1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
//! This module implements the Poseidon constraint polynomials.
//~ The poseidon gate encodes 5 rounds of the poseidon permutation.
//~ A state is represents by 3 field elements. For example,
//~ the first state is represented by `(s0, s0, s0)`,
//~ and the next state, after permutation, is represented by `(s1, s1, s1)`.
//~
//~ Below is how we store each state in the register table:
//~
//~ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
//~ | s0 | s0 | s0 | s4 | s4 | s4 | s1 | s1 | s1 | s2 | s2 | s2 | s3 | s3 | s3 |
//~ | s5 | s5 | s5 | | | | | | | | | | | | |
//~
//~ The last state is stored on the next row. This last state is either used:
//~
//~ * with another Poseidon gate on that next row, representing the next 5 rounds.
//~ * or with a Zero gate, and a permutation to use the output elsewhere in the circuit.
//~ * or with another gate expecting an input of 3 field elements in its first registers.
//~
//~ ```admonish
//~ As some of the poseidon hash variants might not use $5k$ rounds (for some $k$),
//~ the result of the 4-th round is stored directly after the initial state.
//~ This makes that state accessible to the permutation.
//~ ```
//~
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
expr::{constraints::ExprOps, Cache},
gate::{CircuitGate, CurrOrNext, GateType},
polynomial::COLUMNS,
wires::{GateWires, Wire},
},
curve::KimchiCurve,
};
use ark_ff::{Field, PrimeField};
use mina_poseidon::{
constants::{PlonkSpongeConstantsKimchi, SpongeConstants},
poseidon::{sbox, ArithmeticSponge, ArithmeticSpongeParams, Sponge},
};
use std::{marker::PhantomData, ops::Range};
use CurrOrNext::{Curr, Next};
//
// Constants
//
/// Width of the sponge
pub const SPONGE_WIDTH: usize = PlonkSpongeConstantsKimchi::SPONGE_WIDTH;
/// Number of rows
pub const ROUNDS_PER_ROW: usize = COLUMNS / SPONGE_WIDTH;
/// Number of rounds
pub const ROUNDS_PER_HASH: usize = PlonkSpongeConstantsKimchi::PERM_ROUNDS_FULL;
/// Number of PLONK rows required to implement Poseidon
pub const POS_ROWS_PER_HASH: usize = ROUNDS_PER_HASH / ROUNDS_PER_ROW;
/// The order in a row in which we store states before and after permutations
pub const STATE_ORDER: [usize; ROUNDS_PER_ROW] = [
0, // the first state is stored first
// we skip the next column for subsequent states
2, 3, 4,
// we store the last state directly after the first state,
// so that it can be used in the permutation argument
1,
];
/// Given a Poseidon round from 0 to 4 (inclusive),
/// returns the columns (as a range) that are used in this round.
pub const fn round_to_cols(i: usize) -> Range<usize> {
let slot = STATE_ORDER[i];
let start = slot * SPONGE_WIDTH;
start..(start + SPONGE_WIDTH)
}
impl<F: PrimeField> CircuitGate<F> {
pub fn create_poseidon(
wires: GateWires,
// Coefficients are passed in in the logical order
coeffs: [[F; SPONGE_WIDTH]; ROUNDS_PER_ROW],
) -> Self {
let coeffs = coeffs.iter().flatten().copied().collect();
CircuitGate::new(GateType::Poseidon, wires, coeffs)
}
/// `create_poseidon_gadget(row, first_and_last_row, round_constants)` creates an entire set of constraint for a Poseidon hash.
