1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
//! This module implements short Weierstrass curve variable base scalar multiplication custom Plonk polynomials.
//!
//! ```ignore
//! Acc := [2]T
//! for i = n-1 ... 0:
//! Q := (r_i == 1) ? T : -T
//! Acc := Acc + (Q + Acc)
//! ```
//!
//! See <https://github.com/zcash/zcash/issues/3924>
//! and 3.1 of <https://arxiv.org/pdf/math/0208038.pdf> for details.
use crate::circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::{BerkeleyChallengeTerm, Column},
expr::{constraints::ExprOps, Cache, Variable as VariableGen},
gate::{CircuitGate, CurrOrNext, GateType},
wires::{GateWires, COLUMNS},
};
use ark_ff::{FftField, PrimeField};
use std::marker::PhantomData;
use CurrOrNext::{Curr, Next};
type Variable = VariableGen<Column>;
//~ We implement custom Plonk constraints for short Weierstrass curve variable base scalar multiplication.
//~
//~ Given a finite field $\mathbb{F}_q$ of order $q$, if the order is not a multiple of 2 nor 3, then an
//~ elliptic curve over $\mathbb{F}_q$ in short Weierstrass form is represented by the set of points $(x,y)$
//~ that satisfy the following equation with $a,b\in\mathbb{F}_q$ and $4a^3+27b^2\neq_{\mathbb{F}_q} 0$:
//~ $$E(\mathbb{F}_q): y^2 = x^3 + a x + b$$
//~ If $P=(x_p, y_p)$ and $Q=(x_q, y_q)$ are two points in the curve $E(\mathbb{F}_q)$, the algorithm we
//~ represent here computes the operation $2P+Q$ (point doubling and point addition) as $(P+Q)+Q$.
//~
//~ ```admonish info
//~ Point $Q=(x_q, y_q)$ has nothing to do with the order $q$ of the field $\mathbb{F}_q$.
//~ ```
//~
//~ The original algorithm that is being used can be found in the Section 3.1 of <https://arxiv.org/pdf/math/0208038.pdf>,
//~ which can perform the above operation using 1 multiplication, 2 squarings and 2 divisions (one more squaring)
//~ if $P=Q$), thanks to the fact that computing the $Y$-coordinate of the intermediate addition is not required.
//~ This is more efficient to the standard algorithm that requires 1 more multiplication, 3 squarings in total and 2 divisions.
//~
//~ Moreover, this algorithm can be applied not only to the operation $2P+Q$, but any other scalar multiplication $kP$.
//~ This can be done by expressing the scalar $k$ in biwise form and performing a double-and-add approach.
//~ Nonetheless, this requires conditionals to differentiate $2P$ from $2P+Q$. For that reason, we will implement
//~ the following pseudocode from <https://github.com/zcash/zcash/issues/3924> (where instead, they give a variant
//~ of the above efficient algorithm for Montgomery curves $b\cdot y^2 = x^3 + a \cdot x^2 + x$).
//~
//~ ```ignore
//~ Acc := [2]T
//~ for i = n-1 ... 0:
//~ Q := (k_{i + 1} == 1) ? T : -T
//~ Acc := Acc + (Q + Acc)
//~ return (k_0 == 0) ? Acc - P : Acc
//~ ```
//~
//~ The layout of the witness requires 2 rows.
//~ The i-th row will be a `VBSM` gate whereas the next row will be a `ZERO` gate.
//~
//~ | Row | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Type |
//~ |-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|
//~ | i | xT | yT | x0 | y0 | n | n' | | x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | VBSM |
//~ | i+1 | x5 | y5 | b0 | b1 | b2 | b3 | b4 | s0 | s1 | s2 | s3 | s4 | | | | ZERO |
//~
//~ The gate constraints take care of 5 bits of the scalar multiplication.
//~ Each single bit consists of 4 constraints.
//~ There is one additional constraint imposed on the final number.
//~ Thus, the `VarBaseMul` gate argument requires 21 constraints.
//~
//~ For every bit, there will be one constraint meant to differentiate between addition and subtraction
//~ for the operation $(P±T)+P$:
//~
//~ `S = (P + (b ? T : −T)) + P`
//~
//~ We follow these criteria:
//~
//~ * If the bit is positive, the sign should be a subtraction
//~ * If the bit is negative, the sign should be an addition
//~
//~ Then, paraphrasing the above, we will represent this behavior as:
//~
//~ `S = (P - (2 * b - 1) * T ) + P`
//~
//~ Let us call `Input` the point with coordinates `(xI, yI)` and
//~ `Target` is the point being added with coordinates `(xT, yT)`.
