1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
//~ Rotation of a 64-bit word by a known offset
use super::range_check::witness::range_check_0_row;
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
expr::{
constraints::{crumb, ExprOps},
Cache,
},
gate::{CircuitGate, Connect, GateType},
lookup::{
self,
tables::{GateLookupTable, LookupTable},
},
polynomial::COLUMNS,
wires::Wire,
witness::{self, VariableBitsCell, VariableCell, Variables, WitnessCell},
},
variable_map,
};
use ark_ff::PrimeField;
use std::{array, marker::PhantomData};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum RotMode {
Left,
Right,
}
impl<F: PrimeField> CircuitGate<F> {
/// Creates a Rot64 gadget to rotate a word
/// It will need:
/// - 1 Generic gate to constrain to zero the top 2 limbs of the shifted and excess witness of the rotation
///
/// It has:
/// - 1 Rot64 gate to rotate the word
/// - 1 RangeCheck0 to constrain the size of the shifted witness of the rotation
/// - 1 RangeCheck0 to constrain the size of the excess witness of the rotation
/// Assumes:
/// - the witness word is 64-bits, otherwise, will need to append a new RangeCheck0 for the word
pub fn create_rot64(new_row: usize, rot: u32) -> Vec<Self> {
vec![
CircuitGate {
typ: GateType::Rot64,
wires: Wire::for_row(new_row),
coeffs: vec![F::two_pow(rot as u64)],
},
CircuitGate {
typ: GateType::RangeCheck0,
wires: Wire::for_row(new_row + 1),
coeffs: vec![F::zero()],
},
CircuitGate {
typ: GateType::RangeCheck0,
wires: Wire::for_row(new_row + 2),
coeffs: vec![F::zero()],
},
]
}
/// Extend one rotation
/// Right now it only creates a Generic gate followed by the Rot64 gates
/// It allows to configure left or right rotation.
/// Input:
/// - gates : the full circuit
/// - rot : the rotation offset
/// - side : the rotation side
/// - zero_row : the row of the Generic gate to constrain the 64-bit check of shifted word
/// Warning:
/// - witness word should come from the copy of another cell so it is intrinsic that it is 64-bits length,
/// - same with rotated word
pub fn extend_rot(gates: &mut Vec<Self>, rot: u32, side: RotMode, zero_row: usize) -> usize {
let (new_row, mut rot_gates) = Self::create_rot(gates.len(), rot, side);
gates.append(&mut rot_gates);
// Check that 2 most significant limbs of shifted and excess are zero
gates.connect_64bit(zero_row, new_row - 2);
gates.connect_64bit(zero_row, new_row - 1);
// Connect excess with the Rot64 gate
gates.connect_cell_pair((new_row - 3, 2), (new_row - 1, 0));
gates.len()
}
/// Create one rotation
/// Right now it only creates a Generic gate followed by the Rot64 gates
/// It allows to configure left or right rotation.
/// Input:
/// - rot : the rotation offset
/// - side : the rotation side
/// Warning:
/// - Word should come from the copy of another cell so it is intrinsic that it is 64-bits length,
/// - same with rotated word
/// - need to check that the 2 most significant limbs of shifted are zero
pub fn create_rot(new_row: usize, rot: u32, side: RotMode) -> (usize, Vec<Self>) {
// Initial Generic gate to constrain the output to be zero
let rot_gates = if side == RotMode::Left {
Self::create_rot64(new_row, rot)
} else {
Self::create_rot64(new_row, 64 - rot)
};
(new_row + rot_gates.len(), rot_gates)
}
}
/// Get the rot lookup table
pub fn lookup_table<F: PrimeField>() -> LookupTable<F> {
lookup::tables::get_table::<F>(GateLookupTable::RangeCheck)
}
//~ `Rot64` onstrains known-length rotation of 64-bit words:
//~
//~ * This circuit gate is used to constrain that a 64-bit word is rotated by $r < 64$ bits to the "left".
//~ * The rotation is performed towards the most significant side (thus, the new LSB is fed with the old MSB).
//~ * This gate operates on the `Curr` and `Next` rows.
//~
//~ The idea is to split the rotation operation into two parts:
//~
//~ * Shift to the left
//~ * Add the excess bits to the right
//~
//~ We represent shifting with multiplication modulo $2^{64}$. That is, for each word to be rotated, we provide in
//~ the witness a quotient and a remainder, similarly to `ForeignFieldMul` such that the following operation holds:
//~
//~ $$word \cdot 2^{rot} = quotient \cdot 2^{64} + remainder$$
//~
//~ Then, the remainder corresponds to the shifted word, and the quotient corresponds to the excess bits.
