1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
//~ The multi range check gadget is comprised of three circuit gates (`RangeCheck0`,
//~ `RangeCheck1` and `Zero`) and can perform range checks on three values ($v_0,
//~ v_1$ and $v_2$) of up to 88 bits each.
//~
//~ Values can be copied as inputs to the multi range check gadget in two ways:
//~
//~ * (Standard mode) With 3 copies, by copying $v_0, v_1$ and $v_2$ to the first
//~ cells of the first 3 rows of the gadget. In this mode the first gate
//~ coefficient is set to `0`.
//~ * (Compact mode) With 2 copies, by copying $v_2$ to the first cell of the first
//~ row and copying $v_{10} = v_0 + 2^{\ell} \cdot v_1$ to the 2nd cell of row 2.
//~ In this mode the first gate coefficient is set to `1`.
//~
//~ The `RangeCheck0` gate can also be used on its own to perform 64-bit range checks by
//~ constraining witness cells 1-2 to zero.
//~
//~ **Byte-order:**
//~
//~ * Each cell value is in little-endian byte order
//~ * Limbs are mapped to columns in big-endian order (i.e. the lowest columns
//~ contain the highest bits)
//~ * We also have the highest bits covered by copy constraints and plookups, so that
//~ we can copy the highest two constraints to zero and get a 64-bit lookup, which
//~ are envisioned to be a common case
//~
//~ The values are decomposed into limbs as follows:
//~
//~ * `L` is a 12-bit lookup (or copy) limb,
//~ * `C` is a 2-bit "crumb" limb (we call half a nybble a crumb).
//~
//~ ```text
//~ <----6----> <------8------>
//~ v0 = L L L L L L C C C C C C C C
//~ v1 = L L L L L L C C C C C C C C
//~ <2> <--4--> <---------------18---------------->
//~ v2 = C C L L L L C C C C C C C C C C C C C C C C C C
//~ ```
//~
//~ **Witness structure:**
//~
//~ | Row | Contents |
//~ | --- | --------------- |
//~ | 0 | $v_0$ |
//~ | 1 | $v_1$ |
//~ | 2 | $v_2$ |
//~ | 3 | $v_0, v_1, v_2$ |
//~
//~ * The first 2 rows contain $v_0$ and $v_1$ and their respective decompositions
//~ into 12-bit and 2-bit limbs
//~ * The 3rd row contains $v_2$ and part of its decomposition: four 12-bit limbs and
//~ the 1st 10 crumbs
//~ * The final row contains $v_0$'s and $v_1$'s 5th and 6th 12-bit limbs as well as the
//~ remaining 10 crumbs of $v_2$
//~
//~ ```admonish
//~ Because we are constrained to 4 lookups per row, we are forced to postpone
//~ some lookups of v0 and v1 to the final row.
//~ ```
//~
//~ **Constraints:**
//~
//~ For efficiency, the limbs are constrained differently according to their type:
//~
//~ * 12-bit limbs are constrained with plookups
//~ * 2-bit crumbs are constrained with degree-4 constraints $x(x-1)(x-2)(x-3)$
//~
//~ **Layout:**
//~
//~ This is how the three 88-bit inputs $v_0, v_1$ and $v_2$ are laid out and constrained.
