1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
//! This module implements permutation constraint polynomials.
//~ The permutation constraints are the following 4 constraints:
//~
//~ The two sides of the coin (with $\text{shift}_0 = 1$):
//~
//~ $$\begin{align}
//~ & z(x) \cdot zkpm(x) \cdot \alpha^{PERM0} \cdot \\
//~ & (w_0(x) + \beta \cdot \text{shift}_0 x + \gamma) \cdot \\
//~ & (w_1(x) + \beta \cdot \text{shift}_1 x + \gamma) \cdot \\
//~ & (w_2(x) + \beta \cdot \text{shift}_2 x + \gamma) \cdot \\
//~ & (w_3(x) + \beta \cdot \text{shift}_3 x + \gamma) \cdot \\
//~ & (w_4(x) + \beta \cdot \text{shift}_4 x + \gamma) \cdot \\
//~ & (w_5(x) + \beta \cdot \text{shift}_5 x + \gamma) \cdot \\
//~ & (w_6(x) + \beta \cdot \text{shift}_6 x + \gamma)
//~ \end{align}$$
//~
//~ and
//~
//~ $$\begin{align}
//~ & -1 \cdot z(x \omega) \cdot zkpm(x) \cdot \alpha^{PERM0} \cdot \\
//~ & (w_0(x) + \beta \cdot \sigma_0(x) + \gamma) \cdot \\
//~ & (w_1(x) + \beta \cdot \sigma_1(x) + \gamma) \cdot \\
//~ & (w_2(x) + \beta \cdot \sigma_2(x) + \gamma) \cdot \\
//~ & (w_3(x) + \beta \cdot \sigma_3(x) + \gamma) \cdot \\
//~ & (w_4(x) + \beta \cdot \sigma_4(x) + \gamma) \cdot \\
//~ & (w_5(x) + \beta \cdot \sigma_5(x) + \gamma) \cdot \\
//~ & (w_6(x) + \beta \cdot \sigma_6(x) + \gamma) \cdot
//~ \end{align}$$
//~
//~ the initialization of the accumulator:
//~
//~ $$(z(x) - 1) L_1(x) \alpha^{PERM1}$$
//~
//~ and the accumulator's final value:
//~
//~ $$(z(x) - 1) L_{n-k}(x) \alpha^{PERM2}$$
//~
//~ You can read more about why it looks like that in [this post](https://minaprotocol.com/blog/a-more-efficient-approach-to-zero-knowledge-for-plonk).
//~
use crate::{
circuits::{
constraints::ConstraintSystem,
polynomial::WitnessOverDomains,
wires::{Wire, COLUMNS, PERMUTS},
},
curve::KimchiCurve,
error::ProverError,
proof::{PointEvaluations, ProofEvaluations},
prover_index::ProverIndex,
};
use ark_ff::{FftField, PrimeField, Zero};
use ark_poly::{
univariate::{DenseOrSparsePolynomial, DensePolynomial},
DenseUVPolynomial, EvaluationDomain, Evaluations, Polynomial, Radix2EvaluationDomain as D,
};
use blake2::{Blake2b512, Digest};
use o1_utils::{ExtendedDensePolynomial, ExtendedEvaluations};
use poly_commitment::OpenProof;
use rand::{CryptoRng, RngCore};
use rayon::prelude::*;
use std::array;
/// Number of constraints produced by the argument.