/// For that, you need to pass:
/// - the index of the first `row`
/// - the first and last rows' wires (because they are used in the permutation)
/// - the round constants
/// The function returns a set of gates, as well as the next pointer to the circuit (next empty absolute row)
pub fn create_poseidon_gadget(
// the absolute row in the circuit
row: usize,
// first and last row of the poseidon circuit (because they are used in the permutation)
first_and_last_row: [GateWires; 2],
round_constants: &[Vec<F>],
) -> (Vec<Self>, usize) {
let mut gates = vec![];
// create the gates
let relative_rows = 0..POS_ROWS_PER_HASH;
let last_row = row + POS_ROWS_PER_HASH;
let absolute_rows = row..last_row;
for (abs_row, rel_row) in absolute_rows.zip(relative_rows) {
// the 15 wires for this row
let wires = if rel_row == 0 {
first_and_last_row[0]
} else {
std::array::from_fn(|col| Wire { col, row: abs_row })
};
// round constant for this row
let coeffs = std::array::from_fn(|offset| {
let round = rel_row * ROUNDS_PER_ROW + offset;
std::array::from_fn(|field_el| round_constants[round][field_el])
});
// create poseidon gate for this row
gates.push(CircuitGate::create_poseidon(wires, coeffs));
}
// final (zero) gate that contains the output of poseidon
gates.push(CircuitGate::zero(first_and_last_row[1]));
//
(gates, last_row)
}
/// Checks if a witness verifies a poseidon gate
///
/// # Errors
///
/// Will give error if `self.typ` is not `Poseidon` gate, or `state` does not match after `permutation`.
pub fn verify_poseidon<G: KimchiCurve<ScalarField = F>>(
&self,
row: usize,
// TODO(mimoo): we should just pass two rows instead of the whole witness
witness: &[Vec<F>; COLUMNS],
) -> Result<(), String> {
ensure_eq!(
self.typ,
GateType::Poseidon,
"incorrect gate type (should be poseidon)"
);
// fetch each state in the right order
let mut states = vec![];
for round in 0..ROUNDS_PER_ROW {
let cols = round_to_cols(round);
let state: Vec<F> = witness[cols].iter().map(|col| col[row]).collect();
states.push(state);
}
// (last state is in next row)
let cols = round_to_cols(0);
let next_row = row + 1;
let last_state: Vec<F> = witness[cols].iter().map(|col| col[next_row]).collect();
states.push(last_state);
// round constants
let rc = self.rc();
let mds = &G::sponge_params().mds;
// for each round, check that the permutation was applied correctly
for round in 0..ROUNDS_PER_ROW {
for (i, mds_row) in mds.iter().enumerate() {
// i-th(new_state) = i-th(rc) + mds(sbox(state))
let state = &states[round];
let mut new_state = rc[round][i];
for (&s, mds) in state.iter().zip(mds_row.iter()) {
let sboxed = sbox::<F, PlonkSpongeConstantsKimchi>(s);
new_state += sboxed * mds;
}
ensure_eq!(
new_state,
states[round + 1][i],
format!(
"poseidon: permutation of state[{}] -> state[{}][{}] is incorrect",
round,
round + 1,
i
)
);
}
}
Ok(())
}
pub fn ps(&self) -> F {
if self.typ == GateType::Poseidon {
F::one()
} else {
F::zero()
}
}
/// round constant that are relevant for this specific gate
pub fn rc(&self) -> [[F; SPONGE_WIDTH]; ROUNDS_PER_ROW] {
std::array::from_fn(|round| {
std::array::from_fn(|col| {
if self.typ == GateType::Poseidon {
self.coeffs[SPONGE_WIDTH * round + col]
} else {
F::zero()
}
})
})
}
}
/// `generate_witness(row, params, witness_cols, input)` uses a sponge initialized with
/// `params` to generate a witness for starting at row `row` in `witness_cols`,
/// and with input `input`.
///
/// # Panics
///
/// Will panic if the `circuit` has `INITIAL_ARK`.
