1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//! This module implements Plonk circuit constraint primitive.
use super::lookup::runtime_tables::RuntimeTableCfg;
use crate::{
    circuits::{
        domain_constant_evaluation::DomainConstantEvaluations,
        domains::EvaluationDomains,
        gate::{CircuitGate, GateType},
        lookup::{
            index::LookupConstraintSystem,
            lookups::{LookupFeatures, LookupPatterns},
            tables::{GateLookupTables, LookupTable},
        },
        polynomial::{WitnessEvals, WitnessOverDomains, WitnessShifts},
        polynomials::permutation::Shifts,
        wires::*,
    },
    curve::KimchiCurve,
    error::{DomainCreationError, SetupError},
    prover_index::ProverIndex,
};
use ark_ff::{PrimeField, Zero};
use ark_poly::{
    univariate::DensePolynomial as DP, EvaluationDomain, Evaluations as E,
    Radix2EvaluationDomain as D,
};
use o1_utils::ExtendedEvaluations;
use once_cell::sync::OnceCell;
use poly_commitment::OpenProof;
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use serde_with::serde_as;
use std::{array, default::Default, sync::Arc};

//
// ConstraintSystem
//

/// Flags for optional features in the constraint system
#[cfg_attr(
    feature = "ocaml_types",
    derive(ocaml::IntoValue, ocaml::FromValue, ocaml_gen::Struct)
)]
#[cfg_attr(feature = "wasm_types", wasm_bindgen::prelude::wasm_bindgen)]
#[derive(Copy, Clone, Serialize, Deserialize, Debug)]
pub struct FeatureFlags {
    /// RangeCheck0 gate
    pub range_check0: bool,
    /// RangeCheck1 gate
    pub range_check1: bool,
    /// Foreign field addition gate
    pub foreign_field_add: bool,
    /// Foreign field multiplication gate
    pub foreign_field_mul: bool,
    /// XOR gate
    pub xor: bool,
    /// ROT gate
    pub rot: bool,
    /// Lookup features
    pub lookup_features: LookupFeatures,
}

impl Default for FeatureFlags {
    /// Returns an instance with all features disabled.
    fn default() -> FeatureFlags {
        FeatureFlags {
            range_check0: false,
            range_check1: false,
            lookup_features: LookupFeatures {
                patterns: LookupPatterns {
                    xor: false,
                    lookup: false,
                    range_check: false,
                    foreign_field_mul: false,
                },
                joint_lookup_used: false,
                uses_runtime_tables: false,
            },
            foreign_field_add: false,
            foreign_field_mul: false,
            xor: false,
            rot: false,
        }
    }
}

/// The polynomials representing evaluated columns, in coefficient form.
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct EvaluatedColumnCoefficients<F: PrimeField> {
    /// permutation coefficients
    #[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
    pub permutation_coefficients: [DP<F>; PERMUTS],

    /// gate coefficients
    #[serde_as(as = "[o1_utils::serialization::SerdeAs; COLUMNS]")]
    pub coefficients: [DP<F>; COLUMNS],

    /// generic gate selector
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub generic_selector: DP<F>,

    /// poseidon gate selector
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub poseidon_selector: DP<F>,
}

/// The polynomials representing columns, in evaluation form.
/// The evaluations are expanded to the domain size required for their constraints.
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct ColumnEvaluations<F: PrimeField> {
    /// permutation coefficients over domain d8
    #[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
    pub permutation_coefficients8: [E<F, D<F>>; PERMUTS],

    /// coefficients over domain d8
    #[serde_as(as = "[o1_utils::serialization::SerdeAs; COLUMNS]")]
    pub coefficients8: [E<F, D<F>>; COLUMNS],

    /// generic selector over domain d4
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub generic_selector4: E<F, D<F>>,

    /// poseidon selector over domain d8
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub poseidon_selector8: E<F, D<F>>,

    /// EC point addition selector over domain d4
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub complete_add_selector4: E<F, D<F>>,

