1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
use crate::{
circuits::{
berkeley_columns::{BerkeleyChallengeTerm, Column},
expr::{prologue::*, ConstantExpr, ConstantTerm, ExprInner, RowOffset},
gate::{CircuitGate, CurrOrNext},
lookup::lookups::{
JointLookup, JointLookupSpec, JointLookupValue, LocalPosition, LookupInfo,
},
wires::COLUMNS,
},
error::ProverError,
};
use ark_ff::{FftField, One, PrimeField, Zero};
use ark_poly::{EvaluationDomain, Evaluations, Radix2EvaluationDomain as D};
use o1_utils::adjacent_pairs::AdjacentPairs;
use rand::Rng;
use serde::{Deserialize, Serialize};
use serde_with::serde_as;
use std::collections::HashMap;
use CurrOrNext::{Curr, Next};
use super::runtime_tables;
/// Number of constraints produced by the argument.
pub const CONSTRAINTS: u32 = 7;
/// Pad with zeroes and then add 3 random elements in the last two
/// rows for zero knowledge.
///
/// # Panics
///
/// Will panic if `evaluation` and `domain` length do not meet the requirement.
pub fn zk_patch<R: Rng + ?Sized, F: FftField>(
mut e: Vec<F>,
d: D<F>,
zk_rows: usize,
rng: &mut R,
) -> Evaluations<F, D<F>> {
let n = d.size();
let k = e.len();
let last_non_zk_row = n - zk_rows;
assert!(k <= last_non_zk_row);
e.extend((k..last_non_zk_row).map(|_| F::zero()));
e.extend((0..zk_rows).map(|_| F::rand(rng)));
Evaluations::<F, D<F>>::from_vec_and_domain(e, d)
}
//~ Because of our ZK-rows, we can't do the trick in the plookup paper of
//~ wrapping around to enforce consistency between the sorted lookup columns.
//~
//~ Instead, we arrange the LookupSorted table into columns in a snake-shape.
//~
//~ Like so,
//~
//~ ```text
//~ _ _
//~ | | | | |
//~ | | | | |
//~ |_| |_| |
//~ ```
//~
//~ or, imagining the full sorted array is `[ s0, ..., s8 ]`, like
//~
//~ ```text
//~ s0 s4 s4 s8
//~ s1 s3 s5 s7
//~ s2 s2 s6 s6
//~ ```
//~
//~ So the direction ("increasing" or "decreasing" (relative to LookupTable) is
//~
//~ ```rs
//~ if i % 2 = 0 { Increasing } else { Decreasing }
//~ ```
//~
//~ Then, for each `i < max_lookups_per_row`, if `i % 2 = 0`, we enforce that the
//~ last element of `LookupSorted(i) = last element of LookupSorted(i + 1)`,
//~ and if `i % 2 = 1`, we enforce that
//~ the first element of `LookupSorted(i) = first element of LookupSorted(i + 1)`.
/// Computes the sorted lookup tables required by the lookup argument.
///
/// # Panics
///
/// Will panic if `value(s)` are missing from the `table`.
#[allow(clippy::too_many_arguments)]
pub fn sorted<F: PrimeField>(
dummy_lookup_value: F,
joint_lookup_table_d8: &Evaluations<F, D<F>>,
d1: D<F>,
gates: &[CircuitGate<F>],
witness: &[Vec<F>; COLUMNS],
joint_combiner: F,
table_id_combiner: F,
lookup_info: &LookupInfo,
zk_rows: usize,
) -> Result<Vec<Vec<F>>, ProverError> {
// We pad the lookups so that it is as if we lookup exactly
// `max_lookups_per_row` in every row.
let n = d1.size();
let mut counts: HashMap<&F, usize> = HashMap::new();
let lookup_rows = n - zk_rows - 1;
let by_row = lookup_info.by_row(gates);
let max_lookups_per_row = lookup_info.max_per_row;
for t in joint_lookup_table_d8
.evals
.iter()
.step_by(8)
.take(lookup_rows)
{
// Don't multiply-count duplicate values in the table, or they'll be duplicated for each
// duplicate!
