1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
//! This module implements the double generic gate.
//~ The double generic gate contains two generic gates.
//~
//~ A generic gate is simply the 2-fan in gate specified in the
//~ vanilla PLONK protocol that allows us to do operations like:
//~
//~ * addition of two registers (into an output register)
//~ * or multiplication of two registers
//~ * equality of a register with a constant
//~
//~ More generally, the generic gate controls the coefficients $c_i$ in the equation:
//~
//~ $$c_0 \cdot l + c_1 \cdot r + c_2 \cdot o + c_3 \cdot (l \times r) + c_4$$
//~
//~ The layout of the gate is the following:
//~
//~ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:-:|:-:|:-:|:-:|:--:|:--:|:--:|:--:|:--:|
//~ | l1 | r1 | o1 | l2 | r2 | o2 | | | | | | | | | |
//~
//~ where l1, r1, and o1 (resp. l2, r2, o2)
//~ are the left, right, and output registers
//~ of the first (resp. second) generic gate.
//~
//~ The selectors are stored in the coefficient table as:
//~
//~ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
//~ | l1 | r1 | o1 | m1 | c1 | l2 | r2 | o2 | m2 | c2 | | | | | |
//~
//~ with m1 (resp. m2) the mul selector for the first (resp. second) gate,
//~ and c1 (resp. c2) the constant selector for the first (resp. second) gate.
//~
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
expr::{constraints::ExprOps, Cache},
gate::{CircuitGate, GateType},
polynomial::COLUMNS,
wires::GateWires,
},
curve::KimchiCurve,
prover_index::ProverIndex,
};
use ark_ff::{FftField, PrimeField, Zero};
use ark_poly::univariate::DensePolynomial;
use poly_commitment::OpenProof;
use std::{array, marker::PhantomData};
/// Number of constraints produced by the gate.
pub const CONSTRAINTS: u32 = 2;
/// Number of generic of registers by a single generic gate
pub const GENERIC_REGISTERS: usize = 3;
/// Number of coefficients used by a single generic gate
/// Three are used for the registers, one for the multiplication,
/// and one for the constant.
pub const GENERIC_COEFFS: usize = GENERIC_REGISTERS + 1 /* mul */ + 1 /* cst */;
/// The double generic gate actually contains two generic gates.
pub const DOUBLE_GENERIC_COEFFS: usize = GENERIC_COEFFS * 2;
/// Number of generic of registers by a double generic gate.
pub const DOUBLE_GENERIC_REGISTERS: usize = GENERIC_REGISTERS * 2;
/// Implementation of the `Generic` gate
#[derive(Default)]
pub struct Generic<F>(PhantomData<F>);
impl<F> Argument<F> for Generic<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::Generic);
const CONSTRAINTS: u32 = 2;
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
_cache: &mut Cache,
) -> Vec<T> {
// First generic gate
let left_coeff1 = env.coeff(0);
let right_coeff1 = env.coeff(1);
let out_coeff1 = env.coeff(2);
let mul_coeff1 = env.coeff(3);
let constant1 = env.coeff(4);
let left1 = env.witness_curr(0);
let right1 = env.witness_curr(1);
let out1 = env.witness_curr(2);
let constraint1 = left_coeff1 * left1.clone()
+ right_coeff1 * right1.clone()
+ out_coeff1 * out1
+ mul_coeff1 * left1 * right1
+ constant1;
// Second generic gate
let left_coeff2 = env.coeff(5);
let right_coeff2 = env.coeff(6);
let out_coeff2 = env.coeff(7);
let mul_coeff2 = env.coeff(8);
let constant2 = env.coeff(9);
let left2 = env.witness_curr(3);
let right2 = env.witness_curr(4);
let out2 = env.witness_curr(5);
let constraint2 = left_coeff2 * left2.clone()
+ right_coeff2 * right2.clone()
+ out_coeff2 * out2
+ mul_coeff2 * left2 * right2
+ constant2;
vec![constraint1, constraint2]
}
}
/// The different type of computation that are possible with a generic gate.
/// This type is useful to create a generic gate via the [`CircuitGate::create_generic_gadget`] function.
#[derive(Clone)]
pub enum GenericGateSpec<F> {
/// Add two values.
