1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! This module implements the double generic gate.

//~ The double generic gate contains two generic gates.
//~
//~ A generic gate is simply the 2-fan in gate specified in the
//~ vanilla PLONK protocol that allows us to do operations like:
//~
//~ * addition of two registers (into an output register)
//~ * or multiplication of two registers
//~ * equality of a register with a constant
//~
//~ More generally, the generic gate controls the coefficients $c_i$ in the equation:
//~
//~ $$c_0 \cdot l + c_1 \cdot r + c_2 \cdot o + c_3 \cdot (l \times r) + c_4$$
//~
//~ The layout of the gate is the following:
//~
//~ |  0 |  1 |  2 |  3 |  4 |  5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:-:|:-:|:-:|:-:|:--:|:--:|:--:|:--:|:--:|
//~ | l1 | r1 | o1 | l2 | r2 | o2 |   |   |   |   |    |    |    |    |    |
//~
//~ where l1, r1, and o1 (resp. l2, r2, o2)
//~ are the left, right, and output registers
//~ of the first (resp. second) generic gate.
//~
//~ The selectors are stored in the coefficient table as:
//~
//~ |  0 |  1 |  2 |  3 |  4 |  5 | 6  |  7 |  8 |  9 | 10 | 11 | 12 | 13 | 14 |
//~ |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
//~ | l1 | r1 | o1 | m1 | c1 | l2 | r2 | o2 | m2 | c2 |    |    |    |    |    |
//~
//~ with m1 (resp. m2) the mul selector for the first (resp. second) gate,
//~ and c1 (resp. c2) the constant selector for the first (resp. second) gate.
//~

use crate::{
    circuits::{
        argument::{Argument, ArgumentEnv, ArgumentType},
        berkeley_columns::BerkeleyChallengeTerm,
        expr::{constraints::ExprOps, Cache},
        gate::{CircuitGate, GateType},
        polynomial::COLUMNS,
        wires::GateWires,
    },
    curve::KimchiCurve,
    prover_index::ProverIndex,
};
use ark_ff::{FftField, PrimeField, Zero};
use ark_poly::univariate::DensePolynomial;
use poly_commitment::OpenProof;
use std::{array, marker::PhantomData};

/// Number of constraints produced by the gate.
pub const CONSTRAINTS: u32 = 2;

/// Number of generic of registers by a single generic gate
pub const GENERIC_REGISTERS: usize = 3;

/// Number of coefficients used by a single generic gate
/// Three are used for the registers, one for the multiplication,
/// and one for the constant.
pub const GENERIC_COEFFS: usize = GENERIC_REGISTERS + 1 /* mul */ + 1 /* cst */;

/// The double generic gate actually contains two generic gates.
pub const DOUBLE_GENERIC_COEFFS: usize = GENERIC_COEFFS * 2;

/// Number of generic of registers by a double generic gate.
pub const DOUBLE_GENERIC_REGISTERS: usize = GENERIC_REGISTERS * 2;

/// Implementation of the `Generic` gate
#[derive(Default)]
pub struct Generic<F>(PhantomData<F>);

impl<F> Argument<F> for Generic<F>
where
    F: PrimeField,
{
    const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::Generic);
    const CONSTRAINTS: u32 = 2;

    fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
        env: &ArgumentEnv<F, T>,
        _cache: &mut Cache,
    ) -> Vec<T> {
        // First generic gate
        let left_coeff1 = env.coeff(0);
        let right_coeff1 = env.coeff(1);
        let out_coeff1 = env.coeff(2);
        let mul_coeff1 = env.coeff(3);
        let constant1 = env.coeff(4);
        let left1 = env.witness_curr(0);
        let right1 = env.witness_curr(1);
        let out1 = env.witness_curr(2);

        let constraint1 = left_coeff1 * left1.clone()
            + right_coeff1 * right1.clone()
            + out_coeff1 * out1
            + mul_coeff1 * left1 * right1
            + constant1;