//~ Then `Output` will be the point with coordinates `(xO, yO)` resulting from `O = ( I ± T ) + I`
//~
//~ ```admonish info
//~ Do not confuse our `Output` point `(xO, yO)` with the point at infinity that is normally represented as $\mathcal{O}$.
//~ ```
//~
//~ In each step of the algorithm, we consider the following elliptic curves affine arithmetic equations:
//~
//~ * $s_1 := \frac{y_i - (2\cdot b - 1) \cdot y_t}{x_i - x_t}$
//~ * $s_2 := \frac{2 \cdot y_i}{2 * x_i + x_t - s_1^2} - s_1$
//~ * $x_o := x_t + s_2^2 - s_1^2$
//~ * $y_o := s_2 \cdot (x_i - x_o) - y_i$
//~
//~ For readability, we define the following 3 variables
//~ in such a way that $s_2$ can be expressed as `u / t`:
//~
//~ * `rx` $:= s_1^2 - x_i - x_t$
//~ * `t` $:= x_i - $ `rx` $ \iff 2 \cdot x_i - s_1^2 + x_t$
//~ * `u` $:= 2 \cdot y_i - $ `t` $\cdot s_1 \iff 2 \cdot y_i - s_1 \cdot (2\cdot x_i - s^2_1 + x_t)$
//~
//~ Next, for each bit in the algorithm, we create the following 4 constraints that derive from the above:
//~
//~ * Booleanity check on the bit $b$:
//~ `0 = b * b - b`
//~ * Constrain $s_1$:
//~ `(xI - xT) * s1 = yI – (2b - 1) * yT`
//~ * Constrain `Output` $X$-coordinate $x_o$ and $s_2$:
//~ `0 = u^2 - t^2 * (xO - xT + s1^2)`
//~ * Constrain `Output` $Y$-coordinate $y_o$ and $s_2$:
//~ `0 = (yO + yI) * t - (xI - xO) * u`
//~
//~ When applied to the 5 bits, the value of the `Target` point `(xT, yT)` is maintained,
//~ whereas the values for the `Input` and `Output` points form the chain:
//~
//~ `[(x0, y0) -> (x1, y1) -> (x2, y2) -> (x3, y3) -> (x4, y4) -> (x5, y5)]`
//~
//~ Similarly, 5 different `s0..s4` are required, just like the 5 bits `b0..b4`.
//~
//~ Finally, the additional constraint makes sure that the scalar is being correctly expressed
//~ into its binary form (using the double-and-add decomposition) as:
//~ $$ n' = 2^5 \cdot n + 2^4 \cdot b_0 + 2^3 \cdot b_1 + 2^2 \cdot b_2 + 2^1 \cdot b_3 + b_4$$
//~ This equation is translated as the constraint:
//~
//~ * Binary decomposition:
//~ `0 = n' - (b4 + 2 * (b3 + 2 * (b2 + 2 * (b1 + 2 * (b0 + 2*n)))))`
//~
impl<F: PrimeField> CircuitGate<F> {
pub fn create_vbmul(wires: &[GateWires; 2]) -> Vec<Self> {
vec![
CircuitGate::new(GateType::VarBaseMul, wires[0], vec![]),
CircuitGate::new(GateType::Zero, wires[1], vec![]),
]
}
/// Verify the `GateType::VarBaseMul`(TODO)
///
/// # Errors
///
/// TODO
pub fn verify_vbmul(&self, _row: usize, _witness: &[Vec<F>; COLUMNS]) -> Result<(), String> {
// TODO: implement
Ok(())
}
pub fn vbmul(&self) -> F {
if self.typ == GateType::VarBaseMul {
F::one()
} else {
F::zero()
}
}
}
#[derive(Copy, Clone)]
struct Point<T> {
x: T,
y: T,
}
impl<T> Point<T> {
pub fn create(x: T, y: T) -> Self {
Point { x, y }
}
}
impl Point<Variable> {
pub fn new_from_env<F: PrimeField, T: ExprOps<F, BerkeleyChallengeTerm>>(
&self,
env: &ArgumentEnv<F, T>,
) -> Point<T> {
Point::create(self.x.new_from_env(env), self.y.new_from_env(env))
}
}
fn set<F>(w: &mut [Vec<F>; COLUMNS], row0: usize, var: Variable, x: F) {
match var.col {
Column::Witness(i) => w[i][row0 + var.row.shift()] = x,