Add {
/// Optional coefficient that can be multiplied with the left operand.
left_coeff: Option<F>,
/// Optional coefficient that can be multiplied with the right operand.
right_coeff: Option<F>,
/// Optional coefficient that can be multiplied with the output.
output_coeff: Option<F>,
},
/// Multiplication of two values
Mul {
/// Optional coefficient that can be multiplied with the output.
output_coeff: Option<F>,
/// Optional coefficient that can be multiplied with the multiplication result.
mul_coeff: Option<F>,
},
/// A constant, the constructor contains the constant itself
Const(F),
/// A public gate
Pub,
/// Sum a value to a constant
Plus(F),
}
impl<F: PrimeField> CircuitGate<F> {
/// This allows you to create two generic gates that will fit in one row, check [`Self::create_generic_gadget`] for a better to way to create these gates.
pub fn create_generic(wires: GateWires, c: [F; GENERIC_COEFFS * 2]) -> Self {
CircuitGate::new(GateType::Generic, wires, c.to_vec())
}
/// This allows you to create two generic gates by passing the desired
/// `gate1` and `gate2` as two [`GenericGateSpec`].
pub fn create_generic_gadget(
wires: GateWires,
gate1: GenericGateSpec<F>,
gate2: Option<GenericGateSpec<F>>,
) -> Self {
let mut coeffs = [F::zero(); GENERIC_COEFFS * 2];
match gate1 {
GenericGateSpec::Add {
left_coeff,
right_coeff,
output_coeff,
} => {
coeffs[0] = left_coeff.unwrap_or_else(F::one);
coeffs[1] = right_coeff.unwrap_or_else(F::one);
coeffs[2] = output_coeff.unwrap_or_else(|| -F::one());
}
GenericGateSpec::Mul {
output_coeff,
mul_coeff,
} => {
coeffs[2] = output_coeff.unwrap_or_else(|| -F::one());
coeffs[3] = mul_coeff.unwrap_or_else(F::one);
}
GenericGateSpec::Const(cst) => {
coeffs[0] = F::one();
coeffs[4] = -cst;
}
GenericGateSpec::Pub => {
coeffs[0] = F::one();
}
GenericGateSpec::Plus(cst) => {
coeffs[0] = F::one();
coeffs[1] = F::zero();
coeffs[2] = -F::one();
coeffs[3] = F::zero();
coeffs[4] = cst;
}
};
match gate2 {
Some(GenericGateSpec::Add {
left_coeff,
right_coeff,
output_coeff,
}) => {
coeffs[5] = left_coeff.unwrap_or_else(F::one);
coeffs[6] = right_coeff.unwrap_or_else(F::one);
coeffs[7] = output_coeff.unwrap_or_else(|| -F::one());
}
Some(GenericGateSpec::Mul {
output_coeff,
mul_coeff,
}) => {
coeffs[7] = output_coeff.unwrap_or_else(|| -F::one());
coeffs[8] = mul_coeff.unwrap_or_else(F::one);
}
Some(GenericGateSpec::Const(cst)) => {
coeffs[5] = F::one();
coeffs[9] = -cst;
}
Some(GenericGateSpec::Pub) => {
coeffs[5] = F::one();
unimplemented!();
}
Some(GenericGateSpec::Plus(cst)) => {
coeffs[5] = F::one();
coeffs[6] = F::zero();
coeffs[7] = -F::one();
coeffs[8] = F::zero();
coeffs[9] = cst;
}
None => (),
};
Self::create_generic(wires, coeffs)
}
pub fn extend_generic(
gates: &mut Vec<Self>,
curr_row: &mut usize,
wires: GateWires,
gate1: GenericGateSpec<F>,
gate2: Option<GenericGateSpec<F>>,
) {
let gate = Self::create_generic_gadget(wires, gate1, gate2);
*curr_row += 1;
gates.extend_from_slice(&[gate]);
}
}
// -------------------------------------------------
//~ The constraints:
//~
//~ * $w_0 \cdot c_0 + w_1 \cdot c_1 + w_2 \cdot c_2 + w_0 \cdot w_1 \cdot c_3 + c_4$
//~ * $w_3 \cdot c_5 + w_4 \cdot c_6 + w_5 \cdot c_7 + w_3 w_4 c_8 + c_9$
//~
//~ where the $c_i$ are the `coefficients`.
// -------------------------------------------------
pub mod testing {
use super::*;
use crate::circuits::wires::Wire;
use itertools::iterate;
impl<F: PrimeField> CircuitGate<F> {
/// verifies that the generic gate constraints are solved by the witness
///
/// # Errors
///
/// Will give error if `self.typ` is not `GateType::Generic`.