pub const CONSTRAINTS: u32 = 3;
/// Evaluates the polynomial
/// (x - w^{n - i}) * (x - w^{n - i + 1}) * ... * (x - w^{n - 1})
pub fn eval_vanishes_on_last_n_rows<F: FftField>(domain: D<F>, i: u64, x: F) -> F {
if i == 0 {
return F::one();
}
let mut term = domain.group_gen.pow([domain.size - i]);
let mut acc = x - term;
for _ in 0..i - 1 {
term *= domain.group_gen;
acc *= x - term;
}
acc
}
/// The polynomial
/// (x - w^{n - i}) * (x - w^{n - i + 1}) * ... * (x - w^{n - 1})
pub fn vanishes_on_last_n_rows<F: FftField>(domain: D<F>, i: u64) -> DensePolynomial<F> {
let constant = |a: F| DensePolynomial::from_coefficients_slice(&[a]);
if i == 0 {
return constant(F::one());
}
let x = DensePolynomial::from_coefficients_slice(&[F::zero(), F::one()]);
let mut term = domain.group_gen.pow([domain.size - i]);
let mut acc = &x - &constant(term);
for _ in 0..i - 1 {
term *= domain.group_gen;
acc = &acc * &(&x - &constant(term));
}
acc
}
/// Returns the end of the circuit, which is used for introducing zero-knowledge in the permutation polynomial
pub fn zk_w<F: FftField>(domain: D<F>, zk_rows: u64) -> F {
domain.group_gen.pow([domain.size - zk_rows])
}
/// Evaluates the polynomial
/// (x - w^{n - zk_rows}) * (x - w^{n - zk_rows + 1}) * (x - w^{n - 1})
pub fn eval_permutation_vanishing_polynomial<F: FftField>(domain: D<F>, zk_rows: u64, x: F) -> F {
let term = domain.group_gen.pow([domain.size - zk_rows]);
(x - term) * (x - term * domain.group_gen) * (x - domain.group_gen.pow([domain.size - 1]))
}
/// The polynomial
/// (x - w^{n - zk_rows}) * (x - w^{n - zk_rows + 1}) * (x - w^{n - 1})
pub fn permutation_vanishing_polynomial<F: FftField>(
domain: D<F>,
zk_rows: u64,
) -> DensePolynomial<F> {
let constant = |a: F| DensePolynomial::from_coefficients_slice(&[a]);
let x = DensePolynomial::from_coefficients_slice(&[F::zero(), F::one()]);
let term = domain.group_gen.pow([domain.size - zk_rows]);
&(&(&x - &constant(term)) * &(&x - &constant(term * domain.group_gen)))
* &(&x - &constant(domain.group_gen.pow([domain.size - 1])))
}
/// Shifts represent the shifts required in the permutation argument of PLONK.
/// It also caches the shifted powers of omega for optimization purposes.
pub struct Shifts<F> {
/// The coefficients `k` (in the Plonk paper) that create a coset when multiplied with the generator of our domain.
pub(crate) shifts: [F; PERMUTS],
/// A matrix that maps all cells coordinates `{col, row}` to their shifted field element.
/// For example the cell `{col:2, row:1}` will map to `omega * k2`,
/// which lives in `map[2][1]`
pub(crate) map: [Vec<F>; PERMUTS],
}
impl<F> Shifts<F>
where
F: FftField,
{
/// Generates the shifts for a given domain
pub fn new(domain: &D<F>) -> Self {
let mut shifts = [F::zero(); PERMUTS];
// first shift is the identity
shifts[0] = F::one();
// sample the other shifts
let mut i: u32 = 7;
for idx in 1..(PERMUTS) {
let mut shift = Self::sample(domain, &mut i);
// they have to be distincts
while shifts.contains(&shift) {
shift = Self::sample(domain, &mut i);
}
shifts[idx] = shift;
}
// create a map of cells to their shifted value
let map: [Vec<F>; PERMUTS] =
array::from_fn(|i| domain.elements().map(|elm| shifts[i] * elm).collect());
//
Self { shifts, map }
}
/// retrieve the shifts
pub fn shifts(&self) -> &[F; PERMUTS] {
&self.shifts
}
/// sample coordinate shifts deterministically
fn sample(domain: &D<F>, input: &mut u32) -> F {
let mut h = Blake2b512::new();
*input += 1;
h.update(input.to_be_bytes());
let mut shift = F::from_random_bytes(&h.finalize()[..31])
.expect("our field elements fit in more than 31 bytes");
while !shift.legendre().is_qnr() || domain.evaluate_vanishing_polynomial(shift).is_zero() {
let mut h = Blake2b512::new();
*input += 1;
h.update(input.to_be_bytes());
shift = F::from_random_bytes(&h.finalize()[..31])
.expect("our field elements fit in more than 31 bytes");
}
shift
}
/// Returns the field element that represents a position
pub(crate) fn cell_to_field(&self, &Wire { row, col }: &Wire) -> F {
self.map[col][row]
}
}
impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
ProverIndex<G, OpeningProof>
{
/// permutation quotient poly contribution computation
///
/// # Errors
///
/// Will give error if `polynomial division` fails.
