1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
//! This module implements Plonk circuit constraint primitive.
use super::lookup::runtime_tables::RuntimeTableCfg;
use crate::{
circuits::{
domain_constant_evaluation::DomainConstantEvaluations,
domains::EvaluationDomains,
gate::{CircuitGate, GateType},
lookup::{
index::LookupConstraintSystem,
lookups::{LookupFeatures, LookupPatterns},
tables::{GateLookupTables, LookupTable},
},
polynomial::{WitnessEvals, WitnessOverDomains, WitnessShifts},
polynomials::permutation::Shifts,
wires::*,
},
curve::KimchiCurve,
error::{DomainCreationError, SetupError},
prover_index::ProverIndex,
};
use ark_ff::{PrimeField, Zero};
use ark_poly::{
univariate::DensePolynomial as DP, EvaluationDomain, Evaluations as E,
Radix2EvaluationDomain as D,
};
use o1_utils::ExtendedEvaluations;
use once_cell::sync::OnceCell;
use poly_commitment::OpenProof;
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use serde_with::serde_as;
use std::{array, default::Default, sync::Arc};
//
// ConstraintSystem
//
/// Flags for optional features in the constraint system
#[cfg_attr(
feature = "ocaml_types",
derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
#[cfg_attr(feature = "wasm_types", wasm_bindgen::prelude::wasm_bindgen)]
#[derive(Copy, Clone, Serialize, Deserialize, Debug)]
pub struct FeatureFlags {
/// RangeCheck0 gate
pub range_check0: bool,
/// RangeCheck1 gate
pub range_check1: bool,
/// Foreign field addition gate
pub foreign_field_add: bool,
/// Foreign field multiplication gate
pub foreign_field_mul: bool,
/// XOR gate
pub xor: bool,
/// ROT gate
pub rot: bool,
/// Lookup features
pub lookup_features: LookupFeatures,
}
impl Default for FeatureFlags {
/// Returns an instance with all features disabled.
fn default() -> FeatureFlags {
FeatureFlags {
range_check0: false,
range_check1: false,
lookup_features: LookupFeatures {
patterns: LookupPatterns {
xor: false,
lookup: false,
range_check: false,
foreign_field_mul: false,
},
joint_lookup_used: false,
uses_runtime_tables: false,
},
foreign_field_add: false,
foreign_field_mul: false,
xor: false,
rot: false,
}
}
}
/// The polynomials representing evaluated columns, in coefficient form.
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct EvaluatedColumnCoefficients<F: PrimeField> {
/// permutation coefficients
#[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
pub permutation_coefficients: [DP<F>; PERMUTS],
/// gate coefficients
#[serde_as(as = "[o1_utils::serialization::SerdeAs; COLUMNS]")]
pub coefficients: [DP<F>; COLUMNS],
/// generic gate selector
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub generic_selector: DP<F>,
/// poseidon gate selector
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub poseidon_selector: DP<F>,
}
/// The polynomials representing columns, in evaluation form.
/// The evaluations are expanded to the domain size required for their constraints.