        // Second generic gate
        let left_coeff2 = env.coeff(5);
        let right_coeff2 = env.coeff(6);
        let out_coeff2 = env.coeff(7);
        let mul_coeff2 = env.coeff(8);
        let constant2 = env.coeff(9);
        let left2 = env.witness_curr(3);
        let right2 = env.witness_curr(4);
        let out2 = env.witness_curr(5);

        let constraint2 = left_coeff2 * left2.clone()
            + right_coeff2 * right2.clone()
            + out_coeff2 * out2
            + mul_coeff2 * left2 * right2
            + constant2;

        vec![constraint1, constraint2]
    }
}

/// The different type of computation that are possible with a generic gate.
/// This type is useful to create a generic gate via the [`CircuitGate::create_generic_gadget`] function.
#[derive(Clone)]
pub enum GenericGateSpec<F> {
    /// Add two values.
    Add {
        /// Optional coefficient that can be multiplied with the left operand.
        left_coeff: Option<F>,
        /// Optional coefficient that can be multiplied with the right operand.
        right_coeff: Option<F>,
        /// Optional coefficient that can be multiplied with the output.
        output_coeff: Option<F>,
    },
    /// Multiplication of two values
    Mul {
        /// Optional coefficient that can be multiplied with the output.
        output_coeff: Option<F>,
        /// Optional coefficient that can be multiplied with the multiplication result.
        mul_coeff: Option<F>,
    },
    /// A constant, the constructor contains the constant itself
    Const(F),
    /// A public gate
    Pub,
    /// Sum a value to a constant
    Plus(F),
}

impl<F: PrimeField> CircuitGate<F> {
    /// This allows you to create two generic gates that will fit in one row, check [`Self::create_generic_gadget`] for a better to way to create these gates.
    pub fn create_generic(wires: GateWires, c: [F; GENERIC_COEFFS * 2]) -> Self {
        CircuitGate::new(GateType::Generic, wires, c.to_vec())
    }

    /// This allows you to create two generic gates by passing the desired
    /// `gate1` and `gate2` as two [`GenericGateSpec`].
    pub fn create_generic_gadget(
        wires: GateWires,
        gate1: GenericGateSpec<F>,
        gate2: Option<GenericGateSpec<F>>,
    ) -> Self {
        let mut coeffs = [F::zero(); GENERIC_COEFFS * 2];
        match gate1 {
            GenericGateSpec::Add {
                left_coeff,
                right_coeff,
                output_coeff,
            } => {
                coeffs[0] = left_coeff.unwrap_or_else(F::one);
                coeffs[1] = right_coeff.unwrap_or_else(F::one);
                coeffs[2] = output_coeff.unwrap_or_else(|| -F::one());
            }
            GenericGateSpec::Mul {
                output_coeff,
                mul_coeff,
            } => {
                coeffs[2] = output_coeff.unwrap_or_else(|| -F::one());
                coeffs[3] = mul_coeff.unwrap_or_else(F::one);
            }
            GenericGateSpec::Const(cst) => {
                coeffs[0] = F::one();
                coeffs[4] = -cst;
            }
            GenericGateSpec::Pub => {
                coeffs[0] = F::one();
            }
            GenericGateSpec::Plus(cst) => {
                coeffs[0] = F::one();
                coeffs[1] = F::zero();
                coeffs[2] = -F::one();
                coeffs[3] = F::zero();
                coeffs[4] = cst;
            }
        };
        match gate2 {
            Some(GenericGateSpec::Add {
                left_coeff,
                right_coeff,
                output_coeff,
            }) => {
                coeffs[5] = left_coeff.unwrap_or_else(F::one);
                coeffs[6] = right_coeff.unwrap_or_else(F::one);
                coeffs[7] = output_coeff.unwrap_or_else(|| -F::one());
            }
            Some(GenericGateSpec::Mul {
                output_coeff,
                mul_coeff,
            }) => {
                coeffs[7] = output_coeff.unwrap_or_else(|| -F::one());
                coeffs[8] = mul_coeff.unwrap_or_else(F::one);
            }
            Some(GenericGateSpec::Const(cst)) => {
                coeffs[5] = F::one();
                coeffs[9] = -cst;
            }
            Some(GenericGateSpec::Pub) => {
                coeffs[5] = F::one();
                unimplemented!();
            }
            Some(GenericGateSpec::Plus(cst)) => {
                coeffs[5] = F::one();
                coeffs[6] = F::zero();
                coeffs[7] = -F::one();
                coeffs[8] = F::zero();
                coeffs[9] = cst;
            }
            None => (),
        };
        Self::create_generic(wires, coeffs)
    }