///
/// # Panics
///
/// Will panic if `power of alpha` is missing.
#[allow(clippy::type_complexity)]
pub fn perm_quot(
&self,
lagrange: &WitnessOverDomains<F>,
beta: F,
gamma: F,
z: &DensePolynomial<F>,
mut alphas: impl Iterator<Item = F>,
) -> Result<(Evaluations<F, D<F>>, DensePolynomial<F>), ProverError> {
let alpha0 = alphas.next().expect("missing power of alpha");
let alpha1 = alphas.next().expect("missing power of alpha");
let alpha2 = alphas.next().expect("missing power of alpha");
let zk_rows = self.cs.zk_rows as usize;
// constant gamma in evaluation form (in domain d8)
let gamma = &self.cs.precomputations().constant_1_d8.scale(gamma);
//~ The quotient contribution of the permutation is split into two parts $perm$ and $bnd$.
//~ They will be used by the prover.
//~
//~ $$
//~ \begin{align}
//~ perm(x) =
//~ & \; a^{PERM0} \cdot zkpl(x) \cdot [ \\
//~ & \;\; z(x) \cdot \\
//~ & \;\; (w_0(x) + \gamma + x \cdot \beta \cdot \text{shift}_0) \cdot \\
//~ & \;\; (w_1(x) + \gamma + x \cdot \beta \cdot \text{shift}_1) \cdot \\
//~ & \;\; (w_2(x) + \gamma + x \cdot \beta \cdot \text{shift}_2) \cdot \\
//~ & \;\; (w_3(x) + \gamma + x \cdot \beta \cdot \text{shift}_3) \cdot \\
//~ & \;\; (w_4(x) + \gamma + x \cdot \beta \cdot \text{shift}_4) \cdot \\
//~ & \;\; (w_5(x) + \gamma + x \cdot \beta \cdot \text{shift}_5) \cdot \\
//~ & \;\; (w_6(x) + \gamma + x \cdot \beta \cdot \text{shift}_6) \cdot \\
//~ & \; - \\
//~ & \;\; z(x \cdot w) \cdot \\
//~ & \;\; (w_0(x) + \gamma + \sigma_0 \cdot \beta) \cdot \\
//~ & \;\; (w_1(x) + \gamma + \sigma_1 \cdot \beta) \cdot \\
//~ & \;\; (w_2(x) + \gamma + \sigma_2 \cdot \beta) \cdot \\
//~ & \;\; (w_3(x) + \gamma + \sigma_3 \cdot \beta) \cdot \\
//~ & \;\; (w_4(x) + \gamma + \sigma_4 \cdot \beta) \cdot \\
//~ & \;\; (w_5(x) + \gamma + \sigma_5 \cdot \beta) \cdot \\
//~ & \;\; (w_6(x) + \gamma + \sigma_6 \cdot \beta) \cdot \\
//~ &]
//~ \end{align}
//~ $$
//~
let perm = {
// shifts = z(x) *
// (w[0](x) + gamma + x * beta * shift[0]) *
// (w[1](x) + gamma + x * beta * shift[1]) * ...
// (w[6](x) + gamma + x * beta * shift[6])
// in evaluation form in d8
let mut shifts = lagrange.d8.this.z.clone();
for (witness, shift) in lagrange.d8.this.w.iter().zip(self.cs.shift.iter()) {
let term =
&(witness + gamma) + &self.cs.precomputations().poly_x_d1.scale(beta * shift);
shifts = &shifts * &term;
}
// sigmas = z(x * w) *
// (w8[0] + gamma + sigma[0] * beta) *
// (w8[1] + gamma + sigma[1] * beta) * ...