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct ColumnEvaluations<F: PrimeField> {
/// permutation coefficients over domain d8
#[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
pub permutation_coefficients8: [E<F, D<F>>; PERMUTS],
/// coefficients over domain d8
#[serde_as(as = "[o1_utils::serialization::SerdeAs; COLUMNS]")]
pub coefficients8: [E<F, D<F>>; COLUMNS],
/// generic selector over domain d4
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub generic_selector4: E<F, D<F>>,
/// poseidon selector over domain d8
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub poseidon_selector8: E<F, D<F>>,
/// EC point addition selector over domain d4
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub complete_add_selector4: E<F, D<F>>,
/// scalar multiplication selector over domain d8
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub mul_selector8: E<F, D<F>>,
/// endoscalar multiplication selector over domain d8
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub emul_selector8: E<F, D<F>>,
/// EC point addition selector over domain d8
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub endomul_scalar_selector8: E<F, D<F>>,
/// RangeCheck0 gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub range_check0_selector8: Option<E<F, D<F>>>,
/// RangeCheck1 gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub range_check1_selector8: Option<E<F, D<F>>>,
/// Foreign field addition gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub foreign_field_add_selector8: Option<E<F, D<F>>>,
/// Foreign field multiplication gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub foreign_field_mul_selector8: Option<E<F, D<F>>>,
/// Xor gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub xor_selector8: Option<E<F, D<F>>>,
/// Rot gate selector over domain d8
#[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
pub rot_selector8: Option<E<F, D<F>>>,
}
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct ConstraintSystem<F: PrimeField> {
// Basics
// ------
/// number of public inputs
pub public: usize,
/// number of previous evaluation challenges, for recursive proving
pub prev_challenges: usize,
/// evaluation domains
#[serde(bound = "EvaluationDomains<F>: Serialize + DeserializeOwned")]
pub domain: EvaluationDomains<F>,
/// circuit gates
#[serde(bound = "CircuitGate<F>: Serialize + DeserializeOwned")]
pub gates: Vec<CircuitGate<F>>,
pub zk_rows: u64,
/// flags for optional features
pub feature_flags: FeatureFlags,
/// SID polynomial
#[serde_as(as = "Vec<o1_utils::serialization::SerdeAs>")]
pub sid: Vec<F>,
/// wire coordinate shifts
#[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
pub shift: [F; PERMUTS],
/// coefficient for the group endomorphism
#[serde_as(as = "o1_utils::serialization::SerdeAs")]
pub endo: F,
/// lookup constraint system
#[serde(bound = "LookupConstraintSystem<F>: Serialize + DeserializeOwned")]
pub lookup_constraint_system: Option<LookupConstraintSystem<F>>,
/// precomputes
#[serde(skip)]
precomputations: OnceCell<Arc<DomainConstantEvaluations<F>>>,
/// Disable gates checks (for testing; only enables with development builds)
pub disable_gates_checks: bool,
}
/// Represents an error found when verifying a witness with a gate
#[derive(Debug)]
pub enum GateError {
/// Some connected wires have different values
DisconnectedWires(Wire, Wire),
/// A public gate was incorrectly connected
IncorrectPublic(usize),
/// A specific gate did not verify correctly
Custom { row: usize, err: String },
}
pub struct Builder<F: PrimeField> {
gates: Vec<CircuitGate<F>>,
public: usize,
prev_challenges: usize,
lookup_tables: Vec<LookupTable<F>>,
runtime_tables: Option<Vec<RuntimeTableCfg<F>>>,
precomputations: Option<Arc<DomainConstantEvaluations<F>>>,
disable_gates_checks: bool,
max_poly_size: Option<usize>,
}
/// Create selector polynomial for a circuit gate
pub fn selector_polynomial<F: PrimeField>(
gate_type: GateType,
gates: &[CircuitGate<F>],
domain: &EvaluationDomains<F>,
target_domain: &D<F>,
disable_gates_checks: bool,
) -> E<F, D<F>> {
if cfg!(debug_assertions) && disable_gates_checks {
DP::<F>::zero().evaluate_over_domain_by_ref(*target_domain)
} else {
// Coefficient form
let coeff = E::<F, D<F>>::from_vec_and_domain(
gates
.iter()
.map(|gate| {
if gate.typ == gate_type {
F::one()
} else {
F::zero()
}
})
.collect(),
domain.d1,
)
.interpolate();
coeff.evaluate_over_domain_by_ref(*target_domain)
}
}
impl<F: PrimeField> ConstraintSystem<F> {
/// Initializes the [`ConstraintSystem<F>`] on input `gates` and `fr_sponge_params`.
