BigUintFieldHelpers, BigUintHelpers, BitwiseOps, FieldHelpers};
use std::{array, marker::PhantomData};
use super::generic::GenericGateSpec;
impl<F: PrimeField> CircuitGate<F> {
/// Extends a XOR gadget for `bits` length to a circuit
/// Includes:
/// - num_xors Xor16 gates
/// - 1 Generic gate to constrain the final row to be zero with itself
/// Input:
/// - gates : vector of circuit gates
/// - bits : length of the XOR gadget
/// Output:
/// - new row index
pub fn extend_xor_gadget(gates: &mut Vec<Self>, bits: usize) -> usize {
let new_row = gates.len();
let (_, mut xor_gates) = Self::create_xor_gadget(new_row, bits);
// extend the whole circuit with the xor gadget
gates.append(&mut xor_gates);
// check fin_in1, fin_in2, fin_out are zero
let zero_row = gates.len() - 1;
gates.connect_cell_pair((zero_row, 0), (zero_row, 1));
gates.connect_cell_pair((zero_row, 0), (zero_row, 2));
gates.len()
}
/// Creates a XOR gadget for `bits` length
/// Includes:
/// - num_xors Xor16 gates
/// - 1 Generic gate to constrain the final row to be zero with itself
/// Input:
/// - new_row : row to start the XOR gadget
/// - bits : number of bits in the XOR
/// Outputs tuple (next_row, circuit_gates) where
/// - next_row : next row after this gate
/// - gates : vector of circuit gates comprising this gate
/// Warning:
/// - don't forget to check that the final row is all zeros as in `extend_xor_gadget`
pub fn create_xor_gadget(new_row: usize, bits: usize) -> (usize, Vec<Self>) {
let num_xors = num_xors(bits);
let mut xor_gates = (0..num_xors)
.map(|i| CircuitGate {
typ: GateType::Xor16,
wires: Wire::for_row(new_row + i),
coeffs: vec![],
})
.collect::<Vec<_>>();
let zero_row = new_row + num_xors;
xor_gates.push(CircuitGate::create_generic_gadget(
Wire::for_row(zero_row),
GenericGateSpec::Const(F::zero()),
None,
));
(new_row + xor_gates.len(), xor_gates)
}
}
/// Get the xor lookup table
pub fn lookup_table<F: PrimeField>() -> LookupTable<F> {
lookup::tables::get_table::<F>(GateLookupTable::Xor)
}
//~ `Xor16` - Chainable XOR constraints for words of multiples of 16 bits.
//~
//~ * This circuit gate is used to constrain that `in1` xored with `in2` equals `out`
//~ * The length of `in1`, `in2` and `out` must be the same and a multiple of 16bits.
//~ * This gate operates on the `Curr` and `Next` rows.
//~
//~ It uses three different types of constraints:
//~
//~ * copy - copy to another cell (32-bits)
//~ * plookup - xor-table plookup (4-bits)
//~ * decomposition - the constraints inside the gate
//~
//~ The 4-bit nybbles are assumed to be laid out with `0` column being the least significant nybble.
//~ Given values `in1`, `in2` and `out`, the layout looks like this:
//~
//~ | Column | `Curr` | `Next` |
//~ | ------ | ---------------- | ---------------- |
//~ | 0 | copy `in1` | copy `in1'` |
//~ | 1 | copy `in2` | copy `in2'` |
//~ | 2 | copy `out` | copy `out'` |
//~ | 3 | plookup0 `in1_0` | |
//~ | 4 | plookup1 `in1_1` | |
//~ | 5 | plookup2 `in1_2` | |
//~ | 6 | plookup3 `in1_3` | |
//~ | 7 | plookup0 `in2_0` | |
//~ | 8 | plookup1 `in2_1` | |
//~ | 9 | plookup2 `in2_2` | |
//~ | 10 | plookup3 `in2_3` | |
//~ | 11 | plookup0 `out_0` | |
//~ | 12 | plookup1 `out_1` | |
//~ | 13 | plookup2 `out_2` | |
//~ | 14 | plookup3 `out_3` | |
//~
//~ One single gate with next values of `in1'`, `in2'` and `out'` being zero can be used to check
//~ that the original `in1`, `in2` and `out` had 16-bits. We can chain this gate 4 times as follows
//~ to obtain a gadget for 64-bit words XOR:
//~
//~ | Row | `CircuitGate` | Purpose |
//~ | --- | ------------- | ------------------------------------------ |
//~ | 0 | `Xor16` | Xor 2 least significant bytes of the words |
//~ | 1 | `Xor16` | Xor next 2 bytes of the words |
//~ | 2 | `Xor16` | Xor next 2 bytes of the words |
//~ | 3 | `Xor16` | Xor 2 most significant bytes of the words |
//~ | 4 | `Generic` | Zero values, can be reused as generic gate |
//~
//~ ```admonish info
//~ We could halve the number of rows of the 64-bit XOR gadget by having lookups
//~ for 8 bits at a time, but for now we will use the 4-bit XOR table that we have.
//~ Rough computations show that if we run 8 or more Keccaks in one circuit we should
//~ use the 8-bit XOR table.