#[allow(clippy::assertions_on_constants)]
pub fn generate_witness<F: Field>(
row: usize,
params: &'static ArithmeticSpongeParams<F>,
witness_cols: &mut [Vec<F>; COLUMNS],
input: [F; SPONGE_WIDTH],
) {
// add the input into the witness
witness_cols[0][row] = input[0];
witness_cols[1][row] = input[1];
witness_cols[2][row] = input[2];
// set the sponge state
let mut sponge = ArithmeticSponge::<F, PlonkSpongeConstantsKimchi>::new(params);
sponge.state = input.into();
// for the poseidon rows
for row_idx in 0..POS_ROWS_PER_HASH {
let row = row + row_idx;
for round in 0..ROUNDS_PER_ROW {
// the last round makes use of the next row
let maybe_next_row = if round == ROUNDS_PER_ROW - 1 {
row + 1
} else {
row
};
//
let abs_round = round + row_idx * ROUNDS_PER_ROW;
// apply the sponge and record the result in the witness
assert!(
!PlonkSpongeConstantsKimchi::PERM_INITIAL_ARK,
"this won't work if the circuit has an INITIAL_ARK"
);
sponge.full_round(abs_round);
// apply the sponge and record the result in the witness
let cols_to_update = round_to_cols((round + 1) % ROUNDS_PER_ROW);
witness_cols[cols_to_update]
.iter_mut()
.zip(sponge.state.iter())
// update the state (last update is on the next row)
.for_each(|(w, s)| w[maybe_next_row] = *s);
}
}
}
/// An equation of the form `(curr | next)[i] = round(curr[j])`
struct RoundEquation {
pub source: usize,
pub target: (CurrOrNext, usize),
}
/// For each round, the tuple (row, round) its state permutes to
const ROUND_EQUATIONS: [RoundEquation; ROUNDS_PER_ROW] = [
RoundEquation {
source: 0,
target: (Curr, 1),
},
RoundEquation {
source: 1,
target: (Curr, 2),
},
RoundEquation {
source: 2,
target: (Curr, 3),
},
RoundEquation {
source: 3,
target: (Curr, 4),
},
RoundEquation {
source: 4,
target: (Next, 0),
},
];
/// Implementation of the Poseidon gate
/// Poseidon quotient poly contribution computation `f^7 + c(x) - f(wx)`
/// Conjunction of:
///
/// ```ignore
/// curr[round_range(1)] = round(curr[round_range(0)])
/// curr[round_range(2)] = round(curr[round_range(1)])
/// curr[round_range(3)] = round(curr[round_range(2)])
/// curr[round_range(4)] = round(curr[round_range(3)])
/// next[round_range(0)] = round(curr[round_range(4)])
///
/// which expands e.g., to
/// curr[round_range(1)][0] =
/// mds[0][0] * sbox(curr[round_range(0)][0])
/// + mds[0][1] * sbox(curr[round_range(0)][1])
/// + mds[0][2] * sbox(curr[round_range(0)][2])
/// + rcm[round_range(1)][0]
/// curr[round_range(1)][1] =
/// mds[1][0] * sbox(curr[round_range(0)][0])
/// + mds[1][1] * sbox(curr[round_range(0)][1])
/// + mds[1][2] * sbox(curr[round_range(0)][2])
/// + rcm[round_range(1)][1]
/// ...
/// ```
///
/// The rth position in this array contains the alphas used for the equations that
/// constrain the values of the (r+1)th state.
#[derive(Default)]
pub struct Poseidon<F>(PhantomData<F>);
impl<F> Poseidon<F> where F: Field {}
impl<F> Argument<F> for Poseidon<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::Poseidon);
const CONSTRAINTS: u32 = 15;
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
cache: &mut Cache,
) -> Vec<T> {
let mut res = vec![];
let mut idx = 0;
//~ We define $M_{r, c}$ as the MDS matrix at row $r$ and column $c$.
let mds: Vec<Vec<_>> = (0..SPONGE_WIDTH)
.map(|row| (0..SPONGE_WIDTH).map(|col| env.mds(row, col)).collect())
.collect();
for e in &ROUND_EQUATIONS {
let &RoundEquation {
source,
target: (target_row, target_round),
} = e;
//~
//~ We define the S-box operation as $w^S$ for $S$ the `SPONGE_BOX` constant.