/// Returns a [`Builder<F>`]
/// It also defaults to the following values of the builder:
/// - `public: 0`
/// - `prev_challenges: 0`
/// - `lookup_tables: vec![]`,
/// - `runtime_tables: None`,
/// - `precomputations: None`,
/// - `disable_gates_checks: false`,
///
/// How to use it:
/// 1. Create your instance of your builder for the constraint system using `crate(gates, sponge params)`
/// 2. Iterativelly invoke any desired number of steps: `public(), lookup(), runtime(), precomputations()``
/// 3. Finally call the `build()` method and unwrap the `Result` to obtain your `ConstraintSystem`
pub fn create(gates: Vec<CircuitGate<F>>) -> Builder<F> {
Builder {
gates,
public: 0,
prev_challenges: 0,
lookup_tables: vec![],
runtime_tables: None,
precomputations: None,
disable_gates_checks: false,
max_poly_size: None,
}
}
pub fn precomputations(&self) -> &Arc<DomainConstantEvaluations<F>> {
self.precomputations.get_or_init(|| {
Arc::new(DomainConstantEvaluations::create(self.domain, self.zk_rows).unwrap())
})
}
pub fn set_precomputations(&self, precomputations: Arc<DomainConstantEvaluations<F>>) {
self.precomputations
.set(precomputations)
.expect("Precomputation has been set before");
}
/// test helpers
pub fn for_testing(gates: Vec<CircuitGate<F>>) -> Self {
let public = 0;
// not sure if theres a smarter way instead of the double unwrap, but should be fine in the test
ConstraintSystem::<F>::create(gates)
.public(public)
.build()
.unwrap()
}
pub fn fp_for_testing(gates: Vec<CircuitGate<F>>) -> Self {
Self::for_testing(gates)
}
}
impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
ProverIndex<G, OpeningProof>
{
/// This function verifies the consistency of the wire
/// assignments (witness) against the constraints
/// witness: wire assignment witness
/// RETURN: verification status
pub fn verify(&self, witness: &[Vec<F>; COLUMNS], public: &[F]) -> Result<(), GateError> {
// pad the witness
let pad = vec![F::zero(); self.cs.domain.d1.size() - witness[0].len()];
let witness: [Vec<F>; COLUMNS] = array::from_fn(|i| {
let mut w = witness[i].to_vec();
w.extend_from_slice(&pad);
w
});
// check each rows' wiring
for (row, gate) in self.cs.gates.iter().enumerate() {
// check if wires are connected
for col in 0..PERMUTS {
let wire = gate.wires[col];
if wire.col >= PERMUTS {
return Err(GateError::Custom {
row,
err: format!("a wire can only be connected to the first {PERMUTS} columns"),
});
}
if witness[col][row] != witness[wire.col][wire.row] {
return Err(GateError::DisconnectedWires(
Wire { col, row },
Wire {
col: wire.col,
row: wire.row,
},
));
}
}
// for public gates, only the left wire is toggled
if row < self.cs.public && gate.coeffs.first() != Some(&F::one()) {
return Err(GateError::IncorrectPublic(row));
}
// check the gate's satisfiability
gate.verify(row, &witness, self, public)
.map_err(|err| GateError::Custom { row, err })?;
}
// all good!
Ok(())
}
}
impl<F: PrimeField> ConstraintSystem<F> {
/// evaluate witness polynomials over domains
pub fn evaluate(&self, w: &[DP<F>; COLUMNS], z: &DP<F>) -> WitnessOverDomains<F> {
// compute shifted witness polynomials
let w8: [E<F, D<F>>; COLUMNS] =
array::from_fn(|i| w[i].evaluate_over_domain_by_ref(self.domain.d8));
let z8 = z.evaluate_over_domain_by_ref(self.domain.d8);
let w4: [E<F, D<F>>; COLUMNS] = array::from_fn(|i| {
E::<F, D<F>>::from_vec_and_domain(
(0..self.domain.d4.size)
.map(|j| w8[i].evals[2 * j as usize])
.collect(),
self.domain.d4,
)
});
let z4 = DP::<F>::zero().evaluate_over_domain_by_ref(D::<F>::new(1).unwrap());
WitnessOverDomains {
d4: WitnessShifts {
next: WitnessEvals {
w: array::from_fn(|i| w4[i].shift(4)),
// TODO(mimoo): change z to an Option? Or maybe not, we might actually need this dummy evaluation in the aggregated evaluation proof
z: z4.clone(), // dummy evaluation
},
this: WitnessEvals {
w: w4,
z: z4, // dummy evaluation
},
},
d8: WitnessShifts {
next: WitnessEvals {
w: array::from_fn(|i| w8[i].shift(8)),
z: z8.shift(8),
},
this: WitnessEvals { w: w8, z: z8 },
},
}
}
pub(crate) fn evaluated_column_coefficients(&self) -> EvaluatedColumnCoefficients<F> {
// compute permutation polynomials
let shifts = Shifts::new(&self.domain.d1);
let n = self.domain.d1.size();
let mut sigmal1: [Vec<F>; PERMUTS] = array::from_fn(|_| vec![F::zero(); n]);
for (row, gate) in self.gates.iter().enumerate() {
for (cell, sigma) in gate.wires.iter().zip(sigmal1.iter_mut()) {
sigma[row] = shifts.cell_to_field(cell);
}
}
// Zero out the sigmas in the zk rows, to ensure that the permutation aggregation is
// quasi-random for those rows.