//~ ```
#[derive(Default)]
pub struct Xor16<F>(PhantomData<F>);
impl<F> Argument<F> for Xor16<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::Xor16);
const CONSTRAINTS: u32 = 3;
// Constraints for Xor16
// * Operates on Curr and Next rows
// * Constrain the decomposition of `in1`, `in2` and `out` of multiples of 16 bits
// * The actual XOR is performed thanks to the plookups of 4-bit XORs.
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
_cache: &mut Cache,
) -> Vec<T> {
let two = T::from(2u64);
// in1 = in1_0 + in1_1 * 2^4 + in1_2 * 2^8 + in1_3 * 2^12 + next_in1 * 2^16
// in2 = in2_0 + in2_1 * 2^4 + in2_2 * 2^8 + in2_3 * 2^12 + next_in2 * 2^16
// out = out_0 + out_1 * 2^4 + out_2 * 2^8 + out_3 * 2^12 + next_out * 2^16
(0..3)
.map(|i| {
env.witness_curr(3 + 4 * i)
+ env.witness_curr(4 + 4 * i) * two.clone().pow(4)
+ env.witness_curr(5 + 4 * i) * two.clone().pow(8)
+ env.witness_curr(6 + 4 * i) * two.clone().pow(12)
+ two.clone().pow(16) * env.witness_next(i)
- env.witness_curr(i)
})
.collect::<Vec<T>>()
}
}
// Witness layout
fn layout<F: PrimeField>(curr_row: usize, bits: usize) -> Vec<Vec<Box<dyn WitnessCell<F>>>> {
let num_xor = num_xors(bits);
let mut layout = (0..num_xor)
.map(|i| xor_row(i, curr_row + i))
.collect::<Vec<_>>();
layout.push(zero_row());
layout
}
fn xor_row<F: PrimeField>(nybble: usize, curr_row: usize) -> Vec<Box<dyn WitnessCell<F>>> {
let start = nybble * 16;
vec![
VariableBitsCell::create("in1", start, None),
VariableBitsCell::create("in2", start, None),
VariableBitsCell::create("out", start, None),
CopyBitsCell::create(curr_row, 0, 0, 4), // First 4-bit nybble of in1
CopyBitsCell::create(curr_row, 0, 4, 8), // Second 4-bit nybble of in1
CopyBitsCell::create(curr_row, 0, 8, 12), // Third 4-bit nybble of in1
CopyBitsCell::create(curr_row, 0, 12, 16), // Fourth 4-bit nybble of in1
CopyBitsCell::create(curr_row, 1, 0, 4), // First 4-bit nybble of in2
CopyBitsCell::create(curr_row, 1, 4, 8), // Second 4-bit nybble of in2
CopyBitsCell::create(curr_row, 1, 8, 12), // Third 4-bit nybble of in2
CopyBitsCell::create(curr_row, 1, 12, 16), // Fourth 4-bit nybble of in2
CopyBitsCell::create(curr_row, 2, 0, 4), // First 4-bit nybble of out
CopyBitsCell::create(curr_row, 2, 4, 8), // Second 4-bit nybble of out
CopyBitsCell::create(curr_row, 2, 8, 12), // Third 4-bit nybble of out
CopyBitsCell::create(curr_row, 2, 12, 16), // Fourth 4-bit nybble of out
]
}
fn zero_row<F: PrimeField>() -> Vec<Box<dyn WitnessCell<F>>> {
vec![
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
ConstantCell::create(F::zero()),
]
}
pub(crate) fn init_xor<F: PrimeField>(
witness: &mut [Vec<F>; COLUMNS],
curr_row: usize,
bits: usize,
words: (F, F, F),
) {
let xor_rows = layout(curr_row, bits);
witness::init(
witness,
curr_row,
&xor_rows,
&variable_map!["in1" => words.0, "in2" => words.1, "out" => words.2],
)
}
/// Extends the Xor rows to the full witness
/// Panics if the words are larger than the desired bits
pub fn extend_xor_witness<F: PrimeField>(
witness: &mut [Vec<F>; COLUMNS],
input1: F,
input2: F,
bits: usize,
) {
let xor_witness = create_xor_witness(input1, input2, bits);
for col in 0..COLUMNS {
witness[col].extend(xor_witness[col].iter());
}
}
/// Create a Xor for up to the native length starting at row 0
/// Input: first input and second input, bits length, current row
/// Panics if the desired bits is smaller than the inputs length
pub fn create_xor_witness<F: PrimeField>(input1: F, input2: F, bits: usize) -> [Vec<F>; COLUMNS] {
let input1_big = input1.to_biguint();
let input2_big = input2.to_biguint();
if bits < input1_big.bitlen() || bits < input2_big.bitlen() {
panic!("Bits must be greater or equal than the inputs length");
}
let output = BigUint::bitwise_xor(&input1_big, &input2_big);
let mut xor_witness: [Vec<F>; COLUMNS] =
array::from_fn(|_| vec![F::zero(); 1 + num_xors(bits)]);
init_xor(
&mut xor_witness,
0,
bits,
(input1, input2, output.to_field().unwrap()),
);
xor_witness
}
/// Returns the number of XOR rows needed for inputs of usize bits
pub fn num_xors(bits: usize) -> usize {
(bits as f64 / 16.0).ceil() as usize
}