    /// scalar multiplication selector over domain d8
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub mul_selector8: E<F, D<F>>,

    /// endoscalar multiplication selector over domain d8
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub emul_selector8: E<F, D<F>>,

    /// EC point addition selector over domain d8
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub endomul_scalar_selector8: E<F, D<F>>,

    /// RangeCheck0 gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub range_check0_selector8: Option<E<F, D<F>>>,

    /// RangeCheck1 gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub range_check1_selector8: Option<E<F, D<F>>>,

    /// Foreign field addition gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub foreign_field_add_selector8: Option<E<F, D<F>>>,

    /// Foreign field multiplication gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub foreign_field_mul_selector8: Option<E<F, D<F>>>,

    /// Xor gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub xor_selector8: Option<E<F, D<F>>>,

    /// Rot gate selector over domain d8
    #[serde_as(as = "Option<o1_utils::serialization::SerdeAs>")]
    pub rot_selector8: Option<E<F, D<F>>>,
}

#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct ConstraintSystem<F: PrimeField> {
    // Basics
    // ------
    /// number of public inputs
    pub public: usize,
    /// number of previous evaluation challenges, for recursive proving
    pub prev_challenges: usize,
    /// evaluation domains
    #[serde(bound = "EvaluationDomains<F>: Serialize + DeserializeOwned")]
    pub domain: EvaluationDomains<F>,
    /// circuit gates
    #[serde(bound = "CircuitGate<F>: Serialize + DeserializeOwned")]
    pub gates: Vec<CircuitGate<F>>,

    pub zk_rows: u64,

    /// flags for optional features
    pub feature_flags: FeatureFlags,

    /// SID polynomial
    #[serde_as(as = "Vec<o1_utils::serialization::SerdeAs>")]
    pub sid: Vec<F>,

    /// wire coordinate shifts
    #[serde_as(as = "[o1_utils::serialization::SerdeAs; PERMUTS]")]
    pub shift: [F; PERMUTS],
    /// coefficient for the group endomorphism
    #[serde_as(as = "o1_utils::serialization::SerdeAs")]
    pub endo: F,
    /// lookup constraint system
    #[serde(bound = "LookupConstraintSystem<F>: Serialize + DeserializeOwned")]
    pub lookup_constraint_system: Option<LookupConstraintSystem<F>>,
    /// precomputes
    #[serde(skip)]
    precomputations: OnceCell<Arc<DomainConstantEvaluations<F>>>,

    /// Disable gates checks (for testing; only enables with development builds)
    pub disable_gates_checks: bool,
}

/// Represents an error found when verifying a witness with a gate
#[derive(Debug)]
pub enum GateError {
    /// Some connected wires have different values
    DisconnectedWires(Wire, Wire),
    /// A public gate was incorrectly connected
    IncorrectPublic(usize),
    /// A specific gate did not verify correctly
    Custom { row: usize, err: String },
}

pub struct Builder<F: PrimeField> {
    gates: Vec<CircuitGate<F>>,
    public: usize,
    prev_challenges: usize,
    lookup_tables: Vec<LookupTable<F>>,
    runtime_tables: Option<Vec<RuntimeTableCfg<F>>>,
    precomputations: Option<Arc<DomainConstantEvaluations<F>>>,
    disable_gates_checks: bool,
    max_poly_size: Option<usize>,
}

