1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
//! This module implements short Weierstrass curve
//! endomorphism optimised variable base
//! scalar multiplication custom Plonk polynomials.
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::{BerkeleyChallengeTerm, BerkeleyChallenges},
constraints::ConstraintSystem,
expr::{
self,
constraints::{boolean, ExprOps},
Cache,
},
gate::{CircuitGate, GateType},
wires::{GateWires, COLUMNS},
},
curve::KimchiCurve,
proof::{PointEvaluations, ProofEvaluations},
};
use ark_ff::{Field, PrimeField};
use std::marker::PhantomData;
//~ We implement custom gate constraints for short Weierstrass curve
//~ endomorphism optimised variable base scalar multiplication.
//~
//~ Given a finite field $\mathbb{F}_{q}$ of order $q$, if the order is not a multiple of 2 nor 3, then an
//~ elliptic curve over $\mathbb{F}_{q}$ in short Weierstrass form is represented by the set of points $(x,y)$
//~ that satisfy the following equation with
//~ $a,b\in\mathbb{F}_{q}$
//~ and
//~ $4a^3+27b^2\neq_{\mathbb{F}_q} 0 $:
//~ $$E(\mathbb{F}_q): y^2 = x^3 + a x + b$$
//~ If $P=(x_p, y_p)$ and $T=(x_t, y_t)$ are two points in the curve $E(\mathbb{F}_q)$, the goal of this
//~ operation is to perform the operation $2P±T$ efficiently as $(P±T)+P$.
//~
//~ `S = (P + (b ? T : −T)) + P`
//~
//~ The same algorithm can be used to perform other scalar multiplications, meaning it is
//~ not restricted to the case $2\cdot P$, but it can be used for any arbitrary $k\cdot P$. This is done
//~ by decomposing the scalar $k$ into its binary representation.
//~ Moreover, for every step, there will be a one-bit constraint meant to differentiate between addition and subtraction
//~ for the operation $(P±T)+P$:
//~
//~ In particular, the constraints of this gate take care of 4 bits of the scalar within a single EVBSM row.
//~ When the scalar is longer (which will usually be the case), multiple EVBSM rows will be concatenated.
//~
//~ | Row | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Type |
//~ |-------|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
//~ | i | xT | yT | Ø | Ø | xP | yP | n | xR | yR | s1 | s3 | b1 | b2 | b3 | b4 | EVBSM |
//~ | i+1 | = | = | | | xS | yS | n' | xR' | yR' | s1' | s3' | b1' | b2' | b3' | b4' | EVBSM |
//~
//~ The layout of this gate (and the next row) allows for this chained behavior where the output point
//~ of the current row $S$ gets accumulated as one of the inputs of the following row, becoming $P$ in
//~ the next constraints. Similarly, the scalar is decomposed into binary form and $n$ ($n'$ respectively)
//~ will store the current accumulated value and the next one for the check.
//~
//~ For readability, we define the following variables for the constraints:
//~
//~ * `endo` $:=$ `EndoCoefficient`
//~ * `xq1` $:= (1 + ($`endo`$ - 1)\cdot b_1) \cdot x_t$