// E.g. A value duplicated in the table 3 times would be entered into the sorted array 3
// times at its first occurrence, then a further 2 times as each duplicate is encountered.
counts.entry(t).or_insert(1);
}
// TODO: shouldn't we make sure that lookup rows is the same as the number of active gates in the circuit as well? danger: What if we have gates that use lookup but are not counted here?
for (i, row) in by_row
.iter()
.enumerate()
// avoid zk rows
.take(lookup_rows)
{
let spec = row;
let padding = max_lookups_per_row - spec.len();
for joint_lookup in spec.iter() {
let eval = |pos: LocalPosition| -> F {
let row = match pos.row {
Curr => i,
Next => i + 1,
};
witness[pos.column][row]
};
let joint_lookup_evaluation =
joint_lookup.evaluate(&joint_combiner, &table_id_combiner, &eval);
match counts.get_mut(&joint_lookup_evaluation) {
None => return Err(ProverError::ValueNotInTable(i)),
Some(count) => *count += 1,
}
}
*counts.entry(&dummy_lookup_value).or_insert(0) += padding;
}
let sorted = {
let mut sorted: Vec<Vec<F>> =
vec![Vec::with_capacity(lookup_rows + 1); max_lookups_per_row + 1];
let mut i = 0;
for t in joint_lookup_table_d8
.evals
.iter()
.step_by(8)
// avoid zk rows
.take(lookup_rows)
{
let t_count = match counts.get_mut(&t) {
None => panic!("Value has disappeared from count table"),
Some(x) => {
let res = *x;
// Reset the count, any duplicate values should only appear once from now on.
*x = 1;
res
}
};
for j in 0..t_count {
let idx = i + j;
let col = idx / lookup_rows;
sorted[col].push(*t);
}
i += t_count;
}
for i in 0..max_lookups_per_row {
let end_val = sorted[i + 1][0];
sorted[i].push(end_val);
}
// Duplicate the final sorted value, to fix the off-by-one in the last lookup row.
// This is caused by the snakification: all other sorted columns have the value from the
// next column added to their end, but the final sorted column has no subsequent column to
// pull this value from.
let final_sorted_col = &mut sorted[max_lookups_per_row];
final_sorted_col.push(final_sorted_col[final_sorted_col.len() - 1]);
// snake-ify (see top comment)
for s in sorted.iter_mut().skip(1).step_by(2) {
s.reverse();
}
sorted
};
Ok(sorted)
}
/// Computes the aggregation polynomial for maximum n lookups per row, whose kth entry is the product of terms
///
/// (gamma(1 + beta) + t_i + beta t_{i+1}) \prod_{0 <= j < n} ( (1 + beta) (gamma + f_{i,j}) )
/// -------------------------------------------------------------------------------------------
/// \prod_{0 <= j < n+1} (gamma(1 + beta) + s_{i,j} + beta s_{i+1,j})
///
/// for i < k.
///
/// t_i is the ith entry in the table, f_{i, j} is the jth lookup in the ith row of the witness
///
/// for every instance of a value in t_i and f_{i,j}, there is an instance of the same value in s_{i,j}
/// s_{i,j} is sorted in the same order as t_i, increasing along the 'snake-shape'
///
/// whenever the same value is in s_{i,j} and s_{i+1,j}, that term in the denominator product becomes
/// (1 + beta) (gamma + s_{i,j})
/// this will cancel with the corresponding looked-up value in the witness (1 + beta) (gamma + f_{i,j})
///
/// whenever the values s_{i,j} and s_{i+1,j} differ, that term in the denominator product will cancel with some matching
/// (gamma(1 + beta) + t_{i'} + beta t_{i'+1})
/// because the sorting is the same in s and t.
/// there will be exactly the same number of these as the number of values in t if f only contains values from t.
///
/// after multiplying all of the values, all of the terms will have cancelled if s is a sorting of f and t, and the final term will be 1
/// because of the random choice of beta and gamma, there is negligible probability that the terms will cancel if s is not a sorting of f and t
///
/// # Panics
///
/// Will panic if final evaluation is not 1.
