1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
//! Implementation of the `EndomulScalar` gate for the endomul scalar multiplication.
//! This gate checks 8 rounds of the Algorithm 2 in the [Halo paper](https://eprint.iacr.org/2019/1021.pdf) per row.
use crate::{
circuits::{
argument::{Argument, ArgumentEnv, ArgumentType},
berkeley_columns::BerkeleyChallengeTerm,
constraints::ConstraintSystem,
expr::{constraints::ExprOps, Cache},
gate::{CircuitGate, GateType},
wires::COLUMNS,
},
curve::KimchiCurve,
};
use ark_ff::{BitIteratorLE, Field, PrimeField};
use std::{array, marker::PhantomData};
impl<F: PrimeField> CircuitGate<F> {
/// Verify the `EndoMulscalar` gate.
///
/// # Errors
///
/// Will give error if `self.typ` is not `GateType::EndoMulScalar`, or there are errors in gate values.
pub fn verify_endomul_scalar<G: KimchiCurve<ScalarField = F>>(
&self,
row: usize,
witness: &[Vec<F>; COLUMNS],
_cs: &ConstraintSystem<F>,
) -> Result<(), String> {
ensure_eq!(self.typ, GateType::EndoMulScalar, "incorrect gate type");
let n0 = witness[0][row];
let n8 = witness[1][row];
let a0 = witness[2][row];
let b0 = witness[3][row];
let a8 = witness[4][row];
let b8 = witness[5][row];
let xs: [_; 8] = array::from_fn(|i| witness[6 + i][row]);
let n8_expected = xs.iter().fold(n0, |acc, x| acc.double().double() + x);
let a8_expected = xs.iter().fold(a0, |acc, x| acc.double() + c_func(*x));
let b8_expected = xs.iter().fold(b0, |acc, x| acc.double() + d_func(*x));
ensure_eq!(a8, a8_expected, "a8 incorrect");
ensure_eq!(b8, b8_expected, "b8 incorrect");
ensure_eq!(n8, n8_expected, "n8 incorrect");
Ok(())
}
}
fn polynomial<F: Field, T: ExprOps<F, BerkeleyChallengeTerm>>(coeffs: &[F], x: &T) -> T {
coeffs
.iter()
.rev()
.fold(T::zero(), |acc, c| acc * x.clone() + T::literal(*c))
}
//~ We give constraints for the endomul scalar computation.
//~
//~ Each row corresponds to 8 iterations of the inner loop in "Algorithm 2" on page 29 of
//~ [the Halo paper](https://eprint.iacr.org/2019/1021.pdf).
//~
//~ The state of the algorithm that's updated across iterations of the loop is `(a, b)`.
//~ It's clear from that description of the algorithm that an iteration of the loop can
//~ be written as
//~
//~ ```ignore
//~ (a, b, i) ->
//~ ( 2 * a + c_func(r_{2 * i}, r_{2 * i + 1}),
//~ 2 * b + d_func(r_{2 * i}, r_{2 * i + 1}) )
//~ ```
//~
//~ for some functions `c_func` and `d_func`. If one works out what these functions are on
//~ every input (thinking of a two-bit input as a number in $\{0, 1, 2, 3\}$), one finds they
//~ are given by
//~
//~ * `c_func(x)`, defined by
//~~ * `c_func(0) = 0`
//~~ * `c_func(1) = 0`
//~~ * `c_func(2) = -1`
//~~ * `c_func(3) = 1`
//~
//~ * `d_func(x)`, defined by
//~~ * `d_func(0) = -1`
//~~ * `d_func(1) = 1`
//~~ * `d_func(2) = 0`
//~~ * `d_func(3) = 0`
//~
//~ One can then interpolate to find polynomials that implement these functions on $\{0, 1, 2, 3\}$.
//~
//~ You can use [`sage`](https://www.sagemath.org/), as
//~
//~ ```ignore
//~ R = PolynomialRing(QQ, 'x')
//~ c_func = R.lagrange_polynomial([(0, 0), (1, 0), (2, -1), (3, 1)])
//~ d_func = R.lagrange_polynomial([(0, -1), (1, 1), (2, 0), (3, 0)])
//~ ```
//~
//~ Then, `c_func` is given by
//~
//~ ```ignore
//~ 2/3 * x^3 - 5/2 * x^2 + 11/6 * x
//~ ```
//~
//~ and `d_func` is given by
//~
//~ ```ignore
//~ 2/3 * x^3 - 7/2 * x^2 + 29/6 * x - 1 <=> c_func + (-x^2 + 3x - 1)
//~ ```
//~
//~ We lay it out the witness as
//~
//~ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Type |
//~ |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|
//~ | n0 | n8 | a0 | b0 | a8 | b8 | x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | | ENDO |
//~
//~ where each `xi` is a two-bit "crumb".