for row in n + 2 - (self.zk_rows as usize)..n - 1 {
for sigma in sigmal1.iter_mut() {
sigma[row] = F::zero();
}
}
let sigmal1: [_; PERMUTS] = {
let [s0, s1, s2, s3, s4, s5, s6] = sigmal1;
[
E::<F, D<F>>::from_vec_and_domain(s0, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s1, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s2, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s3, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s4, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s5, self.domain.d1),
E::<F, D<F>>::from_vec_and_domain(s6, self.domain.d1),
]
};
let permutation_coefficients: [DP<F>; PERMUTS] =
array::from_fn(|i| sigmal1[i].clone().interpolate());
// poseidon gate
let poseidon_selector = E::<F, D<F>>::from_vec_and_domain(
self.gates.iter().map(|gate| gate.ps()).collect(),
self.domain.d1,
)
.interpolate();
// double generic gate
let generic_selector = E::<F, D<F>>::from_vec_and_domain(
self.gates
.iter()
.map(|gate| {
if matches!(gate.typ, GateType::Generic) {
F::one()
} else {
F::zero()
}
})
.collect(),
self.domain.d1,
)
.interpolate();
// coefficient polynomial
let coefficients: [_; COLUMNS] = array::from_fn(|i| {
let padded = self
.gates
.iter()
.map(|gate| gate.coeffs.get(i).cloned().unwrap_or_else(F::zero))
.collect();
let eval = E::from_vec_and_domain(padded, self.domain.d1);
eval.interpolate()
});
EvaluatedColumnCoefficients {
permutation_coefficients,
coefficients,
generic_selector,
poseidon_selector,
}
}
pub(crate) fn column_evaluations(
&self,
evaluated_column_coefficients: &EvaluatedColumnCoefficients<F>,
) -> ColumnEvaluations<F> {
let permutation_coefficients8 = array::from_fn(|i| {
evaluated_column_coefficients.permutation_coefficients[i]
.evaluate_over_domain_by_ref(self.domain.d8)
});
let poseidon_selector8 = evaluated_column_coefficients
.poseidon_selector
.evaluate_over_domain_by_ref(self.domain.d8);
// ECC gates
let complete_add_selector4 = selector_polynomial(
GateType::CompleteAdd,
&self.gates,
&self.domain,
&self.domain.d4,
self.disable_gates_checks,
);
let mul_selector8 = selector_polynomial(
GateType::VarBaseMul,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
);
let emul_selector8 = selector_polynomial(
GateType::EndoMul,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
);
let endomul_scalar_selector8 = selector_polynomial(
GateType::EndoMulScalar,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
);
let generic_selector4 = evaluated_column_coefficients
.generic_selector
.evaluate_over_domain_by_ref(self.domain.d4);
// RangeCheck0 constraint selector polynomials
let range_check0_selector8 = {
if !self.feature_flags.range_check0 {
None
} else {
Some(selector_polynomial(
GateType::RangeCheck0,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
// RangeCheck1 constraint selector polynomials
let range_check1_selector8 = {
if !self.feature_flags.range_check1 {
None
} else {
Some(selector_polynomial(
GateType::RangeCheck1,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
// Foreign field addition constraint selector polynomial
let foreign_field_add_selector8 = {
if !self.feature_flags.foreign_field_add {
None
} else {
Some(selector_polynomial(
GateType::ForeignFieldAdd,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
// Foreign field multiplication constraint selector polynomial
let foreign_field_mul_selector8 = {