#[allow(clippy::too_many_arguments)]
pub fn aggregation<R, F>(
dummy_lookup_value: F,
joint_lookup_table_d8: &Evaluations<F, D<F>>,
d1: D<F>,
gates: &[CircuitGate<F>],
witness: &[Vec<F>; COLUMNS],
joint_combiner: &F,
table_id_combiner: &F,
beta: F,
gamma: F,
sorted: &[Evaluations<F, D<F>>],
rng: &mut R,
lookup_info: &LookupInfo,
zk_rows: usize,
) -> Result<Evaluations<F, D<F>>, ProverError>
where
R: Rng + ?Sized,
F: PrimeField,
{
let n = d1.size();
let lookup_rows = n - zk_rows - 1;
let beta1: F = F::one() + beta;
let gammabeta1 = gamma * beta1;
let mut lookup_aggreg = vec![F::one()];
lookup_aggreg.extend((0..lookup_rows).map(|row| {
sorted
.iter()
.enumerate()
.map(|(i, s)| {
// Snake pattern: even chunks of s are direct
// while the odd ones are reversed
let (i1, i2) = if i % 2 == 0 {
(row, row + 1)
} else {
(row + 1, row)
};
gammabeta1 + s[i1] + beta * s[i2]
})
.fold(F::one(), |acc, x| acc * x)
}));
ark_ff::fields::batch_inversion::<F>(&mut lookup_aggreg[1..]);
let max_lookups_per_row = lookup_info.max_per_row;
let complements_with_beta_term = {
let mut v = vec![F::one()];
let x = gamma + dummy_lookup_value;
for i in 1..=max_lookups_per_row {
v.push(v[i - 1] * x);
}
let beta1_per_row = beta1.pow([max_lookups_per_row as u64]);
v.iter_mut().for_each(|x| *x *= beta1_per_row);
v
};
AdjacentPairs::from(joint_lookup_table_d8.evals.iter().step_by(8))
.take(lookup_rows)
.zip(lookup_info.by_row(gates))
.enumerate()
.for_each(|(i, ((t0, t1), spec))| {
let f_chunk = {
let eval = |pos: LocalPosition| -> F {
let row = match pos.row {
Curr => i,
Next => i + 1,
};
witness[pos.column][row]
};
let padding = complements_with_beta_term[max_lookups_per_row - spec.len()];
// This recomputes `joint_lookup.evaluate` on all the rows, which
// is also computed in `sorted`. It should pretty cheap relative to
// the whole cost of the prover, and saves us
// `max_lookups_per_row (=4) * n` field elements of
// memory.
spec.iter().fold(padding, |acc, j| {
acc * (gamma + j.evaluate(joint_combiner, table_id_combiner, &eval))
})
};
// At this point, lookup_aggreg[i + 1] contains 1/s_chunk
// f_chunk / s_chunk
lookup_aggreg[i + 1] *= f_chunk;
// f_chunk * t_chunk / s_chunk
lookup_aggreg[i + 1] *= gammabeta1 + t0 + beta * t1;
let prev = lookup_aggreg[i];
// prev * f_chunk * t_chunk / s_chunk
lookup_aggreg[i + 1] *= prev;
});
let res = zk_patch(lookup_aggreg, d1, zk_rows, rng);
// check that the final evaluation is equal to 1
if cfg!(debug_assertions) {
let final_val = res.evals[d1.size() - (zk_rows + 1)];
if final_val != F::one() {
panic!("aggregation incorrect: {final_val}");
}
}
Ok(res)
}
/// Configuration for the lookup constraint.
/// These values are independent of the choice of lookup values.
// TODO: move to lookup::index
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
#[serde(bound = "F: ark_serialize::CanonicalSerialize + ark_serialize::CanonicalDeserialize")]
pub struct LookupConfiguration<F> {
/// Information about the specific lookups used
pub lookup_info: LookupInfo,
/// A placeholder value that is known to appear in the lookup table.
/// This is used to pad the lookups to `max_lookups_per_row` when fewer lookups are used in a
/// particular row, so that we can treat each row uniformly as having the same number of
/// lookups.
#[serde_as(as = "JointLookupValue<o1_utils::serialization::SerdeAs>")]
pub dummy_lookup: JointLookupValue<F>,
}
impl<F: Zero> LookupConfiguration<F> {
pub fn new(lookup_info: LookupInfo) -> LookupConfiguration<F> {
// For computational efficiency, we choose the dummy lookup value to be all 0s in table 0.
let dummy_lookup = JointLookup {
entry: vec![],
table_id: F::zero(),
};
LookupConfiguration {
lookup_info,
dummy_lookup,
}
}
}
/// Specifies the lookup constraints as expressions.
///
/// # Panics
///
/// Will panic if single `element` length is bigger than `max_per_row` length.
pub fn constraints<F: FftField>(
configuration: &LookupConfiguration<F>,
generate_feature_flags: bool,
) -> Vec<E<F>> {
// Something important to keep in mind is that the last 2 rows of
// all columns will have random values in them to maintain zero-knowledge.
//
// Another important thing to note is that there are no lookups permitted
// in the 3rd to last row.