//~
//~ $$word \cdot 2^{rot} = excess \cdot 2^{64} + shifted$$
//~
//~ Thus, in order to obtain the rotated word, we need to add the quotient and the remainder as follows:
//~
//~ $$rotated = shifted + excess$$
//~
//~ The input word is known to be of length 64 bits. All we need for soundness is check that the shifted and
//~ excess parts of the word have the correct size as well. That means, we need to range check that:
//~
//~ $$
//~ \begin{aligned}
//~ excess &< 2^{rot}\\
//~ shifted &< 2^{64}
//~ \end{aligned}
//~ $$
//~
//~ The latter can be obtained with a `RangeCheck0` gate setting the two most significant limbs to zero.
//~ The former is equivalent to the following check:
//~
//~ $$bound = excess - 2^{rot} + 2^{64} < 2^{64}$$
//~
//~ which is doable with the constraints in a `RangeCheck0` gate. Since our current row within the `Rot64` gate
//~ is almost empty, we can use it to perform the range check within the same gate. Then, using the following layout
//~ and assuming that the gate has a coefficient storing the value $2^{rot}$, which is publicly known
//~
//~ | Gate | `Rot64` | `RangeCheck0` gadgets (designer's duty) |
//~ | ------ | ------------------- | --------------------------------------------------------- |
//~ | Column | `Curr` | `Next` | `Next` + 1 | `Next`+ 2, if needed |
//~ | ------ | ------------------- | ---------------- | --------------- | -------------------- |
//~ | 0 | copy `word` |`shifted` | copy `excess` | copy `word` |
//~ | 1 | copy `rotated` | 0 | 0 | 0 |
//~ | 2 | `excess` | 0 | 0 | 0 |
//~ | 3 | `bound_limb0` | `shifted_limb0` | `excess_limb0` | `word_limb0` |
//~ | 4 | `bound_limb1` | `shifted_limb1` | `excess_limb1` | `word_limb1` |
//~ | 5 | `bound_limb2` | `shifted_limb2` | `excess_limb2` | `word_limb2` |
//~ | 6 | `bound_limb3` | `shifted_limb3` | `excess_limb3` | `word_limb3` |
//~ | 7 | `bound_crumb0` | `shifted_crumb0` | `excess_crumb0` | `word_crumb0` |
//~ | 8 | `bound_crumb1` | `shifted_crumb1` | `excess_crumb1` | `word_crumb1` |
//~ | 9 | `bound_crumb2` | `shifted_crumb2` | `excess_crumb2` | `word_crumb2` |
//~ | 10 | `bound_crumb3` | `shifted_crumb3` | `excess_crumb3` | `word_crumb3` |
//~ | 11 | `bound_crumb4` | `shifted_crumb4` | `excess_crumb4` | `word_crumb4` |
//~ | 12 | `bound_crumb5` | `shifted_crumb5` | `excess_crumb5` | `word_crumb5` |
//~ | 13 | `bound_crumb6` | `shifted_crumb6` | `excess_crumb6` | `word_crumb6` |
//~ | 14 | `bound_crumb7` | `shifted_crumb7` | `excess_crumb7` | `word_crumb7` |
//~
//~ In Keccak, rotations are performed over a 5x5 matrix state of w-bit words each cell. The values used
//~ to perform the rotation are fixed, public, and known in advance, according to the following table,
//~ depending on the coordinate of each cell within the 5x5 matrix state:
//~
//~ | y \ x | 0 | 1 | 2 | 3 | 4 |
//~ | ----- | --- | --- | --- | --- | --- |
//~ | 0 | 0 | 36 | 3 | 105 | 210 |
//~ | 1 | 1 | 300 | 10 | 45 | 66 |
//~ | 2 | 190 | 6 | 171 | 15 | 253 |
//~ | 3 | 28 | 55 | 153 | 21 | 120 |
//~ | 4 | 91 | 276 | 231 | 136 | 78 |
//~
//~ But since we will always be using 64-bit words in our Keccak usecase ($w = 64$), we can have an equivalent
//~ table with these values modulo 64 to avoid needing multiple passes of the rotation gate (a single step would
//~ cause overflows otherwise):
//~
//~ | y \ x | 0 | 1 | 2 | 3 | 4 |
//~ | ----- | --- | --- | --- | --- | --- |
//~ | 0 | 0 | 36 | 3 | 41 | 18 |
//~ | 1 | 1 | 44 | 10 | 45 | 2 |
//~ | 2 | 62 | 6 | 43 | 15 | 61 |
//~ | 3 | 28 | 55 | 25 | 21 | 56 |
//~ | 4 | 27 | 20 | 39 | 8 | 14 |
//~
//~ Since there is one value of the coordinates (x, y) where the rotation is 0 bits, we can skip that step in the
//~ gadget. This will save us one gate, and thus the whole 25-1=24 rotations will be performed in just 48 rows.
//~
#[derive(Default)]
pub struct Rot64<F>(PhantomData<F>);
impl<F> Argument<F> for Rot64<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::Rot64);
const CONSTRAINTS: u32 = 11;
// Constraints for rotation of three 64-bit words by any three number of bits modulo 64
// (stored in coefficient as a power-of-two form)
// * Operates on Curr row
// * Shifts the words by `rot` bits and then adds the excess to obtain the rotated word.