//~
//~ We also use a polynomial to check that each `xi` is indeed in $\{0, 1, 2, 3\}$,
//~ which can be done by checking that each $x_i$ is a root of the polyunomial below:
//~
//~ ```ignore
//~ crumb(x)
//~ = x (x - 1) (x - 2) (x - 3)
//~ = x^4 - 6*x^3 + 11*x^2 - 6*x
//~ = x *(x^3 - 6*x^2 + 11*x - 6)
//~ ```
//~
//~ Each iteration performs the following computations
//~
//~ * Update $n$: $\quad n_{i+1} = 2 \cdot n_{i} + x_i$
//~ * Update $a$: $\quad a_{i+1} = 2 \cdot a_{i} + c_i$
//~ * Update $b$: $\quad b_{i+1} = 2 \cdot b_{i} + d_i$
//~
//~ Then, after the 8 iterations, we compute expected values of the above operations as:
//~
//~ * `expected_n8 := 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * (2 * n0 + x0) + x1 ) + x2 ) + x3 ) + x4 ) + x5 ) + x6 ) + x7`
//~ * `expected_a8 := 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * (2 * a0 + c0) + c1 ) + c2 ) + c3 ) + c4 ) + c5 ) + c6 ) + c7`
//~ * `expected_b8 := 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * (2 * b0 + d0) + d1 ) + d2 ) + d3 ) + d4 ) + d5 ) + d6 ) + d7`
//~
//~ Putting together all of the above, these are the 11 constraints for this gate
//~
//~ * Checking values after the 8 iterations:
//~ * Constrain $n$: `0 = expected_n8 - n8`
//~ * Constrain $a$: `0 = expected_a8 - a8`
//~ * Constrain $b$: `0 = expected_b8 - b8`
//~ * Checking the crumbs, meaning each $x$ is indeed in the range $\{0, 1, 2, 3\}$:
//~ * Constrain $x_0$: `0 = x0 * ( x0^3 - 6 * x0^2 + 11 * x0 - 6 )`
//~ * Constrain $x_1$: `0 = x1 * ( x1^3 - 6 * x1^2 + 11 * x1 - 6 )`
//~ * Constrain $x_2$: `0 = x2 * ( x2^3 - 6 * x2^2 + 11 * x2 - 6 )`
//~ * Constrain $x_3$: `0 = x3 * ( x3^3 - 6 * x3^2 + 11 * x3 - 6 )`
//~ * Constrain $x_4$: `0 = x4 * ( x4^3 - 6 * x4^2 + 11 * x4 - 6 )`
//~ * Constrain $x_5$: `0 = x5 * ( x5^3 - 6 * x5^2 + 11 * x5 - 6 )`
//~ * Constrain $x_6$: `0 = x6 * ( x6^3 - 6 * x6^2 + 11 * x6 - 6 )`
//~ * Constrain $x_7$: `0 = x7 * ( x7^3 - 6 * x7^2 + 11 * x7 - 6 )`
//~
#[derive(Default)]
pub struct EndomulScalar<F>(PhantomData<F>);
impl<F> Argument<F> for EndomulScalar<F>
where
F: PrimeField,
{
const ARGUMENT_TYPE: ArgumentType = ArgumentType::Gate(GateType::EndoMulScalar);
const CONSTRAINTS: u32 = 11;
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
cache: &mut Cache,
) -> Vec<T> {
let n0 = env.witness_curr(0);
let n8 = env.witness_curr(1);
let a0 = env.witness_curr(2);
let b0 = env.witness_curr(3);
let a8 = env.witness_curr(4);
let b8 = env.witness_curr(5);
// x0..x7
let xs: [_; 8] = array::from_fn(|i| env.witness_curr(6 + i));
let c_coeffs = [
F::zero(),
F::from(11u64) / F::from(6u64),
-F::from(5u64) / F::from(2u64),
F::from(2u64) / F::from(3u64),
];
let crumb_over_x_coeffs = [-F::from(6u64), F::from(11u64), -F::from(6u64), F::one()];
let crumb = |x: &T| polynomial(&crumb_over_x_coeffs[..], x) * x.clone();
let d_minus_c_coeffs = [-F::one(), F::from(3u64), -F::one()];
let c_funcs: [_; 8] = array::from_fn(|i| cache.cache(polynomial(&c_coeffs[..], &xs[i])));
let d_funcs: [_; 8] =
array::from_fn(|i| c_funcs[i].clone() + polynomial(&d_minus_c_coeffs[..], &xs[i]));
let n8_expected = xs
.iter()
.fold(n0, |acc, x| acc.double().double() + x.clone());
// This is iterating
//
// a = 2 a + c
// b = 2 b + d
//
// as in the paper.