//
// This is because computing the lookup-product requires
// num_lookup_rows + 1
// rows, so we need to have
// num_lookup_rows + 1 = n - 2 (the last 2 being reserved for the zero-knowledge random
// values) and thus
//
// num_lookup_rows = n - 3
let lookup_info = &configuration.lookup_info;
let column = |col: Column| E::cell(col, Curr);
// gamma * (beta + 1)
let gammabeta1 = E::<F>::from(
ConstantExpr::from(BerkeleyChallengeTerm::Gamma)
* (ConstantExpr::from(BerkeleyChallengeTerm::Beta) + ConstantExpr::one()),
);
// the numerator part in the multiset check of plookup
let numerator = {
// to toggle dummy queries when we do not have any lookups in a row
// (1 minus the sum of the lookup selectors)
let non_lookup_indicator = {
let lookup_indicator = lookup_info
.features
.patterns
.into_iter()
.map(|spec| {
let mut term = column(Column::LookupKindIndex(spec));
if generate_feature_flags {
term = E::IfFeature(
FeatureFlag::LookupPattern(spec),
Box::new(term),
Box::new(E::zero()),
)
}
term
})
.fold(E::zero(), |acc: E<F>, x| acc + x);
E::one() - lookup_indicator
};
let joint_combiner = E::from(BerkeleyChallengeTerm::JointCombiner);
let table_id_combiner =
// Compute `joint_combiner.pow(lookup_info.max_joint_size)`, injecting feature flags if
// needed.
(1..lookup_info.max_joint_size).fold(joint_combiner.clone(), |acc, i| {
let mut new_term = joint_combiner.clone();
if generate_feature_flags {
new_term = E::IfFeature(
FeatureFlag::TableWidth((i + 1) as isize),
Box::new(new_term),
Box::new(E::one()),
);
}
acc * new_term
});
// combine the columns of the dummy lookup row
let dummy_lookup = {
let expr_dummy: JointLookupValue<E<F>> = JointLookup {
entry: configuration
.dummy_lookup
.entry
.iter()
.map(|x| ConstantTerm::Literal(*x).into())
.collect(),
table_id: ConstantTerm::Literal(configuration.dummy_lookup.table_id).into(),
};
expr_dummy.evaluate(&joint_combiner, &table_id_combiner)
};
// (1 + beta)^max_per_row
let beta1_per_row: E<F> = {
let beta1 = E::from(ConstantExpr::one() + BerkeleyChallengeTerm::Beta.into());
// Compute beta1.pow(lookup_info.max_per_row)
let mut res = beta1.clone();
for i in 1..lookup_info.max_per_row {
let mut beta1_used = beta1.clone();
if generate_feature_flags {
beta1_used = E::IfFeature(
FeatureFlag::LookupsPerRow((i + 1) as isize),
Box::new(beta1_used),
Box::new(E::one()),
);
}
res *= beta1_used;
}
res
};
// pre-compute the padding dummies we can use depending on the number of lookups to the `max_per_row` lookups
// each value is also multiplied with (1 + beta)^max_per_row
// as we need to multiply the denominator with this eventually
let dummy_padding = |spec_len| {
let mut res = E::one();
let dummy: E<_> = E::from(BerkeleyChallengeTerm::Gamma) + dummy_lookup.clone();
for i in spec_len..lookup_info.max_per_row {
let mut dummy_used = dummy.clone();
if generate_feature_flags {
dummy_used = E::IfFeature(
FeatureFlag::LookupsPerRow((i + 1) as isize),
Box::new(dummy_used),
Box::new(E::one()),
);
}
res *= dummy_used;
}
// NOTE: We multiply by beta1_per_row here instead of at the end, because the
// expression framework will fold the constants together rather than multiplying the
// whole d8-sized polynomial evaluations by multiple constants.
res * beta1_per_row.clone()
};
// This is set up so that on rows that have lookups, chunk will be equal
// to the product over all lookups `f` in that row of `gamma + f`
// and
// on non-lookup rows, will be equal to 1.