//~ * `xq2` $:= (1 + ($`endo`$ - 1)\cdot b_3) \cdot x_t$
//~ * `yq1` $:= (2\cdot b_2 - 1) \cdot y_t$
//~ * `yq2` $:= (2\cdot b_4 - 1) \cdot y_t$
//~
//~ These are the 11 constraints that correspond to each EVBSM gate,
//~ which take care of 4 bits of the scalar within a single EVBSM row:
//~
//~ * First block:
//~ * `(xq1 - xp) * s1 = yq1 - yp`
//~ * `(2 * xp – s1^2 + xq1) * ((xp – xr) * s1 + yr + yp) = (xp – xr) * 2 * yp`
//~ * `(yr + yp)^2 = (xp – xr)^2 * (s1^2 – xq1 + xr)`
//~ * Second block:
//~ * `(xq2 - xr) * s3 = yq2 - yr`
//~ * `(2*xr – s3^2 + xq2) * ((xr – xs) * s3 + ys + yr) = (xr – xs) * 2 * yr`
//~ * `(ys + yr)^2 = (xr – xs)^2 * (s3^2 – xq2 + xs)`
//~ * Booleanity checks:
//~ * Bit flag $b_1$: `0 = b1 * (b1 - 1)`
//~ * Bit flag $b_2$: `0 = b2 * (b2 - 1)`
//~ * Bit flag $b_3$: `0 = b3 * (b3 - 1)`
//~ * Bit flag $b_4$: `0 = b4 * (b4 - 1)`
//~ * Binary decomposition:
//~ * Accumulated scalar: `n_next = 16 * n + 8 * b1 + 4 * b2 + 2 * b3 + b4`
//~
//~ The constraints above are derived from the following EC Affine arithmetic equations:
//~
//~ * (1) => $(x_{q_1} - x_p) \cdot s_1 = y_{q_1} - y_p$
//~ * (2&3) => $(x_p – x_r) \cdot s_2 = y_r + y_p$
//~ * (2) => $(2 \cdot x_p + x_{q_1} – s_1^2) \cdot (s_1 + s_2) = 2 \cdot y_p$
//~ * <=> $(2 \cdot x_p – s_1^2 + x_{q_1}) \cdot ((x_p – x_r) \cdot s_1 + y_r + y_p) = (x_p – x_r) \cdot 2 \cdot y_p$
//~ * (3) => $s_1^2 - s_2^2 = x_{q_1} - x_r$
//~ * <=> $(y_r + y_p)^2 = (x_p – x_r)^2 \cdot (s_1^2 – x_{q_1} + x_r)$
//~ *
//~ * (4) => $(x_{q_2} - x_r) \cdot s_3 = y_{q_2} - y_r$
//~ * (5&6) => $(x_r – x_s) \cdot s_4 = y_s + y_r$
//~ * (5) => $(2 \cdot x_r + x_{q_2} – s_3^2) \cdot (s_3 + s_4) = 2 \cdot y_r$
//~ * <=> $(2 \cdot x_r – s_3^2 + x_{q_2}) \cdot ((x_r – x_s) \cdot s_3 + y_s + y_r) = (x_r – x_s) \cdot 2 \cdot y_r$
//~ * (6) => $s_3^2 – s_4^2 = x_{q_2} - x_s$
//~ * <=> $(y_s + y_r)^2 = (x_r – x_s)^2 \cdot (s_3^2 – x_{q_2} + x_s)$
//~
//~ Defining $s_2$ and $s_4$ as
//~
//~ * $s_2 := \frac{2 \cdot y_P}{2 * x_P + x_T - s_1^2} - s_1$
//~ * $s_4 := \frac{2 \cdot y_R}{2 * x_R + x_T - s_3^2} - s_3$
//~
//~ Gives the following equations when substituting the values of $s_2$ and $s_4$:
//~
//~ 1. `(xq1 - xp) * s1 = (2 * b1 - 1) * yt - yp`
//~ 2. `(2 * xp – s1^2 + xq1) * ((xp – xr) * s1 + yr + yp) = (xp – xr) * 2 * yp`
//~ 3. `(yr + yp)^2 = (xp – xr)^2 * (s1^2 – xq1 + xr)`
//~
//~ 4. `(xq2 - xr) * s3 = (2 * b2 - 1) * yt - yr`
//~ 5. `(2 * xr – s3^2 + xq2) * ((xr – xs) * s3 + ys + yr) = (xr – xs) * 2 * yr`
//~ 6. `(ys + yr)^2 = (xr – xs)^2 * (s3^2 – xq2 + xs)`
//~
/// Implementation of group endomorphism optimised
/// variable base scalar multiplication custom Plonk constraints.
impl<F: PrimeField> CircuitGate<F> {
pub fn create_endomul(wires: GateWires) -> Self {
CircuitGate::new(GateType::EndoMul, wires, vec![])
}
/// Verify the `EndoMul` gate.