let a8_expected = c_funcs.iter().fold(a0, |acc, c| acc.double() + c.clone());
let b8_expected = d_funcs.iter().fold(b0, |acc, d| acc.double() + d.clone());
let mut constraints = vec![n8_expected - n8, a8_expected - a8, b8_expected - b8];
constraints.extend(xs.iter().map(crumb));
constraints
}
}
/// Generate the `witness`
///
/// # Panics
///
/// Will panic if `num_bits` length is not multiple of `bits_per_row` length.
pub fn gen_witness<F: PrimeField + std::fmt::Display>(
witness_cols: &mut [Vec<F>; COLUMNS],
scalar: F,
endo_scalar: F,
num_bits: usize,
) -> F {
let crumbs_per_row = 8;
let bits_per_row = 2 * crumbs_per_row;
assert_eq!(num_bits % bits_per_row, 0);
let bits_lsb: Vec<_> = BitIteratorLE::new(scalar.into_bigint())
.take(num_bits)
.collect();
let bits_msb: Vec<_> = bits_lsb.iter().rev().collect();
let mut a = F::from(2u64);
let mut b = F::from(2u64);
let mut n = F::zero();
let one = F::one();
let neg_one = -one;
for row_bits in bits_msb[..].chunks(bits_per_row) {
witness_cols[0].push(n);
witness_cols[2].push(a);
witness_cols[3].push(b);
for (j, crumb_bits) in row_bits.chunks(2).enumerate() {
let b0 = *crumb_bits[1];
let b1 = *crumb_bits[0];
let crumb = F::from(u64::from(b0)) + F::from(u64::from(b1)).double();
witness_cols[6 + j].push(crumb);
a.double_in_place();
b.double_in_place();
let s = if b0 { &one } else { &neg_one };
let a_prev = a;
if b1 {
a += s;
} else {
b += s;
}
assert_eq!(a, a_prev + c_func(crumb));
n.double_in_place().double_in_place();
n += crumb;
}
witness_cols[1].push(n);
witness_cols[4].push(a);
witness_cols[5].push(b);
witness_cols[14].push(F::zero()); // unused
}
assert_eq!(scalar, n);
a * endo_scalar + b
}
fn c_func<F: Field>(x: F) -> F {
let zero = F::zero();
let one = F::one();
let two = F::from(2u64);
let three = F::from(3u64);
match x {
x if x.is_zero() => zero,
x if x == one => zero,
x if x == two => -one,
x if x == three => one,
_ => panic!("c_func"),
}
}
fn d_func<F: Field>(x: F) -> F {
let zero = F::zero();
let one = F::one();
let two = F::from(2u64);
let three = F::from(3u64);
match x {
x if x.is_zero() => -one,
x if x == one => one,
x if x == two => zero,
x if x == three => zero,
_ => panic!("d_func"),
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ff::{BigInteger, Field, One, PrimeField, Zero};
use mina_curves::pasta::Fp as F;
/// 2/3*x^3 - 5/2*x^2 + 11/6*x
fn c_poly<F: Field>(x: F) -> F {
let x2 = x.square();
let x3 = x * x2;
(F::from(2u64) / F::from(3u64)) * x3 - (F::from(5u64) / F::from(2u64)) * x2
+ (F::from(11u64) / F::from(6u64)) * x
}
/// -x^2 + 3x - 1
fn d_minus_c_poly<F: Field>(x: F) -> F {
let x2 = x.square();
-F::one() * x2 + F::from(3u64) * x - F::one()
}
// Test equivalence of the "c function" in its lookup table,
// logical, and polynomial forms.
#[test]
fn c_func_test() {
let f1 = c_func;
let f2 = |x: F| -> F {
let bits_le = x.into_bigint().to_bits_le();
let b0 = bits_le[0];
let b1 = bits_le[1];
if b1 {
if b0 {
F::one()
} else {
-F::one()
}
} else {
F::zero()
}
};
for x in 0u64..4u64 {
let x = F::from(x);
let y1 = f1(x);
let y2 = f2(x);
let y3 = c_poly(x);
assert_eq!(y1, y2);
assert_eq!(y2, y3);
}
}
// Test equivalence of the "b function" in its lookup table,
// logical, and polynomial forms.
#[test]
fn d_func_test() {
let f1 = d_func;
let f2 = |x: F| -> F {
let bits_le = x.into_bigint().to_bits_le();
let b0 = bits_le[0];
let b1 = bits_le[1];
if !b1 {
if b0 {
F::one()
} else {
-F::one()
}
} else {
F::zero()
}
};
for x in 0u64..4u64 {
let x = F::from(x);
let y1 = f1(x);
let y2 = f2(x);
let y3 = c_poly(x) + d_minus_c_poly(x);
assert_eq!(y1, y2);
assert_eq!(y2, y3);
}
}
}