let f_term = |spec: &Vec<JointLookupSpec<_>>| {
assert!(spec.len() <= lookup_info.max_per_row);
// padding is (1+beta)^max_per_rows * (gamma + dummy)^pad
let padding = dummy_padding(spec.len());
// padding * \mul (gamma + combined_witnesses)
let eval = |pos: LocalPosition| witness(pos.column, pos.row);
spec.iter()
.map(|j| {
E::from(BerkeleyChallengeTerm::Gamma)
+ j.evaluate(&joint_combiner, &table_id_combiner, &eval)
})
.fold(padding, |acc: E<F>, x: E<F>| acc * x)
};
// f part of the numerator
let f_chunk = {
let dummy_rows = non_lookup_indicator * f_term(&vec![]);
lookup_info
.features
.patterns
.into_iter()
.map(|spec| {
let mut term =
column(Column::LookupKindIndex(spec)) * f_term(&spec.lookups::<F>());
if generate_feature_flags {
term = E::IfFeature(
FeatureFlag::LookupPattern(spec),
Box::new(term),
Box::new(E::zero()),
)
}
term
})
.fold(dummy_rows, |acc, x| acc + x)
};
// t part of the numerator
let t_chunk = gammabeta1.clone()
+ E::cell(Column::LookupTable, Curr)
+ E::from(BerkeleyChallengeTerm::Beta) * E::cell(Column::LookupTable, Next);
// return the numerator
f_chunk * t_chunk
};
// Because of our ZK-rows, we can't do the trick in the plookup paper of
// wrapping around to enforce consistency between the sorted lookup columns.
//
// Instead, we arrange the LookupSorted table into columns in a snake-shape.
//
// Like so,
// _ _
// | | | | |
// | | | | |
// |_| |_| |
//
// or, imagining the full sorted array is [ s0, ..., s8 ], like
//
// s0 s4 s4 s8
// s1 s3 s5 s7
// s2 s2 s6 s6
//
// So the direction ("increasing" or "decreasing" (relative to LookupTable)
// is
// if i % 2 = 0 { Increasing } else { Decreasing }
//
// Then, for each i < max_lookups_per_row, if i % 2 = 0, we enforce that the
// last element of LookupSorted(i) = last element of LookupSorted(i + 1),
// and if i % 2 = 1, we enforce that the
// first element of LookupSorted(i) = first element of LookupSorted(i + 1)
let sorted_size = lookup_info.max_per_row + 1 /* for the XOR lookup table */;
let denominator = (0..sorted_size)
.map(|i| {
let (s1, s2) = if i % 2 == 0 {
(Curr, Next)
} else {
(Next, Curr)
};
// gamma * (beta + 1) + sorted[i](x) + beta * sorted[i](x w)
// or
// gamma * (beta + 1) + sorted[i](x w) + beta * sorted[i](x)
let mut expr = gammabeta1.clone()
+ E::cell(Column::LookupSorted(i), s1)
+ E::from(BerkeleyChallengeTerm::Beta) * E::cell(Column::LookupSorted(i), s2);
if generate_feature_flags {
expr = E::IfFeature(
FeatureFlag::LookupsPerRow(i as isize),
Box::new(expr),
Box::new(E::one()),
);
}
expr
})
.fold(E::one(), |acc: E<F>, x| acc * x);
// L(i) * denominator = L(i-1) * numerator
let aggreg_equation = E::cell(Column::LookupAggreg, Next) * denominator
- E::cell(Column::LookupAggreg, Curr) * numerator;
let final_lookup_row = RowOffset {
zk_rows: true,
offset: -1,
};
let mut res = vec![
// the accumulator except for the last zk_rows+1 rows
// (contains the zk-rows and the last value of the accumulator)
E::Atom(ExprInner::VanishesOnZeroKnowledgeAndPreviousRows) * aggreg_equation,
// the initial value of the accumulator
E::Atom(ExprInner::UnnormalizedLagrangeBasis(RowOffset {
zk_rows: false,
offset: 0,
})) * (E::cell(Column::LookupAggreg, Curr) - E::one()),
// Check that the final value of the accumulator is 1
E::Atom(ExprInner::UnnormalizedLagrangeBasis(final_lookup_row))
* (E::cell(Column::LookupAggreg, Curr) - E::one()),
];
// checks that the snake is turning correctly
let compatibility_checks: Vec<_> = (0..lookup_info.max_per_row)
.map(|i| {
let first_or_last = if i % 2 == 0 {
// Check compatibility of the last elements
final_lookup_row
} else {
// Check compatibility of the first elements
RowOffset {
zk_rows: false,
offset: 0,
}
};
let mut expr = E::Atom(ExprInner::UnnormalizedLagrangeBasis(first_or_last))
* (column(Column::LookupSorted(i)) - column(Column::LookupSorted(i + 1)));
if generate_feature_flags {
expr = E::IfFeature(
FeatureFlag::LookupsPerRow((i + 1) as isize),
Box::new(expr),
Box::new(E::zero()),
)
}
expr
})
.collect();
res.extend(compatibility_checks);
// Padding to make sure that the position of the runtime tables constraints is always
// consistent.
