1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
use ark_ff::{FftField, One, Zero};
use poly_commitment::PolyComm;
use serde::{Deserialize, Serialize};
pub mod range_check;
pub mod xor;
// If you add new tables, update ../../../../../book/src/kimchi/lookup.md
// accordingly
//~ spec:startcode
/// The table ID associated with the XOR lookup table.
pub const XOR_TABLE_ID: i32 = 0;
/// The range check table ID.
pub const RANGE_CHECK_TABLE_ID: i32 = 1;
//~ spec:endcode
/// Enumerates the different 'fixed' lookup tables used by individual gates
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum GateLookupTable {
Xor,
RangeCheck,
}
/// Enumerates the different 'fixed' lookup tables used by individual gates
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct GateLookupTables {
pub xor: bool,
pub range_check: bool,
}
impl std::ops::Index<GateLookupTable> for GateLookupTables {
type Output = bool;
fn index(&self, index: GateLookupTable) -> &Self::Output {
match index {
GateLookupTable::Xor => &self.xor,
GateLookupTable::RangeCheck => &self.range_check,
}
}
}
impl std::ops::IndexMut<GateLookupTable> for GateLookupTables {
fn index_mut(&mut self, index: GateLookupTable) -> &mut Self::Output {
match index {
GateLookupTable::Xor => &mut self.xor,
GateLookupTable::RangeCheck => &mut self.range_check,
}
}
}
impl IntoIterator for GateLookupTables {
type Item = GateLookupTable;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
// Destructor pattern to make sure we add new lookup patterns.
let GateLookupTables { xor, range_check } = self;
let mut patterns = Vec::with_capacity(2);
if xor {
patterns.push(GateLookupTable::Xor)
}
if range_check {
patterns.push(GateLookupTable::RangeCheck)
}
patterns.into_iter()
}
}
/// A table of values that can be used for a lookup, along with the ID for the table.
#[derive(Debug, Clone)]
pub struct LookupTable<F> {
pub id: i32,
pub data: Vec<Vec<F>>,
}
impl<F> LookupTable<F>
where
F: FftField,
{
/// Return true if the table has an entry (row) containing all zeros.
pub fn has_zero_entry(&self) -> bool {
// reminder: a table is written as a list of columns,
// not as a list of row entries.
for row in 0..self.len() {
if self.data.iter().all(|col| col[row].is_zero()) {
return true;
}
}
false
}
/// Returns the number of columns, i.e. the width of the table.
/// It is less error prone to introduce this method than using the public
/// field data.
pub fn width(&self) -> usize {
self.data.len()
}
/// Returns the length of the table.
pub fn len(&self) -> usize {
self.data[0].len()
}
/// Returns `true` if the lookup table is empty, `false` otherwise.
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
}
/// Returns the lookup table associated to a [`GateLookupTable`].
pub fn get_table<F: FftField>(table_name: GateLookupTable) -> LookupTable<F> {
match table_name {
GateLookupTable::Xor => xor::xor_table(),
GateLookupTable::RangeCheck => range_check::range_check_table(),
}
}
impl GateLookupTable {
/// Returns the lookup table associated to a [`GateLookupTable`].
pub fn table_size(&self) -> usize {
match self {
GateLookupTable::Xor => xor::TABLE_SIZE,
GateLookupTable::RangeCheck => range_check::TABLE_SIZE,
}
}
}
/// Let's say we want to do a lookup in a "vector-valued" table `T: Vec<[F; n]>` (here I
/// am using `[F; n]` to model a vector of length `n`).
///
/// For `i < n`, define `T_i := T.map(|t| t[i]).collect()`. In other words, the table
/// obtained by taking the `ith` entry of each element of `T`.
///
/// In the lookup argument, we perform lookups in `T` by sampling a random challenge
/// `joint_combiner`, and computing a "combined" lookup table `sum_{i < n} joint_combiner^i T_i`.
///
/// To check a vector's membership in this lookup table, we combine the values in that vector
/// analogously using `joint_combiner`.
///
/// This function computes that combined value.
pub fn combine_table_entry<'a, F, I>(
joint_combiner: &F,
table_id_combiner: &F,
v: I,
// TODO: this should be an option?
table_id: &F,
) -> F
where
F: 'a, // Any references in `F` must have a lifetime longer than `'a`.
F: Zero + One + Clone,
I: DoubleEndedIterator<Item = &'a F>,
{
v.rev()
.fold(F::zero(), |acc, x| joint_combiner.clone() * acc + x.clone())
+ table_id_combiner.clone() * table_id.clone()
}
/// Same as [`combine_table_entry`], but for an entire table.
/// The function will panic if given an empty table (0 columns).
///
/// # Panics
///
/// Will panic if `columns` is empty.
pub fn combine_table<G>(
columns: &[&PolyComm<G>],
column_combiner: G::ScalarField,
table_id_combiner: G::ScalarField,
table_id_vector: Option<&PolyComm<G>>,
runtime_vector: Option<&PolyComm<G>>,
) -> PolyComm<G>
where
G: poly_commitment::commitment::CommitmentCurve,
{
assert!(!columns.is_empty());
// combine the columns
let mut j = G::ScalarField::one();
let mut scalars = vec![j];
let mut commitments = vec![columns[0]];
for comm in columns.iter().skip(1) {
j *= column_combiner;
scalars.push(j);
commitments.push(comm);
}
// combine the table id
if let Some(table_id) = table_id_vector {
scalars.push(table_id_combiner);
commitments.push(table_id);
}
// combine the runtime vector
if let Some(runtime) = runtime_vector {
scalars.push(column_combiner); // 2nd column idx is j^1
commitments.push(runtime);
}
PolyComm::multi_scalar_mul(&commitments, &scalars)
}
#[cfg(feature = "ocaml_types")]
pub mod caml {
use ark_ff::PrimeField;
use ocaml;
use ocaml_gen;
use super::LookupTable;
//
// CamlLookupTable<CamlF>
//
#[derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)]
pub struct CamlLookupTable<CamlF> {
pub id: i32,
pub data: Vec<Vec<CamlF>>,
}
impl<F, CamlF> From<CamlLookupTable<CamlF>> for LookupTable<F>
where
F: PrimeField,
CamlF: Into<F>,
{
fn from(caml_lt: CamlLookupTable<CamlF>) -> Self {
Self {
id: caml_lt.id,
data: caml_lt
.data
.into_iter()
.map(|t| t.into_iter().map(Into::into).collect())
.collect(),
}
}
}
impl<F, CamlF> From<LookupTable<F>> for CamlLookupTable<CamlF>
where
F: PrimeField,
CamlF: From<F>,
{
fn from(lt: LookupTable<F>) -> Self {
Self {
id: lt.id,
data: lt
.data
.into_iter()
.map(|t| t.into_iter().map(Into::into).collect())
.collect(),
}
}
}
}