//~
//~ * `vipj` is the jth 12-bit limb of value $v_i$
//~ * `vicj` is the jth 2-bit crumb limb of value $v_i$
//~
//~ | Gates | `RangeCheck0` | `RangeCheck0` | `RangeCheck1` | `Zero` |
//~ | ----- | -------------- | -------------- | --------------- | --------------- |
//~ | Rows | 0 | 1 | 2 | 3 |
//~ | Cols | | | | |
//~ | 0 | `v0` | `v1` | `v2` | crumb `v2c9` |
//~ | MS:1 | copy `v0p0` | copy `v1p0` | optional `v12` | crumb `v2c10` |
//~ | 2 | copy `v0p1` | copy `v1p1` | crumb `v2c0` | crumb `v2c11` |
//~ | 3 | plookup `v0p2` | plookup `v1p2` | plookup `v2p0` | plookup `v0p0` |
//~ | 4 | plookup `v0p3` | plookup `v1p3` | plookup `v2p1` | plookup `v0p1` |
//~ | 5 | plookup `v0p4` | plookup `v1p4` | plookup `v2p2` | plookup `v1p0` |
//~ | 6 | plookup `v0p5` | plookup `v1p5` | plookup `v2p3` | plookup `v1p1` |
//~ | 7 | crumb `v0c0` | crumb `v1c0` | crumb `v2c1` | crumb `v2c12` |
//~ | 8 | crumb `v0c1` | crumb `v1c1` | crumb `v2c2` | crumb `v2c13` |
//~ | 9 | crumb `v0c2` | crumb `v1c2` | crumb `v2c3` | crumb `v2c14` |
//~ | 10 | crumb `v0c3` | crumb `v1c3` | crumb `v2c4` | crumb `v2c15` |
//~ | 11 | crumb `v0c4` | crumb `v1c4` | crumb `v2c5` | crumb `v2c16` |
//~ | 12 | crumb `v0c5` | crumb `v1c5` | crumb `v2c6` | crumb `v2c17` |
//~ | 13 | crumb `v0c6` | crumb `v1c6` | crumb `v2c7` | crumb `v2c18` |
//~ | LS:14 | crumb `v0c7` | crumb `v1c7` | crumb `v2c8` | crumb `v2c19` |
//~
//~ The 12-bit chunks are constrained with plookups and the 2-bit crumbs are
//~ constrained with degree-4 constraints of the form $x (x - 1) (x - 2) (x - 3)$.
//~
//~ Note that copy denotes a plookup that is deferred to the 4th gate (i.e. `Zero`).
//~ This is because of the limitation that we have at most 4 lookups per row.
//~ The copies are constrained using the permutation argument.
//~
//~ **Gate types:**
//~
//~ Different rows are constrained using different `CircuitGate` types
//~
//~ | Row | `CircuitGate` | Purpose |
//~ | --- | ------------- | ------------------------------------------------------------------ |
//~ | 0 | `RangeCheck0` | Partially constrain $v_0$ |
//~ | 1 | `RangeCheck0` | Partially constrain $v_1$ |
//~ | 2 | `RangeCheck1` | Fully constrain $v_2$ (and trigger plookups constraints on row 3) |
//~ | 3 | `Zero` | Complete the constraining of $v_0$ and $v_1$ using lookups |
//~
//~ ```admonish
//~ Each CircuitGate type corresponds to a unique polynomial and thus is assigned
//~ its own unique powers of alpha
//~ ```
use std::marker::PhantomData;
use crate::circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
expr::{
constraints::{crumb, ExprOps},
Cache,
},
gate::GateType,
polynomial::COLUMNS,
};
use ark_ff::PrimeField;
//~
//~ **`RangeCheck0` - Range check constraints**
//~
//~ * This circuit gate is used to partially constrain values $v_0$ and $v_1$
//~ * Optionally, it can be used on its own as a single 64-bit range check by
//~ constraining columns 1 and 2 to zero
//~ * The rest of $v_0$ and $v_1$ are constrained by the lookups in the `Zero` gate row
//~ * This gate operates on the `Curr` row
//~
//~ It uses three different types of constraints:
//~
//~ * copy - copy to another cell (12-bits)
//~ * plookup - plookup (12-bits)
//~ * crumb - degree-4 constraint (2-bits)
//~
//~ Given value `v` the layout looks like this
//~
//~ | Column | `Curr` |
//~ | ------ | ------------- |
//~ | 0 | `v` |
//~ | 1 | copy `vp0` |
//~ | 2 | copy `vp1` |
//~ | 3 | plookup `vp2` |
//~ | 4 | plookup `vp3` |
//~ | 5 | plookup `vp4` |
//~ | 6 | plookup `vp5` |
//~ | 7 | crumb `vc0` |
//~ | 8 | crumb `vc1` |
//~ | 9 | crumb `vc2` |
//~ | 10 | crumb `vc3` |
//~ | 11 | crumb `vc4` |
//~ | 12 | crumb `vc5` |
//~ | 13 | crumb `vc6` |
//~ | 14 | crumb `vc7` |
//~
//~ where the notation `vpi` and `vci` defined in the "Layout" section above.