res.extend((lookup_info.max_per_row..4).map(|_| E::zero()));
// if we are using runtime tables, we add:
// $RT(x) (1 - \text{selector}_{RT}(x)) = 0$
if configuration.lookup_info.features.uses_runtime_tables {
let mut rt_constraints = runtime_tables::constraints();
if generate_feature_flags {
for term in rt_constraints.iter_mut() {
// Dummy value, to appease the borrow checker.
let mut boxed_term = Box::new(constant(F::zero()));
std::mem::swap(term, &mut *boxed_term);
*term = E::IfFeature(
FeatureFlag::RuntimeLookupTables,
boxed_term,
Box::new(E::zero()),
)
}
}
res.extend(rt_constraints);
}
res
}
/// Checks that all the lookup constraints are satisfied.
///
/// # Panics
///
/// Will panic if `d1` and `s` domain sizes do not match.
#[allow(clippy::too_many_arguments)]
pub fn verify<F: PrimeField, I: Iterator<Item = F>, TABLE: Fn() -> I>(
dummy_lookup_value: F,
lookup_table: TABLE,
lookup_table_entries: usize,
d1: D<F>,
gates: &[CircuitGate<F>],
witness: &[Vec<F>; COLUMNS],
joint_combiner: &F,
table_id_combiner: &F,
sorted: &[Evaluations<F, D<F>>],
lookup_info: &LookupInfo,
zk_rows: usize,
) {
sorted
.iter()
.for_each(|s| assert_eq!(d1.size, s.domain().size));
let n = d1.size();
let lookup_rows = n - zk_rows - 1;
// Check that the (desnakified) sorted table is
// 1. Sorted
// 2. Adjacent pairs agree on the final overlap point
// 3. Multiset-equal to the set lookups||table
// Check agreement on overlaps
for i in 0..sorted.len() - 1 {
let pos = if i % 2 == 0 { lookup_rows } else { 0 };
assert_eq!(sorted[i][pos], sorted[i + 1][pos]);
}
// Check sorting
let mut sorted_joined: Vec<F> = Vec::with_capacity((lookup_rows + 1) * sorted.len());
for (i, s) in sorted.iter().enumerate() {
let es = s.evals.iter().take(lookup_rows + 1);
if i % 2 == 0 {
sorted_joined.extend(es);
} else {
sorted_joined.extend(es.rev());
}
}
let mut s_index = 0;
for t in lookup_table().take(lookup_table_entries) {
while s_index < sorted_joined.len() && sorted_joined[s_index] == t {
s_index += 1;
}
}
assert_eq!(s_index, sorted_joined.len());
let by_row = lookup_info.by_row(gates);
// Compute lookups||table and check multiset equality
let sorted_counts: HashMap<F, usize> = {
let mut counts = HashMap::new();
for (i, s) in sorted.iter().enumerate() {
if i % 2 == 0 {
for x in s.evals.iter().take(lookup_rows) {
*counts.entry(*x).or_insert(0) += 1;
}
} else {
for x in s.evals.iter().skip(1).take(lookup_rows) {
*counts.entry(*x).or_insert(0) += 1;
}
}
}
counts
};
let mut all_lookups: HashMap<F, usize> = HashMap::new();
lookup_table()
.take(lookup_rows)
.for_each(|t| *all_lookups.entry(t).or_insert(0) += 1);
for (i, spec) in by_row.iter().take(lookup_rows).enumerate() {
let eval = |pos: LocalPosition| -> F {
let row = match pos.row {
Curr => i,
Next => i + 1,
};
witness[pos.column][row]
};
for joint_lookup in spec.iter() {
let joint_lookup_evaluation =
joint_lookup.evaluate(joint_combiner, table_id_combiner, &eval);
*all_lookups.entry(joint_lookup_evaluation).or_insert(0) += 1;
}
*all_lookups.entry(dummy_lookup_value).or_insert(0) += lookup_info.max_per_row - spec.len();
}
assert_eq!(
all_lookups.iter().fold(0, |acc, (_, v)| acc + v),
sorted_counts.iter().fold(0, |acc, (_, v)| acc + v)
);
for (k, v) in &all_lookups {
let s = sorted_counts.get(k).unwrap_or(&0);
if v != s {
panic!("For {k}:\nall_lookups = {v}\nsorted_lookups = {s}");
}
}
for (k, s) in &sorted_counts {
let v = all_lookups.get(k).unwrap_or(&0);
if v != s {
panic!("For {k}:\nall_lookups = {v}\nsorted_lookups = {s}");
}
}
}