if !self.feature_flags.foreign_field_mul {
None
} else {
Some(selector_polynomial(
GateType::ForeignFieldMul,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
let xor_selector8 = {
if !self.feature_flags.xor {
None
} else {
Some(selector_polynomial(
GateType::Xor16,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
let rot_selector8 = {
if !self.feature_flags.rot {
None
} else {
Some(selector_polynomial(
GateType::Rot64,
&self.gates,
&self.domain,
&self.domain.d8,
self.disable_gates_checks,
))
}
};
// TODO: This doesn't need to be degree 8 but that would require some changes in expr
let coefficients8 = array::from_fn(|i| {
evaluated_column_coefficients.coefficients[i]
.evaluate_over_domain_by_ref(self.domain.d8)
});
ColumnEvaluations {
permutation_coefficients8,
coefficients8,
generic_selector4,
poseidon_selector8,
complete_add_selector4,
mul_selector8,
emul_selector8,
endomul_scalar_selector8,
range_check0_selector8,
range_check1_selector8,
foreign_field_add_selector8,
foreign_field_mul_selector8,
xor_selector8,
rot_selector8,
}
}
}
/// The default number of chunks in a circuit is one (< 2^16 rows)
pub const NUM_CHUNKS_BY_DEFAULT: usize = 1;
/// The number of rows required for zero knowledge in circuits with one single chunk
pub const ZK_ROWS_BY_DEFAULT: u64 = 3;
/// This function computes a strict lower bound in the number of rows required
/// for zero knowledge in circuits with `num_chunks` chunks. This means that at
/// least one needs 1 more row than the result of this function to achieve zero
/// knowledge.
/// Example:
/// for 1 chunk, this function returns 2, but at least 3 rows are needed
/// Note:
/// the number of zero knowledge rows is usually computed across the codebase
/// as the formula `(16 * num_chunks + 5) / 7`, which is precisely the formula
/// in this function plus one.
pub fn zk_rows_strict_lower_bound(num_chunks: usize) -> usize {
(2 * (PERMUTS + 1) * num_chunks - 2) / PERMUTS
}
impl FeatureFlags {
pub fn from_gates_and_lookup_features<F: PrimeField>(
gates: &[CircuitGate<F>],
lookup_features: LookupFeatures,
) -> FeatureFlags {
let mut feature_flags = FeatureFlags {
range_check0: false,
range_check1: false,
lookup_features,
foreign_field_add: false,
foreign_field_mul: false,
xor: false,
rot: false,
};
for gate in gates {
match gate.typ {
GateType::RangeCheck0 => feature_flags.range_check0 = true,
GateType::RangeCheck1 => feature_flags.range_check1 = true,
GateType::ForeignFieldAdd => feature_flags.foreign_field_add = true,
GateType::ForeignFieldMul => feature_flags.foreign_field_mul = true,
GateType::Xor16 => feature_flags.xor = true,
GateType::Rot64 => feature_flags.rot = true,
_ => (),
}
}
feature_flags
}
pub fn from_gates<F: PrimeField>(
gates: &[CircuitGate<F>],
uses_runtime_tables: bool,
) -> FeatureFlags {
FeatureFlags::from_gates_and_lookup_features(
gates,
LookupFeatures::from_gates(gates, uses_runtime_tables),
)
}
}
impl<F: PrimeField> Builder<F> {
/// Set up the number of public inputs.
/// If not invoked, it equals `0` by default.
pub fn public(mut self, public: usize) -> Self {
self.public = public;
self
}
/// Set up the number of previous challenges, used for recusive proving.
/// If not invoked, it equals `0` by default.
pub fn prev_challenges(mut self, prev_challenges: usize) -> Self {
self.prev_challenges = prev_challenges;
self
}
/// Set up the lookup tables.