// (w8[6] + gamma + sigma[6] * beta)
// in evaluation form in d8
let mut sigmas = lagrange.d8.next.z.clone();
for (witness, sigma) in lagrange
.d8
.this
.w
.iter()
.zip(self.column_evaluations.permutation_coefficients8.iter())
{
let term = witness + &(gamma + &sigma.scale(beta));
sigmas = &sigmas * &term;
}
&(&shifts - &sigmas).scale(alpha0)
* &self.cs.precomputations().permutation_vanishing_polynomial_l
};
//~ and `bnd`:
//~
//~ $$bnd(x) =
//~ a^{PERM1} \cdot \frac{z(x) - 1}{x - 1}
//~ +
//~ a^{PERM2} \cdot \frac{z(x) - 1}{x - sid[n-k]}
//~ $$
let bnd = {
let one_poly = DensePolynomial::from_coefficients_slice(&[F::one()]);
let z_minus_1 = z - &one_poly;
// TODO(mimoo): use self.sid[0] instead of 1
// accumulator init := (z(x) - 1) / (x - 1)
let x_minus_1 = DensePolynomial::from_coefficients_slice(&[-F::one(), F::one()]);
let (bnd1, res) = DenseOrSparsePolynomial::divide_with_q_and_r(
&z_minus_1.clone().into(),
&x_minus_1.into(),
)
.ok_or(ProverError::Permutation("first division"))?;
if !res.is_zero() {
return Err(ProverError::Permutation("first division rest"));
}
// accumulator end := (z(x) - 1) / (x - sid[n-zk_rows])
let denominator = DensePolynomial::from_coefficients_slice(&[
-self.cs.sid[self.cs.domain.d1.size() - zk_rows],
F::one(),
]);
let (bnd2, res) = DenseOrSparsePolynomial::divide_with_q_and_r(
&z_minus_1.into(),
&denominator.into(),
)
.ok_or(ProverError::Permutation("second division"))?;
if !res.is_zero() {
return Err(ProverError::Permutation("second division rest"));
}
&bnd1.scale(alpha1) + &bnd2.scale(alpha2)
};
Ok((perm, bnd))
}
/// permutation linearization poly contribution computation
pub fn perm_lnrz(
&self,
e: &ProofEvaluations<PointEvaluations<F>>,
zeta: F,
beta: F,
gamma: F,
alphas: impl Iterator<Item = F>,
) -> Evaluations<F, D<F>> {
//~
//~ The linearization:
//~
//~ $\text{scalar} \cdot \sigma_6(x)$
//~
let zkpm_zeta = self
.cs
.precomputations()
.permutation_vanishing_polynomial_m
.evaluate(&zeta);
let scalar = ConstraintSystem::<F>::perm_scalars(e, beta, gamma, alphas, zkpm_zeta);
let evals8 = &self.column_evaluations.permutation_coefficients8[PERMUTS - 1].evals;
const STRIDE: usize = 8;
let n = evals8.len() / STRIDE;
let evals = (0..n)
.into_par_iter()
.map(|i| scalar * evals8[STRIDE * i])
.collect();
Evaluations::from_vec_and_domain(evals, D::new(n).unwrap())
}
}
impl<F: PrimeField> ConstraintSystem<F> {
pub fn perm_scalars(
e: &ProofEvaluations<PointEvaluations<F>>,
beta: F,
gamma: F,
mut alphas: impl Iterator<Item = F>,
zkp_zeta: F,
) -> F {
let alpha0 = alphas
.next()
.expect("not enough powers of alpha for permutation");
let _alpha1 = alphas
.next()
.expect("not enough powers of alpha for permutation");
let _alpha2 = alphas
.next()
.expect("not enough powers of alpha for permutation");
//~ where $\text{scalar}$ is computed as:
//~
//~ $$
//~ \begin{align}
//~ z(\zeta \omega) \beta \alpha^{PERM0} zkpl(\zeta) \cdot \\
//~ (\gamma + \beta \sigma_0(\zeta) + w_0(\zeta)) \cdot \\
//~ (\gamma + \beta \sigma_1(\zeta) + w_1(\zeta)) \cdot \\
//~ (\gamma + \beta \sigma_2(\zeta) + w_2(\zeta)) \cdot \\
//~ (\gamma + \beta \sigma_3(\zeta) + w_3(\zeta)) \cdot \\
//~ (\gamma + \beta \sigma_4(\zeta) + w_4(\zeta)) \cdot \\
//~ (\gamma + \beta \sigma_5(\zeta) + w_5(\zeta)) \cdot \\
//~ \end{align}
//~$$
//~
let init = e.z.zeta_omega * beta * alpha0 * zkp_zeta;
let res =
e.w.iter()
.zip(e.s.iter())
.map(|(w, s)| gamma + (beta * s.zeta) + w.zeta)
.fold(init, |x, y| x * y);
-res
}
}
impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
ProverIndex<G, OpeningProof>
{
/// permutation aggregation polynomial computation
///
/// # Errors
///
/// Will give error if permutation result is not correct.