pub fn verify_generic(
&self,
row: usize,
witness: &[Vec<F>; COLUMNS],
public: &[F],
) -> Result<(), String> {
// assignments
let this: [F; COLUMNS] = array::from_fn(|i| witness[i][row]);
// constants
let zero = F::zero();
// check if it's the correct gate
ensure_eq!(self.typ, GateType::Generic, "generic: incorrect gate");
let check_single = |coeffs_offset, register_offset| {
let get = |offset| {
self.coeffs
.get(offset)
.copied()
.unwrap_or_else(|| F::zero())
};
let l_coeff = get(coeffs_offset);
let r_coeff = get(coeffs_offset + 1);
let o_coeff = get(coeffs_offset + 2);
let m_coeff = get(coeffs_offset + 3);
let c_coeff = get(coeffs_offset + 4);
let sum = l_coeff * this[register_offset]
+ r_coeff * this[register_offset + 1]
+ o_coeff * this[register_offset + 2];
let mul = m_coeff * this[register_offset] * this[register_offset + 1];
let public = if coeffs_offset == 0 {
public.get(row).copied().unwrap_or_else(F::zero)
} else {
F::zero()
};
ensure_eq!(
zero,
sum + mul + c_coeff - public,
"generic: incorrect gate"
);
Ok(())
};
check_single(0, 0)?;
check_single(GENERIC_COEFFS, GENERIC_REGISTERS)
}
}
impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
ProverIndex<G, OpeningProof>
{
/// Function to verify the generic polynomials with a witness.
pub fn verify_generic(
&self,
witness: &[DensePolynomial<F>; COLUMNS],
public: &DensePolynomial<F>,
) -> bool {
let coefficientsm: [_; COLUMNS] = array::from_fn(|i| {
self.column_evaluations.coefficients8[i]
.clone()
.interpolate()
});
let generic_gate = |coeff_offset, register_offset| {
// addition (of left, right, output wires)
let mut ff = &coefficientsm[coeff_offset] * &witness[register_offset];
ff += &(&coefficientsm[coeff_offset + 1] * &witness[register_offset + 1]);
ff += &(&coefficientsm[coeff_offset + 2] * &witness[register_offset + 2]);
// multiplication
ff += &(&(&witness[register_offset] * &witness[register_offset + 1])
* &coefficientsm[coeff_offset + 3]);
// constant
&ff + &coefficientsm[coeff_offset + 4]
// note: skip alpha power, as we're testing for completeness
};
let mut res = generic_gate(0, 0);
res += &generic_gate(GENERIC_COEFFS, GENERIC_REGISTERS);
// public inputs
res += public;
// selector poly
res = &res
* &self
.column_evaluations
.generic_selector4
.interpolate_by_ref();
// Interpolation above is inefficient, as is the rest of the function,
// would be better just to check the equation on all the rows.
// verify that it is divisible by Z_H
match res.divide_by_vanishing_poly(self.cs.domain.d1) {
Some((_quotient, rest)) => rest.is_zero(),
None => false,
}
}
}
/// Create a generic circuit
///
/// # Panics
///
/// Will panic if `gates_row` is None.
pub fn create_circuit<F: PrimeField>(start_row: usize, public: usize) -> Vec<CircuitGate<F>> {
// create constraint system with a single generic gate
let mut gates = vec![];
// create generic gates
let mut gates_row = iterate(start_row, |&i| i + 1);
// public input
for _ in 0..public {
let r = gates_row.next().unwrap();
gates.push(CircuitGate::create_generic_gadget(
Wire::for_row(r),
GenericGateSpec::Pub,
None,
));
}
// add and mul
for _ in 0..10 {
let r = gates_row.next().unwrap();
let g1 = GenericGateSpec::Add {
left_coeff: None,
right_coeff: Some(3u32.into()),
output_coeff: None,
};
let g2 = GenericGateSpec::Mul {
output_coeff: None,
mul_coeff: Some(2u32.into()),
};
gates.push(CircuitGate::create_generic_gadget(
Wire::for_row(r),
g1,
Some(g2),
));
}
// two consts
for _ in 0..10 {
let r = gates_row.next().unwrap();
let g1 = GenericGateSpec::Const(3u32.into());
let g2 = GenericGateSpec::Const(5u32.into());
gates.push(CircuitGate::create_generic_gadget(
Wire::for_row(r),
g1,
Some(g2),
));
}
gates
}
/// Fill in a witness created via [`create_circuit`]
///
/// # Panics
///
/// Will panic if `witness_row` is None.
pub fn fill_in_witness<F: FftField>(
start_row: usize,
witness: &mut [Vec<F>; COLUMNS],
public: &[F],
) {
// fill witness
let mut witness_row = iterate(start_row, |&i| i + 1);
// public
for p in public {
let r = witness_row.next().unwrap();
witness[0][r] = *p;
}
// add and mul
for _ in 0..10 {
let r = witness_row.next().unwrap();
witness[0][r] = 11u32.into();
witness[1][r] = 23u32.into();
witness[2][r] = (11u32 + 23u32 * 3u32).into();
witness[3][r] = 11u32.into();
witness[4][r] = 23u32.into();
witness[5][r] = (11u32 * 23 * 2).into();
}
// const
for _ in 0..10 {
let r = witness_row.next().unwrap();
witness[0][r] = 3u32.into();
witness[3][r] = 5u32.into();
}
}
}