/// If not invoked, it is `vec![]` by default.
///
/// **Warning:** you have to make sure that the IDs of the lookup tables,
/// are unique and not colliding with IDs of built-in lookup tables, otherwise
/// the error will be raised.
///
/// (see [crate::circuits::lookup::tables]).
pub fn lookup(mut self, lookup_tables: Vec<LookupTable<F>>) -> Self {
self.lookup_tables = lookup_tables;
self
}
/// Set up the runtime tables.
/// If not invoked, it is `None` by default.
///
/// **Warning:** you have to make sure that the IDs of the runtime
/// lookup tables, are unique, i.e. not colliding internaly (with other runtime tables),
/// otherwise error will be raised.
/// (see [crate::circuits::lookup::tables]).
pub fn runtime(mut self, runtime_tables: Option<Vec<RuntimeTableCfg<F>>>) -> Self {
self.runtime_tables = runtime_tables;
self
}
/// Set up the shared precomputations.
/// If not invoked, it is `None` by default.
pub fn shared_precomputations(
mut self,
shared_precomputations: Arc<DomainConstantEvaluations<F>>,
) -> Self {
self.precomputations = Some(shared_precomputations);
self
}
/// Disable gates checks (for testing; only enables with development builds)
pub fn disable_gates_checks(mut self, disable_gates_checks: bool) -> Self {
self.disable_gates_checks = disable_gates_checks;
self
}
pub fn max_poly_size(mut self, max_poly_size: Option<usize>) -> Self {
self.max_poly_size = max_poly_size;
self
}
/// Build the [ConstraintSystem] from a [Builder].
pub fn build(self) -> Result<ConstraintSystem<F>, SetupError> {
let mut gates = self.gates;
let lookup_tables = self.lookup_tables;
let runtime_tables = self.runtime_tables;
//~ 1. If the circuit is less than 2 gates, abort.
// for some reason we need more than 1 gate for the circuit to work, see TODO below
assert!(gates.len() > 1);
let feature_flags = FeatureFlags::from_gates(&gates, runtime_tables.is_some());
let lookup_domain_size = {
// First we sum over the lookup table size
let mut has_table_with_id_0 = false;
let mut lookup_domain_size: usize = lookup_tables
.iter()
.map(|LookupTable { id, data }| {
// See below for the reason
if *id == 0_i32 {
has_table_with_id_0 = true
}
if data.is_empty() {
0
} else {
data[0].len()
}
})
.sum();
// After that on the runtime tables
if let Some(runtime_tables) = runtime_tables.as_ref() {
// FIXME: Check that a runtime table with ID 0 is enforced to
// contain a zero entry row.
for runtime_table in runtime_tables.iter() {
lookup_domain_size += runtime_table.len();
}
}
// And we add the built-in tables, depending on the features.
let LookupFeatures { patterns, .. } = &feature_flags.lookup_features;
let mut gate_lookup_tables = GateLookupTables {
xor: false,
range_check: false,
};
for pattern in patterns.into_iter() {
if let Some(gate_table) = pattern.table() {
gate_lookup_tables[gate_table] = true
}
}
for gate_table in gate_lookup_tables.into_iter() {
lookup_domain_size += gate_table.table_size();
}
// A dummy zero entry will be added if there is no table with ID
// zero. Therefore we must count this in the size.
if has_table_with_id_0 {
lookup_domain_size
} else {
lookup_domain_size + 1
}
};
//~ 1. Compute the number of zero-knowledge rows (`zk_rows`) that will be required to
//~ achieve zero-knowledge. The following constraints apply to `zk_rows`:
//~ * The number of chunks `c` results in an evaluation at `zeta` and `zeta * omega` in
//~ each column for `2*c` evaluations per column, so `zk_rows >= 2*c + 1`.