    pub fn extend_generic(
        gates: &mut Vec<Self>,
        curr_row: &mut usize,
        wires: GateWires,
        gate1: GenericGateSpec<F>,
        gate2: Option<GenericGateSpec<F>>,
    ) {
        let gate = Self::create_generic_gadget(wires, gate1, gate2);
        *curr_row += 1;
        gates.extend_from_slice(&[gate]);
    }
}

// -------------------------------------------------

//~ The constraints:
//~
//~ * $w_0 \cdot c_0 + w_1 \cdot c_1 + w_2 \cdot c_2 + w_0 \cdot w_1 \cdot c_3 + c_4$
//~ * $w_3 \cdot c_5 + w_4 \cdot c_6 + w_5 \cdot c_7 + w_3 w_4 c_8 + c_9$
//~
//~ where the $c_i$ are the `coefficients`.

// -------------------------------------------------

pub mod testing {
    use super::*;
    use crate::circuits::wires::Wire;
    use itertools::iterate;

    impl<F: PrimeField> CircuitGate<F> {
        /// verifies that the generic gate constraints are solved by the witness
        ///
        /// # Errors
        ///
        /// Will give error if `self.typ` is not `GateType::Generic`.
        pub fn verify_generic(
            &self,
            row: usize,
            witness: &[Vec<F>; COLUMNS],
            public: &[F],
        ) -> Result<(), String> {
            // assignments
            let this: [F; COLUMNS] = array::from_fn(|i| witness[i][row]);

            // constants
            let zero = F::zero();

            // check if it's the correct gate
            ensure_eq!(self.typ, GateType::Generic, "generic: incorrect gate");

            let check_single = |coeffs_offset, register_offset| {
                let get = |offset| {
                    self.coeffs
                        .get(offset)
                        .copied()
                        .unwrap_or_else(|| F::zero())
                };
                let l_coeff = get(coeffs_offset);
                let r_coeff = get(coeffs_offset + 1);
                let o_coeff = get(coeffs_offset + 2);
                let m_coeff = get(coeffs_offset + 3);
                let c_coeff = get(coeffs_offset + 4);

                let sum = l_coeff * this[register_offset]
                    + r_coeff * this[register_offset + 1]
                    + o_coeff * this[register_offset + 2];
                let mul = m_coeff * this[register_offset] * this[register_offset + 1];
                let public = if coeffs_offset == 0 {
                    public.get(row).copied().unwrap_or_else(F::zero)
                } else {
                    F::zero()
                };
                ensure_eq!(
                    zero,
                    sum + mul + c_coeff - public,
                    "generic: incorrect gate"
                );
                Ok(())
            };

            check_single(0, 0)?;
            check_single(GENERIC_COEFFS, GENERIC_REGISTERS)
        }
    }

    impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
        ProverIndex<G, OpeningProof>
    {
        /// Function to verify the generic polynomials with a witness.
        pub fn verify_generic(
            &self,
            witness: &[DensePolynomial<F>; COLUMNS],
            public: &DensePolynomial<F>,
        ) -> bool {
            let coefficientsm: [_; COLUMNS] = array::from_fn(|i| {
                self.column_evaluations.coefficients8[i]
                    .clone()
                    .interpolate()
            });

            let generic_gate = |coeff_offset, register_offset| {
                // addition (of left, right, output wires)
                let mut ff = &coefficientsm[coeff_offset] * &witness[register_offset];
                ff += &(&coefficientsm[coeff_offset + 1] * &witness[register_offset + 1]);
                ff += &(&coefficientsm[coeff_offset + 2] * &witness[register_offset + 2]);