_ => panic!("Can only set witness columns"),
}
}
#[allow(clippy::too_many_arguments)]
fn single_bit_witness<F: FftField>(
w: &mut [Vec<F>; COLUMNS],
row: usize,
b: Variable,
base: &Point<Variable>,
s1: Variable,
input: &Point<Variable>,
output: &Point<Variable>,
b_value: F,
base_value: (F, F),
input_value: (F, F),
) -> (F, F) {
let mut set = |var, x| set(w, row, var, x);
set(b, b_value);
set(input.x, input_value.0);
set(input.y, input_value.1);
set(base.x, base_value.0);
set(base.y, base_value.1);
let s1_value = (input_value.1 - (base_value.1 * (b_value.double() - F::one())))
/ (input_value.0 - base_value.0);
set(s1, s1_value);
let s1_squared = s1_value.square();
let s2 =
input_value.1.double() / (input_value.0.double() + base_value.0 - s1_squared) - s1_value;
let out_x = base_value.0 + s2.square() - s1_squared;
let out_y = (input_value.0 - out_x) * s2 - input_value.1;
set(output.x, out_x);
set(output.y, out_y);
(out_x, out_y)
}
fn single_bit<F: FftField, T: ExprOps<F, BerkeleyChallengeTerm>>(
cache: &mut Cache,
b: &T,
base: Point<T>,
s1: &T,
input: &Point<T>,
output: &Point<T>,
) -> Vec<T> {
let b_sign = b.double() - T::one();
let s1_squared = cache.cache(s1.clone() * s1.clone());
// s1 = (input.y - (2b - 1) * base.y) / (input.x - base.x)
// s2 = 2*input.y / (2*input.x + base.x – s1^2) - s1
// output.x = base.x + s2^2 - s1^2
// output.y = (input.x – output.x) * s2 - input.y
let rx = s1_squared.clone() - input.x.clone() - base.x.clone();
let t = cache.cache(input.x.clone() - rx);
let u = cache.cache(input.y.double() - t.clone() * s1.clone());
// s2 = u / t
// output.x = base.x + s2^2 - s1^2
// <=>
// output.x = base.x + u^2 / t^2 - s1^2
// output.x - base.x + s1^2 = u^2 / t^2
// t^2 (output.x - base.x + s1^2) = u^2
//
// output.y = (input.x – output.x) * s2 - input.y
// <=>
// output.y = (input.x – output.x) * (u/t) - input.y
// output.y + input.y = (input.x – output.x) * (u/t)
// (output.y + input.y) * t = (input.x – output.x) * u
vec![
// boolean constrain the bit.
b.boolean(),
// constrain s1:
// (input.x - base.x) * s1 = input.y – (2b-1)*base.y
(input.x.clone() - base.x.clone()) * s1.clone() - (input.y.clone() - b_sign * base.y),
// constrain output.x
(u.clone() * u.clone())
- (t.clone() * t.clone()) * (output.x.clone() - base.x + s1_squared),
// constrain output.y
(output.y.clone() + input.y.clone()) * t - (input.x.clone() - output.x.clone()) * u,
]
}
pub struct Layout<T> {
accs: [Point<T>; 6],
bits: [T; 5],
ss: [T; 5],
base: Point<T>,
n_prev: T,
n_next: T,
}
trait FromWitness<F, T>
where
F: PrimeField,
{
fn new_from_env(&self, env: &ArgumentEnv<F, T>) -> T;
}
impl<F, T> FromWitness<F, T> for Variable
where
F: PrimeField,
T: ExprOps<F, BerkeleyChallengeTerm>,
{
fn new_from_env(&self, env: &ArgumentEnv<F, T>) -> T {
let column_to_index = |_| match self.col {
Column::Witness(i) => i,
_ => panic!("Can't get index from witness columns"),
};
match self.row {
Curr => env.witness_curr(column_to_index(self.col)),
Next => env.witness_next(column_to_index(self.col)),
}
}
}
impl Layout<Variable> {