#[derive(Default)]
pub struct RangeCheck0<F>(PhantomData<F>);
impl<F> Argument<F> for RangeCheck0<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::RangeCheck0);
const CONSTRAINTS: u32 = 10;
// Constraints for RangeCheck0
// * Operates on Curr row
// * Range constrain all limbs except vp0 and vp1 (barring plookup constraints, which are done elsewhere)
// * Constrain that combining all limbs equals the limb stored in column 0
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
_cache: &mut Cache,
) -> Vec<T> {
// 1) Apply range constraints on the limbs
// * Columns 1-2 are 12-bit copy constraints
// * They are copied 3 rows ahead (to the final row) and are constrained by lookups
// triggered by RangeCheck1 on the Next row
// * Optionally, they can be constrained to zero to convert the RangeCheck0 gate into
// a single 64-bit range check
// * Columns 3-6 are 12-bit plookup range constraints (these are specified in the lookup gate)
// * Columns 7-14 are 2-bit crumb range constraints
let mut constraints = (7..COLUMNS)
.map(|i| crumb(&env.witness_curr(i)))
.collect::<Vec<T>>();
// 2) Constrain that the combined limbs equals the value v stored in w(0):
//
// w(0) = v = vp0 vp1 vp2 vp3 vp4 vp5 vc0 vc1 vc2 vc3 vc4 vc5 vc6 vc7
//
// where the value and limbs are stored in little-endian byte order, but mapped
// to cells in big-endian order.
//
// Cols: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Curr: v vp0 vp1 vp2 vp3 vp4 vp5 vc0 vc1 vc2 vc3 vc4 vc5 vc6 vc7 <- LSB
let mut power_of_2 = T::one();
let mut sum_of_limbs = T::zero();
// Sum 2-bit limbs
for i in (7..COLUMNS).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= T::from(4u64); // 2 bits
}
// Sum 12-bit limbs
for i in (1..=6).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= 4096u64.into(); // 12 bits
}
// Check value v against the sum of limbs
constraints.push(sum_of_limbs - env.witness_curr(0));
// Optional compact limbs format (enabled when coeff[0] == 1, disabled when coeff[1] = 0)
// Constrain decomposition of compact limb next(1)
// next(1) = curr(0) + 2^L * next(0)
constraints.push(
env.coeff(0)
* (env.witness_next(1)
- (env.witness_curr(0) + T::two_to_limb() * env.witness_next(0))),
);
constraints
}
}
//~
//~ **`RangeCheck1` - Range check constraints**
//~
//~ * This circuit gate is used to fully constrain $v_2$
//~ * It operates on the `Curr` and `Next` rows
//~
//~ It uses two different types of constraints:
//~
//~ * plookup - plookup (12-bits)
//~ * crumb - degree-4 constraint (2-bits)
//~
//~ Given value `v2` the layout looks like this
//~
//~ | Column | `Curr` | `Next` |
//~ | ------ | --------------- | ------------- |
//~ | 0 | `v2` | crumb `v2c9` |
//~ | 1 | optional `v12` | crumb `v2c10` |
//~ | 2 | crumb `v2c0` | crumb `v2c11` |
//~ | 3 | plookup `v2p0` | (ignored) |
//~ | 4 | plookup `v2p1` | (ignored) |
//~ | 5 | plookup `v2p2` | (ignored) |
//~ | 6 | plookup `v2p3` | (ignored) |
//~ | 7 | crumb `v2c1` | crumb `v2c12` |
//~ | 8 | crumb `v2c2` | crumb `v2c13` |
//~ | 9 | crumb `v2c3` | crumb `v2c14` |
//~ | 10 | crumb `v2c4` | crumb `v2c15` |
//~ | 11 | crumb `v2c5` | crumb `v2c16` |
//~ | 12 | crumb `v2c6` | crumb `v2c17` |
//~ | 13 | crumb `v2c7` | crumb `v2c18` |
//~ | 14 | crumb `v2c8` | crumb `v2c19` |
//~
//~ where the notation `v2ci` and `v2pi` defined in the "Layout" section above.