                // multiplication
                ff += &(&(&witness[register_offset] * &witness[register_offset + 1])
                    * &coefficientsm[coeff_offset + 3]);

                // constant
                &ff + &coefficientsm[coeff_offset + 4]

                // note: skip alpha power, as we're testing for completeness
            };

            let mut res = generic_gate(0, 0);
            res += &generic_gate(GENERIC_COEFFS, GENERIC_REGISTERS);

            // public inputs
            res += public;

            // selector poly
            res = &res
                * &self
                    .column_evaluations
                    .generic_selector4
                    .interpolate_by_ref();
            // Interpolation above is inefficient, as is the rest of the function,
            // would be better just to check the equation on all the rows.

            // verify that it is divisible by Z_H
            match res.divide_by_vanishing_poly(self.cs.domain.d1) {
                Some((_quotient, rest)) => rest.is_zero(),
                None => false,
            }
        }
    }

    /// Create a generic circuit
    ///
    /// # Panics
    ///
    /// Will panic if `gates_row` is None.
    pub fn create_circuit<F: PrimeField>(start_row: usize, public: usize) -> Vec<CircuitGate<F>> {
        // create constraint system with a single generic gate
        let mut gates = vec![];

        // create generic gates
        let mut gates_row = iterate(start_row, |&i| i + 1);

        // public input
        for _ in 0..public {
            let r = gates_row.next().unwrap();
            gates.push(CircuitGate::create_generic_gadget(
                Wire::for_row(r),
                GenericGateSpec::Pub,
                None,
            ));
        }

        // add and mul
        for _ in 0..10 {
            let r = gates_row.next().unwrap();
            let g1 = GenericGateSpec::Add {
                left_coeff: None,
                right_coeff: Some(3u32.into()),
                output_coeff: None,
            };
            let g2 = GenericGateSpec::Mul {
                output_coeff: None,
                mul_coeff: Some(2u32.into()),
            };
            gates.push(CircuitGate::create_generic_gadget(
                Wire::for_row(r),
                g1,
                Some(g2),
            ));
        }

        // two consts
        for _ in 0..10 {
            let r = gates_row.next().unwrap();
            let g1 = GenericGateSpec::Const(3u32.into());
            let g2 = GenericGateSpec::Const(5u32.into());
            gates.push(CircuitGate::create_generic_gadget(
                Wire::for_row(r),
                g1,
                Some(g2),
            ));
        }

        gates
    }

    /// Fill in a witness created via [`create_circuit`]
    ///
    /// # Panics
    ///
    /// Will panic if `witness_row` is None.
    pub fn fill_in_witness<F: FftField>(
        start_row: usize,
        witness: &mut [Vec<F>; COLUMNS],
        public: &[F],
    ) {
        // fill witness
        let mut witness_row = iterate(start_row, |&i| i + 1);

        // public
        for p in public {
            let r = witness_row.next().unwrap();
            witness[0][r] = *p;
        }

        // add and mul
        for _ in 0..10 {
            let r = witness_row.next().unwrap();

            witness[0][r] = 11u32.into();
            witness[1][r] = 23u32.into();
            witness[2][r] = (11u32 + 23u32 * 3u32).into();

            witness[3][r] = 11u32.into();
            witness[4][r] = 23u32.into();
            witness[5][r] = (11u32 * 23 * 2).into();
        }

        // const
        for _ in 0..10 {
            let r = witness_row.next().unwrap();

            witness[0][r] = 3u32.into();

            witness[3][r] = 5u32.into();
        }
    }
}