/// Create selector polynomial for a circuit gate
pub fn selector_polynomial<F: PrimeField>(
    gate_type: GateType,
    gates: &[CircuitGate<F>],
    domain: &EvaluationDomains<F>,
    target_domain: &D<F>,
    disable_gates_checks: bool,
) -> E<F, D<F>> {
    if cfg!(debug_assertions) && disable_gates_checks {
        DP::<F>::zero().evaluate_over_domain_by_ref(*target_domain)
    } else {
        // Coefficient form
        let coeff = E::<F, D<F>>::from_vec_and_domain(
            gates
                .iter()
                .map(|gate| {
                    if gate.typ == gate_type {
                        F::one()
                    } else {
                        F::zero()
                    }
                })
                .collect(),
            domain.d1,
        )
        .interpolate();

        coeff.evaluate_over_domain_by_ref(*target_domain)
    }
}

impl<F: PrimeField> ConstraintSystem<F> {
    /// Initializes the [`ConstraintSystem<F>`] on input `gates` and `fr_sponge_params`.
    /// Returns a [`Builder<F>`]
    /// It also defaults to the following values of the builder:
    /// - `public: 0`
    /// - `prev_challenges: 0`
    /// - `lookup_tables: vec![]`,
    /// - `runtime_tables: None`,
    /// - `precomputations: None`,
    /// - `disable_gates_checks: false`,
    ///
    /// How to use it:
    /// 1. Create your instance of your builder for the constraint system using `crate(gates, sponge params)`
    /// 2. Iterativelly invoke any desired number of steps: `public(), lookup(), runtime(), precomputations()``
    /// 3. Finally call the `build()` method and unwrap the `Result` to obtain your `ConstraintSystem`
    pub fn create(gates: Vec<CircuitGate<F>>) -> Builder<F> {
        Builder {
            gates,
            public: 0,
            prev_challenges: 0,
            lookup_tables: vec![],
            runtime_tables: None,
            precomputations: None,
            disable_gates_checks: false,
            max_poly_size: None,
        }
    }

    pub fn precomputations(&self) -> &Arc<DomainConstantEvaluations<F>> {
        self.precomputations.get_or_init(|| {
            Arc::new(DomainConstantEvaluations::create(self.domain, self.zk_rows).unwrap())
        })
    }

    pub fn set_precomputations(&self, precomputations: Arc<DomainConstantEvaluations<F>>) {
        self.precomputations
            .set(precomputations)
            .expect("Precomputation has been set before");
    }

    /// test helpers
    pub fn for_testing(gates: Vec<CircuitGate<F>>) -> Self {
        let public = 0;
        // not sure if theres a smarter way instead of the double unwrap, but should be fine in the test
        ConstraintSystem::<F>::create(gates)
            .public(public)
            .build()
            .unwrap()
    }

    pub fn fp_for_testing(gates: Vec<CircuitGate<F>>) -> Self {
        Self::for_testing(gates)
    }
}

impl<F: PrimeField, G: KimchiCurve<ScalarField = F>, OpeningProof: OpenProof<G>>
    ProverIndex<G, OpeningProof>
{
    /// This function verifies the consistency of the wire
    /// assignments (witness) against the constraints
    ///     witness: wire assignment witness
    ///     RETURN: verification status
    pub fn verify(&self, witness: &[Vec<F>; COLUMNS], public: &[F]) -> Result<(), GateError> {
        // pad the witness
        let pad = vec![F::zero(); self.cs.domain.d1.size() - witness[0].len()];
        let witness: [Vec<F>; COLUMNS] = array::from_fn(|i| {
            let mut w = witness[i].to_vec();
            w.extend_from_slice(&pad);
            w
        });

        // check each rows' wiring
        for (row, gate) in self.cs.gates.iter().enumerate() {
            // check if wires are connected
            for col in 0..PERMUTS {
                let wire = gate.wires[col];

                if wire.col >= PERMUTS {
                    return Err(GateError::Custom {
                        row,
                        err: format!("a wire can only be connected to the first {PERMUTS} columns"),
                    });
                }

                if witness[col][row] != witness[wire.col][wire.row] {
                    return Err(GateError::DisconnectedWires(
                        Wire { col, row },
                        Wire {
                            col: wire.col,
                            row: wire.row,
                        },
                    ));
                }
            }

            // for public gates, only the left wire is toggled
            if row < self.cs.public && gate.coeffs.first() != Some(&F::one()) {
                return Err(GateError::IncorrectPublic(row));
            }