///
/// # Panics
///
/// Will panic if `first element` is not 1.
pub fn perm_aggreg(
&self,
witness: &[Vec<F>; COLUMNS],
beta: &F,
gamma: &F,
rng: &mut (impl RngCore + CryptoRng),
) -> Result<DensePolynomial<F>, ProverError> {
let n = self.cs.domain.d1.size();
let zk_rows = self.cs.zk_rows as usize;
// only works if first element is 1
assert_eq!(self.cs.domain.d1.elements().next(), Some(F::one()));
//~ To compute the permutation aggregation polynomial,
//~ the prover interpolates the polynomial that has the following evaluations.
//~ The first evaluation represents the initial value of the accumulator:
//~ $$z(g^0) = 1$$
let mut z = vec![F::one(); n];
//~ For $i = 0, \cdot, n - 4$, where $n$ is the size of the domain,
//~ evaluations are computed as:
//~
//~ $$z(g^{i+1}) = z_1 / z_2$$
//~
//~ with
//~
//~ $$
//~ \begin{align}
//~ z_1 = &\ (w_0(g^i + sid(g^i) \cdot beta \cdot shift_0 + \gamma) \cdot \\
//~ &\ (w_1(g^i) + sid(g^i) \cdot beta \cdot shift_1 + \gamma) \cdot \\
//~ &\ (w_2(g^i) + sid(g^i) \cdot beta \cdot shift_2 + \gamma) \cdot \\
//~ &\ (w_3(g^i) + sid(g^i) \cdot beta \cdot shift_3 + \gamma) \cdot \\
//~ &\ (w_4(g^i) + sid(g^i) \cdot beta \cdot shift_4 + \gamma) \cdot \\
//~ &\ (w_5(g^i) + sid(g^i) \cdot beta \cdot shift_5 + \gamma) \cdot \\
//~ &\ (w_6(g^i) + sid(g^i) \cdot beta \cdot shift_6 + \gamma)
//~ \end{align}
//~ $$
//~
//~ and
//~
//~ $$
//~ \begin{align}
//~ z_2 = &\ (w_0(g^i) + \sigma_0 \cdot beta + \gamma) \cdot \\
//~ &\ (w_1(g^i) + \sigma_1 \cdot beta + \gamma) \cdot \\
//~ &\ (w_2(g^i) + \sigma_2 \cdot beta + \gamma) \cdot \\
//~ &\ (w_3(g^i) + \sigma_3 \cdot beta + \gamma) \cdot \\
//~ &\ (w_4(g^i) + \sigma_4 \cdot beta + \gamma) \cdot \\
//~ &\ (w_5(g^i) + \sigma_5 \cdot beta + \gamma) \cdot \\
//~ &\ (w_6(g^i) + \sigma_6 \cdot beta + \gamma)
//~ \end{align}
//~ $$
//~
for j in 0..n - 1 {
z[j + 1] = witness
.iter()
.zip(self.column_evaluations.permutation_coefficients8.iter())
.map(|(w, s)| w[j] + (s[8 * j] * beta) + gamma)
.fold(F::one(), |x, y| x * y);
}
ark_ff::fields::batch_inversion::<F>(&mut z[1..n]);
//~ We randomize the evaluations at `n - zk_rows + 1` and `n - zk_rows + 2` in order to add
//~ zero-knowledge to the protocol.
//~
for j in 0..n - 1 {
if j != n - zk_rows && j != n - zk_rows + 1 {
let x = z[j];
z[j + 1] *= witness
.iter()
.zip(self.cs.shift.iter())
.map(|(w, s)| w[j] + (self.cs.sid[j] * beta * s) + gamma)
.fold(x, |z, y| z * y);
} else {
z[j + 1] = F::rand(rng);
}
}
//~ For a valid witness, we then have have $z(g^{n-zk_rows}) = 1$.
//~
if z[n - zk_rows] != F::one() {
return Err(ProverError::Permutation("final value"));
};
let res = Evaluations::<F, D<F>>::from_vec_and_domain(z, self.cs.domain.d1).interpolate();
Ok(res)
}
}