#[derive(Default)]
pub struct RangeCheck1<F>(PhantomData<F>);
impl<F> Argument<F> for RangeCheck1<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::RangeCheck1);
const CONSTRAINTS: u32 = 21;
// Constraints for RangeCheck1
// * Operates on Curr and Next row
// * Range constrain all limbs (barring plookup constraints, which are done elsewhere)
// * Constrain that combining all limbs equals the value v2 stored in row Curr, column 0
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
_cache: &mut Cache,
) -> Vec<T> {
// 1) Apply range constraints on limbs for Curr row
// * Column 2 is a 2-bit crumb
let mut constraints = vec![crumb(&env.witness_curr(2))];
// * Columns 3-6 are 12-bit plookup range constraints (these are specified
// in the lookup gate)
// * Columns 7-14 are 2-bit crumb range constraints
constraints.append(
&mut (7..COLUMNS)
.map(|i| crumb(&env.witness_curr(i)))
.collect::<Vec<T>>(),
);
// 2) Apply range constraints on limbs for Next row
// * Columns 0-2 are 2-bit crumbs
constraints.append(
&mut (0..=2)
.map(|i| crumb(&env.witness_next(i)))
.collect::<Vec<T>>(),
);
// * Columns 3-6 are 12-bit plookup range constraints for v0 and v1 (these
// are specified in the lookup gate)
// * Columns 7-14 are more 2-bit crumbs
constraints.append(
&mut (7..COLUMNS)
.map(|i| crumb(&env.witness_next(i)))
.collect::<Vec<T>>(),
);
// 2) Constrain that the combined limbs equals the value v2 stored in w(0) where
//
// w(0) = v2 = vc0 vc1 vp0 vp1 vp2 vp3 vc2 vc3 vc4 vc5 vc6 vc7 vc8 vc9 vc10 vc11 vc12
// vc13 vc14 vc15 vc16 vc17 vc18 vc19
//
// where the value and limbs are stored in little-endian byte order, but mapped
// to cells in big-endian order.
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Curr v2 vc0 vc1 vp0 vp1 vp2 vp3 vc2 vc3 vc4 vc5 vc6 vc7 vc8 vc9
// Next vc10 vc11 vc12 vc13 vc14 vc15 vc16 vc17 vc18 vc19 <- LSB
let mut power_of_2 = T::one();
let mut sum_of_limbs = T::zero();
// Next row: Sum 2-bit limbs
for i in (7..COLUMNS).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_next(i);
power_of_2 *= 4u64.into(); // 2 bits
}
// Next row: Sum remaining 2-bit limbs v2c9, v2c10, and v2c11 (reverse order)
for i in (0..=2).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_next(i);
power_of_2 *= 4u64.into(); // 2 bits
}
// Curr row: Sum 2-bit limbs
for i in (7..COLUMNS).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= 4u64.into(); // 2 bits
}
// Curr row: Sum 12-bit limbs
for i in (3..=6).rev() {
sum_of_limbs += power_of_2.clone() * env.witness_curr(i);
power_of_2 *= 4096u64.into(); // 12 bits
}
// Curr row: Add remaining 2-bit limb v2c0 to sum
sum_of_limbs += power_of_2.clone() * env.witness_curr(2);
// Check value v2 against the sum of limbs
constraints.push(sum_of_limbs - env.witness_curr(0));
constraints
}
}