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
_cache: &mut Cache,
) -> Vec<T> {
// Check that the last 8 columns are 2-bit crumbs
// C1..C8: x * (x - 1) * (x - 2) * (x - 3) = 0
let mut constraints = (7..COLUMNS)
.map(|i| crumb(&env.witness_curr(i)))
.collect::<Vec<T>>();
// NOTE:
// If we ever want to make this gate more generic, the power of two for the length
// could be a coefficient of the gate instead of a fixed value in the constraints.
let two_to_64 = T::two_pow(64);
let word = env.witness_curr(0);
let rotated = env.witness_curr(1);
let excess = env.witness_curr(2);
let shifted = env.witness_next(0);
let two_to_rot = env.coeff(0);
// Obtains the following checks:
// C9: word * 2^{rot} = (excess * 2^64 + shifted)
// C10: rotated = shifted + excess
constraints.push(
word * two_to_rot.clone() - (excess.clone() * two_to_64.clone() + shifted.clone()),
);
constraints.push(rotated - (shifted + excess.clone()));
// Compute the bound from the crumbs and limbs
let mut power_of_2 = T::one();
let mut bound = T::zero();
// Sum 2-bit limbs
for i in (7..COLUMNS).rev() {
bound += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= T::two_pow(2); // 2 bits
}
// Sum 12-bit limbs
for i in (3..=6).rev() {
bound += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= T::two_pow(12); // 12 bits
}
// Check that excess < 2^rot by checking that bound < 2^64
// Check RFC of Keccak for more details on the proof of this
// C11:bound = excess - 2^rot + 2^64
constraints.push(bound - (excess - two_to_rot + two_to_64));
constraints
}
}
// ROTATION WITNESS COMPUTATION
fn layout_rot64<F: PrimeField>(curr_row: usize) -> [Vec<Box<dyn WitnessCell<F>>>; 3] {
[
rot_row(),
range_check_0_row("shifted", curr_row + 1),
range_check_0_row("excess", curr_row + 2),
]
}
fn rot_row<F: PrimeField>() -> Vec<Box<dyn WitnessCell<F>>> {
vec![
VariableCell::create("word"),
VariableCell::create("rotated"),
VariableCell::create("excess"),
/* 12-bit plookups */
VariableBitsCell::create("bound", 52, Some(64)),
VariableBitsCell::create("bound", 40, Some(52)),
VariableBitsCell::create("bound", 28, Some(40)),
VariableBitsCell::create("bound", 16, Some(28)),
/* 2-bit crumbs */
VariableBitsCell::create("bound", 14, Some(16)),
VariableBitsCell::create("bound", 12, Some(14)),
VariableBitsCell::create("bound", 10, Some(12)),
VariableBitsCell::create("bound", 8, Some(10)),
VariableBitsCell::create("bound", 6, Some(8)),
VariableBitsCell::create("bound", 4, Some(6)),
VariableBitsCell::create("bound", 2, Some(4)),
VariableBitsCell::create("bound", 0, Some(2)),
]
}
fn init_rot64<F: PrimeField>(
witness: &mut [Vec<F>; COLUMNS],
curr_row: usize,
word: F,
rotated: F,
excess: F,
shifted: F,
bound: F,
) {
let rot_rows = layout_rot64(curr_row);
witness::init(
witness,
curr_row,
&rot_rows,
&variable_map!["word" => word, "rotated" => rotated, "excess" => excess, "shifted" => shifted, "bound" => excess+bound],
);
}
/// Extends the rot rows to the full witness
/// Input
/// - witness: full witness of the circuit
/// - word: 64-bit word to be rotated
/// - rot: rotation offset
/// - side: side of the rotation, either left or right
/// Warning:
/// - don't forget to include a public input row with zero value
pub fn extend_rot<F: PrimeField>(
witness: &mut [Vec<F>; COLUMNS],
word: u64,
rot: u32,
side: RotMode,
) {
assert!(rot <= 64, "Rotation value must be less or equal than 64");
let rot = if side == RotMode::Right {
64 - rot
} else {
rot
};
// Split word into shifted and excess parts to compute the witnesses for rotation as follows
// < 64 > bits
// word = [---|------]
// <rot> bits
// excess = [---]
// shifted [------] * 2^rot
// rot = [------|000]
// + [---] excess
let shifted = (word as u128) * 2u128.pow(rot) % 2u128.pow(64);
let excess = (word as u128) / 2u128.pow(64 - rot);
let rotated = shifted + excess;
// Value for the added value for the bound
// Right input of the "FFAdd" for the bound equation
let bound = 2u128.pow(64) - 2u128.pow(rot);
let rot_row = witness[0].len();
let rot_witness: [Vec<F>; COLUMNS] = array::from_fn(|_| vec![F::zero(); 3]);
for col in 0..COLUMNS {
witness[col].extend(rot_witness[col].iter());
}
init_rot64(
witness,
rot_row,
word.into(),
rotated.into(),
excess.into(),
shifted.into(),
bound.into(),
);
}