///
/// # Errors
///
/// Will give error if `self.typ` is not `GateType::EndoMul`, or `constraint evaluation` fails.
pub fn verify_endomul<G: KimchiCurve<ScalarField = F>>(
&self,
row: usize,
witness: &[Vec<F>; COLUMNS],
cs: &ConstraintSystem<F>,
) -> Result<(), String> {
ensure_eq!(self.typ, GateType::EndoMul, "incorrect gate type");
let this: [F; COLUMNS] = std::array::from_fn(|i| witness[i][row]);
let next: [F; COLUMNS] = std::array::from_fn(|i| witness[i][row + 1]);
let pt = F::from(123456u64);
let constants = expr::Constants {
mds: &G::sponge_params().mds,
endo_coefficient: cs.endo,
zk_rows: cs.zk_rows,
};
let challenges = BerkeleyChallenges {
alpha: F::zero(),
beta: F::zero(),
gamma: F::zero(),
joint_combiner: F::zero(),
};
let evals: ProofEvaluations<PointEvaluations<G::ScalarField>> =
ProofEvaluations::dummy_with_witness_evaluations(this, next);
let constraints = EndosclMul::constraints(&mut Cache::default());
for (i, c) in constraints.iter().enumerate() {
match c.evaluate_(cs.domain.d1, pt, &evals, &constants, &challenges) {
Ok(x) => {
if x != F::zero() {
return Err(format!("Bad endo equation {i}"));
}
}
Err(e) => return Err(format!("evaluation failed: {e}")),
}
}
Ok(())
}
pub fn endomul(&self) -> F {
if self.typ == GateType::EndoMul {
F::one()
} else {
F::zero()
}
}
}
/// Implementation of the `EndosclMul` gate.
#[derive(Default)]
pub struct EndosclMul<F>(PhantomData<F>);
impl<F> Argument<F> for EndosclMul<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::EndoMul);
const CONSTRAINTS: u32 = 11;
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
cache: &mut Cache,
) -> Vec<T> {
let b1 = env.witness_curr(11);
let b2 = env.witness_curr(12);
let b3 = env.witness_curr(13);
let b4 = env.witness_curr(14);
let xt = env.witness_curr(0);
let yt = env.witness_curr(1);
let xs = env.witness_next(4);
let ys = env.witness_next(5);
let xp = env.witness_curr(4);
let yp = env.witness_curr(5);
let xr = env.witness_curr(7);
let yr = env.witness_curr(8);
let s1 = env.witness_curr(9);
let s3 = env.witness_curr(10);
let endo_minus_1 = env.endo_coefficient() - T::one();
let xq1 = cache.cache((T::one() + b1.clone() * endo_minus_1.clone()) * xt.clone());
let xq2 = cache.cache((T::one() + b3.clone() * endo_minus_1) * xt);
let yq1 = (b2.double() - T::one()) * yt.clone();
let yq2 = (b4.double() - T::one()) * yt;
let s1_squared = cache.cache(s1.square());
let s3_squared = cache.cache(s3.square());
// n_next = 16*n + 8*b1 + 4*b2 + 2*b3 + b4
let n = env.witness_curr(6);
let n_next = env.witness_next(6);
let n_constraint =
(((n.double() + b1.clone()).double() + b2.clone()).double() + b3.clone()).double()
+ b4.clone()
- n_next;
let xp_xr = cache.cache(xp.clone() - xr.clone());
let xr_xs = cache.cache(xr.clone() - xs.clone());
let ys_yr = cache.cache(ys + yr.clone());
let yr_yp = cache.cache(yr.clone() + yp.clone());
vec![
// verify booleanity of the scalar bits
boolean(&b1),
boolean(&b2),
boolean(&b3),
boolean(&b4),
// (xq1 - xp) * s1 = yq1 - yp
((xq1.clone() - xp.clone()) * s1.clone()) - (yq1 - yp.clone()),
// (2*xp – s1^2 + xq1) * ((xp - xr) * s1 + yr + yp) = (xp - xr) * 2*yp
(((xp.double() - s1_squared.clone()) + xq1.clone())
* ((xp_xr.clone() * s1) + yr_yp.clone()))
- (yp.double() * xp_xr.clone()),
// (yr + yp)^2 = (xp – xr)^2 * (s1^2 – xq1 + xr)
yr_yp.square() - (xp_xr.square() * ((s1_squared - xq1) + xr.clone())),
// (xq2 - xr) * s3 = yq2 - yr
((xq2.clone() - xr.clone()) * s3.clone()) - (yq2 - yr.clone()),
// (2*xr – s3^2 + xq2) * ((xr – xs) * s3 + ys + yr) = (xr - xs) * 2*yr
(((xr.double() - s3_squared.clone()) + xq2.clone())
* ((xr_xs.clone() * s3) + ys_yr.clone()))
- (yr.double() * xr_xs.clone()),
// (ys + yr)^2 = (xr – xs)^2 * (s3^2 – xq2 + xs)
ys_yr.square() - (xr_xs.square() * ((s3_squared - xq2) + xs)),
n_constraint,
]
}
}
/// The result of performing an endoscaling: the accumulated curve point
/// and scalar.