fn create() -> Self {
Layout {
accs: [
Point::create(v(Curr, 2), v(Curr, 3)), // (x0, y0)
Point::create(v(Curr, 7), v(Curr, 8)), // (x1, y1)
Point::create(v(Curr, 9), v(Curr, 10)), // (x2, y2)
Point::create(v(Curr, 11), v(Curr, 12)), // (x3, y3)
Point::create(v(Curr, 13), v(Curr, 14)), // (x4, y4)
Point::create(v(Next, 0), v(Next, 1)), // (x5, y5)
],
// bits = [b0, b1, b2, b3, b4]
bits: [v(Next, 2), v(Next, 3), v(Next, 4), v(Next, 5), v(Next, 6)],
// ss = [ s0, s1, s2, s3, s4]
ss: [v(Next, 7), v(Next, 8), v(Next, 9), v(Next, 10), v(Next, 11)],
base: Point::create(v(Curr, 0), v(Curr, 1)), // (xT, yT)
n_prev: v(Curr, 4), // n
n_next: v(Curr, 5), // n'
}
}
fn new_from_env<F: PrimeField, T: ExprOps<F, BerkeleyChallengeTerm>>(
&self,
env: &ArgumentEnv<F, T>,
) -> Layout<T> {
Layout {
accs: self.accs.map(|point| point.new_from_env(env)),
bits: self.bits.map(|var| var.new_from_env(env)),
ss: self.ss.map(|s| s.new_from_env(env)),
base: self.base.new_from_env(env),
n_prev: self.n_prev.new_from_env(env),
n_next: self.n_next.new_from_env(env),
}
}
}
// We lay things out like
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
// xT yT x0 y0 n n' x1 y1 x2 y2 x3 y3 x4 y4
// x5 y5 b0 b1 b2 b3 b4 s0 s1 s2 s3 s4
const fn v(row: CurrOrNext, col: usize) -> Variable {
Variable {
row,
col: Column::Witness(col),
}
}
pub struct VarbaseMulResult<F> {
pub acc: (F, F),
pub n: F,
}
/// Apply the `witness` value.
///
/// # Panics
///
/// Will panic if `bits chunk` length validation fails.
pub fn witness<F: FftField + std::fmt::Display>(
w: &mut [Vec<F>; COLUMNS],
row0: usize,
base: (F, F),
bits: &[bool],
acc0: (F, F),
) -> VarbaseMulResult<F> {
let layout = Layout::create();
let bits: Vec<_> = bits.iter().map(|b| F::from(u64::from(*b))).collect();
let bits_per_chunk = 5;
assert_eq!(bits_per_chunk * (bits.len() / bits_per_chunk), bits.len());
let mut acc = acc0;
let mut n_acc = F::zero();
for (chunk, bs) in bits.chunks(bits_per_chunk).enumerate() {
let row = row0 + 2 * chunk;
set(w, row, layout.n_prev, n_acc);
for (i, bs) in bs.iter().enumerate().take(bits_per_chunk) {
n_acc.double_in_place();
n_acc += bs;
acc = single_bit_witness(
w,
row,
layout.bits[i],
&layout.base,
layout.ss[i],
&layout.accs[i],
&layout.accs[i + 1],
*bs,
base,
acc,
);
}
set(w, row, layout.n_next, n_acc);
}
VarbaseMulResult { acc, n: n_acc }
}
/// Implementation of the `VarbaseMul` gate
#[derive(Default)]
pub struct VarbaseMul<F>(PhantomData<F>);
impl<F> Argument<F> for VarbaseMul<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::VarBaseMul);
const CONSTRAINTS: u32 = 21;
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
cache: &mut Cache,
) -> Vec<T> {
let Layout {
base,
accs,
bits,
ss,
n_prev,
n_next,
} = Layout::create().new_from_env::<F, T>(env);
// n'
// = 2^5 * n + 2^4 b0 + 2^3 b1 + 2^2 b2 + 2^1 b3 + b4
// = b4 + 2 (b3 + 2 (b2 + 2 (b1 + 2(b0 + 2 n))))
let mut res = vec![n_next - bits.iter().fold(n_prev, |acc, b| b.clone() + acc.double())];
for i in 0..5 {
res.append(&mut single_bit(
cache,
&bits[i],
base.clone(),
&ss[i],
&accs[i],
&accs[i + 1],
));
}
res
}
}