//~ * The permutation argument interacts with the `c` chunks in parallel, so it is
//~ possible to cross-correlate between them to compromise zero knowledge. We know
//~ that there is some `c >= 1` such that `zk_rows = 2*c + k` from the above. Thus,
//~ attempting to find the evaluation at a new point, we find that:
//~ * the evaluation of every witness column in the permutation contains `k` unknowns;
//~ * the evaluations of the permutation argument aggregation has `k-1` unknowns;
//~ * the permutation argument applies on all but `zk_rows - 3` rows;
//~ * and thus we form the equation `zk_rows - 3 < 7 * k + (k - 1)` to ensure that we
//~ can construct fewer equations than we have unknowns.
//~
//~ This simplifies to `k > (2 * c - 2) / 7`, giving `zk_rows > (16 * c - 2) / 7`.
//~ We can derive `c` from the `max_poly_size` supported by the URS, and thus we find
//~ `zk_rows` and `domain_size` satisfying the fixpoint
//~
//~ ```text
//~ zk_rows = (16 * (domain_size / max_poly_size) + 5) / 7
//~ domain_size = circuit_size + zk_rows
//~ ```
//~
let (zk_rows, domain_size_lower_bound) = {
// We add 1 to the lookup domain size because there is one element
// used to close the permutation argument (the polynomial Z is of
// degree n + 1 where n is the order of the subgroup H).
let circuit_lower_bound = std::cmp::max(gates.len(), lookup_domain_size + 1);
let get_domain_size_lower_bound = |zk_rows: u64| circuit_lower_bound + zk_rows as usize;
let mut zk_rows = 3;
let mut domain_size_lower_bound = get_domain_size_lower_bound(zk_rows);
if let Some(max_poly_size) = self.max_poly_size {
// Iterate to find a fixed-point where zk_rows is sufficient for the number of
// chunks that we use, and also does not cause us to overflow the domain size.
// NB: We use iteration here rather than hard-coding an assumption about
// `compute_size_of_domain`s internals. In practice, this will never be executed
// more than once.
while {
let domain_size = D::<F>::compute_size_of_domain(domain_size_lower_bound)
.ok_or(SetupError::DomainCreation(
DomainCreationError::DomainSizeFailed(domain_size_lower_bound),
))?;
let num_chunks = if domain_size < max_poly_size {
1
} else {
domain_size / max_poly_size
};
zk_rows = (zk_rows_strict_lower_bound(num_chunks) + 1) as u64;
domain_size_lower_bound = get_domain_size_lower_bound(zk_rows);
domain_size < domain_size_lower_bound
} {}
}
(zk_rows, domain_size_lower_bound)
};
//~ 1. Create a domain for the circuit. That is,
//~ compute the smallest subgroup of the field that
//~ has order greater or equal to `n + zk_rows` elements.
let domain = EvaluationDomains::<F>::create(domain_size_lower_bound)
.map_err(SetupError::DomainCreation)?;
assert!(domain.d1.size > zk_rows);
//~ 1. Pad the circuit: add zero gates to reach the domain size.
let d1_size = domain.d1.size();
let mut padding = (gates.len()..d1_size)
.map(|i| {
CircuitGate::<F>::zero(array::from_fn(|j| Wire {
col: WIRES[j],
row: i,
}))
})
.collect();
gates.append(&mut padding);
//~ 1. sample the `PERMUTS` shifts.
let shifts = Shifts::new(&domain.d1);
//
// Lookup
// ------
let lookup_constraint_system = LookupConstraintSystem::create(
&gates,
lookup_tables,
runtime_tables,
&domain,
zk_rows as usize,
)
.map_err(SetupError::LookupCreation)?;
let sid = shifts.map[0].clone();
// TODO: remove endo as a field
let endo = F::zero();
let domain_constant_evaluation = OnceCell::new();
let constraints = ConstraintSystem {
domain,
public: self.public,
prev_challenges: self.prev_challenges,
sid,
gates,
shift: shifts.shifts,
endo,
zk_rows,
//fr_sponge_params: self.sponge_params,
lookup_constraint_system,
feature_flags,
precomputations: domain_constant_evaluation,
disable_gates_checks: self.disable_gates_checks,
};
match self.precomputations {
Some(t) => {
constraints.set_precomputations(t);
}
None => {
constraints.precomputations();
}
}
Ok(constraints)
}
}