pub struct EndoMulResult<F> {
pub acc: (F, F),
pub n: F,
}
/// Generates the `witness_curr` values for a series of endoscaling constraints.
///
/// # Panics
///
/// Will panic if `bits` length does not match the requirement.
pub fn gen_witness<F: Field + std::fmt::Display>(
w: &mut [Vec<F>; COLUMNS],
row0: usize,
endo: F,
base: (F, F),
bits: &[bool],
acc0: (F, F),
) -> EndoMulResult<F> {
let bits_per_row = 4;
let rows = bits.len() / 4;
assert_eq!(0, bits.len() % 4);
let bits: Vec<_> = bits.iter().map(|x| F::from(u64::from(*x))).collect();
let one = F::one();
let mut acc = acc0;
let mut n_acc = F::zero();
// TODO: Could be more efficient
for i in 0..rows {
let b1 = bits[i * bits_per_row];
let b2 = bits[i * bits_per_row + 1];
let b3 = bits[i * bits_per_row + 2];
let b4 = bits[i * bits_per_row + 3];
let (xt, yt) = base;
let (xp, yp) = acc;
let xq1 = (one + (endo - one) * b1) * xt;
let yq1 = (b2.double() - one) * yt;
let s1 = (yq1 - yp) / (xq1 - xp);
let s1_squared = s1.square();
// (2*xp – s1^2 + xq) * ((xp – xr) * s1 + yr + yp) = (xp – xr) * 2*yp
// => 2 yp / (2*xp – s1^2 + xq) = s1 + (yr + yp) / (xp – xr)
// => 2 yp / (2*xp – s1^2 + xq) - s1 = (yr + yp) / (xp – xr)
//
// s2 := 2 yp / (2*xp – s1^2 + xq) - s1
//
// (yr + yp)^2 = (xp – xr)^2 * (s1^2 – xq1 + xr)
// => (s1^2 – xq1 + xr) = (yr + yp)^2 / (xp – xr)^2
//
// => xr = s2^2 - s1^2 + xq
// => yr = s2 * (xp - xr) - yp
let s2 = yp.double() / (xp.double() + xq1 - s1_squared) - s1;
// (xr, yr)
let xr = xq1 + s2.square() - s1_squared;
let yr = (xp - xr) * s2 - yp;
let xq2 = (one + (endo - one) * b3) * xt;
let yq2 = (b4.double() - one) * yt;
let s3 = (yq2 - yr) / (xq2 - xr);
let s3_squared = s3.square();
let s4 = yr.double() / (xr.double() + xq2 - s3_squared) - s3;
let xs = xq2 + s4.square() - s3_squared;
let ys = (xr - xs) * s4 - yr;
let row = i + row0;
w[0][row] = base.0;
w[1][row] = base.1;
w[4][row] = xp;
w[5][row] = yp;
w[6][row] = n_acc;
w[7][row] = xr;
w[8][row] = yr;
w[9][row] = s1;
w[10][row] = s3;
w[11][row] = b1;
w[12][row] = b2;
w[13][row] = b3;
w[14][row] = b4;
acc = (xs, ys);
n_acc.double_in_place();
n_acc += b1;
n_acc.double_in_place();
n_acc += b2;
n_acc.double_in_place();
n_acc += b3;
n_acc.double_in_place();
n_acc += b4;
}
w[4][row0 + rows] = acc.0;
w[5][row0 + rows] = acc.1;
w[6][row0 + rows] = n_acc;
EndoMulResult { acc, n: n_acc }
}