let sboxed: Vec<_> = round_to_cols(source)
.map(|i| {
cache.cache(
env.witness_curr(i)
.pow(u64::from(PlonkSpongeConstantsKimchi::PERM_SBOX)),
)
})
.collect();
for (j, col) in round_to_cols(target_round).enumerate() {
//~
//~ We store the 15 round constants $r_i$ required for the 5 rounds (3 per round) in the coefficient table:
//~
//~ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
//~ | r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | r13 | r14 |
let rc = env.coeff(idx);
idx += 1;
//~
//~ The initial state, stored in the first three registers, are not constrained.
//~ The following 4 states (of 3 field elements), including 1 in the next row,
//~ are constrained to represent the 5 rounds of permutation.
//~ Each of the associated 15 registers is associated to a constraint, calculated as:
//~
//~ first round:
//~
//~ * $w_6 - \left(r_0 + (M_{0, 0} w_0^S + M_{0, 1} w_1^S + M_{0, 2} w_2^S)\right)$
//~ * $w_7 - \left(r_1 + (M_{1, 0} w_0^S + M_{1, 1} w_1^S + M_{1, 2} w_2^S)\right)$
//~ * $w_8 - \left(r_2 + (M_{2, 0} w_0^S + M_{2, 1} w_1^S + M_{2, 2} w_2^S)\right)$
//~
//~ second round:
//~
//~ * $w_9 - \left(r_3 + (M_{0, 0} w_6^S + M_{0, 1} w_7^S + M_{0, 2} w_8^S)\right)$
//~ * $w_{10} - \left(r_4 + (M_{1, 0} w_6^S + M_{1, 1} w_7^S + M_{1, 2} w_8^S)\right)$
//~ * $w_{11} - \left(r_5 + (M_{2, 0} w_6^S + M_{2, 1} w_7^S + M_{2, 2} w_8^S)\right)$
//~
//~ third round:
//~
//~ * $w_{12} - \left(r_6 + (M_{0, 0} w_9^S + M_{0, 1} w_{10}^S + M_{0, 2} w_{11}^S)\right)$
//~ * $w_{13} - \left(r_7 + (M_{1, 0} w_9^S + M_{1, 1} w_{10}^S + M_{1, 2} w_{11}^S)\right)$
//~ * $w_{14} - \left(r_8 + (M_{2, 0} w_9^S + M_{2, 1} w_{10}^S + M_{2, 2} w_{11}^S)\right)$
//~
//~ fourth round:
//~
//~ * $w_3 - \left(r_9 + (M_{0, 0} w_{12}^S + M_{0, 1} w_{13}^S + M_{0, 2} w_{14}^S)\right)$
//~ * $w_4 - \left(r_{10} + (M_{1, 0} w_{12}^S + M_{1, 1} w_{13}^S + M_{1, 2} w_{14}^S)\right)$
//~ * $w_5 - \left(r_{11} + (M_{2, 0} w_{12}^S + M_{2, 1} w_{13}^S + M_{2, 2} w_{14}^S)\right)$
//~
//~ fifth round:
//~
//~ * $w_{0, next} - \left(r_{12} + (M_{0, 0} w_3^S + M_{0, 1} w_4^S + M_{0, 2} w_5^S)\right)$
//~ * $w_{1, next} - \left(r_{13} + (M_{1, 0} w_3^S + M_{1, 1} w_4^S + M_{1, 2} w_5^S)\right)$
//~ * $w_{2, next} - \left(r_{14} + (M_{2, 0} w_3^S + M_{2, 1} w_4^S + M_{2, 2} w_5^S)\right)$
//~
//~ where $w_{i, next}$ is the polynomial $w_i(\omega x)$ which points to the next row.
let constraint = env.witness(target_row, col)
- sboxed
.iter()
.zip(mds[j].iter())
.fold(rc, |acc, (x, c)| acc + c.clone() * x.clone());
res.push(constraint);
}
}
res
}
}