            // check the gate's satisfiability
            gate.verify(row, &witness, self, public)
                .map_err(|err| GateError::Custom { row, err })?;
        }

        // all good!
        Ok(())
    }
}

impl<F: PrimeField> ConstraintSystem<F> {
    /// evaluate witness polynomials over domains
    pub fn evaluate(&self, w: &[DP<F>; COLUMNS], z: &DP<F>) -> WitnessOverDomains<F> {
        // compute shifted witness polynomials
        let w8: [E<F, D<F>>; COLUMNS] =
            array::from_fn(|i| w[i].evaluate_over_domain_by_ref(self.domain.d8));
        let z8 = z.evaluate_over_domain_by_ref(self.domain.d8);

        let w4: [E<F, D<F>>; COLUMNS] = array::from_fn(|i| {
            E::<F, D<F>>::from_vec_and_domain(
                (0..self.domain.d4.size)
                    .map(|j| w8[i].evals[2 * j as usize])
                    .collect(),
                self.domain.d4,
            )
        });
        let z4 = DP::<F>::zero().evaluate_over_domain_by_ref(D::<F>::new(1).unwrap());

        WitnessOverDomains {
            d4: WitnessShifts {
                next: WitnessEvals {
                    w: array::from_fn(|i| w4[i].shift(4)),
                    // TODO(mimoo): change z to an Option? Or maybe not, we might actually need this dummy evaluation in the aggregated evaluation proof
                    z: z4.clone(), // dummy evaluation
                },
                this: WitnessEvals {
                    w: w4,
                    z: z4, // dummy evaluation
                },
            },
            d8: WitnessShifts {
                next: WitnessEvals {
                    w: array::from_fn(|i| w8[i].shift(8)),
                    z: z8.shift(8),
                },
                this: WitnessEvals { w: w8, z: z8 },
            },
        }
    }

    pub(crate) fn evaluated_column_coefficients(&self) -> EvaluatedColumnCoefficients<F> {
        // compute permutation polynomials
        let shifts = Shifts::new(&self.domain.d1);

        let n = self.domain.d1.size();

        let mut sigmal1: [Vec<F>; PERMUTS] = array::from_fn(|_| vec![F::zero(); n]);

        for (row, gate) in self.gates.iter().enumerate() {
            for (cell, sigma) in gate.wires.iter().zip(sigmal1.iter_mut()) {
                sigma[row] = shifts.cell_to_field(cell);
            }
        }

        // Zero out the sigmas in the zk rows, to ensure that the permutation aggregation is
        // quasi-random for those rows.
        for row in n + 2 - (self.zk_rows as usize)..n - 1 {
            for sigma in sigmal1.iter_mut() {
                sigma[row] = F::zero();
            }
        }

        let sigmal1: [_; PERMUTS] = {
            let [s0, s1, s2, s3, s4, s5, s6] = sigmal1;
            [
                E::<F, D<F>>::from_vec_and_domain(s0, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s1, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s2, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s3, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s4, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s5, self.domain.d1),
                E::<F, D<F>>::from_vec_and_domain(s6, self.domain.d1),
            ]
        };

        let permutation_coefficients: [DP<F>; PERMUTS] =
            array::from_fn(|i| sigmal1[i].clone().interpolate());

        // poseidon gate
        let poseidon_selector = E::<F, D<F>>::from_vec_and_domain(
            self.gates.iter().map(|gate| gate.ps()).collect(),
            self.domain.d1,
        )
        .interpolate();

        // double generic gate
        let generic_selector = E::<F, D<F>>::from_vec_and_domain(
            self.gates
                .iter()
                .map(|gate| {
                    if matches!(gate.typ, GateType::Generic) {
                        F::one()
                    } else {
                        F::zero()
                    }
                })
                .collect(),
            self.domain.d1,
        )
        .interpolate();

        // coefficient polynomial
        let coefficients: [_; COLUMNS] = array::from_fn(|i| {
            let padded = self
                .gates
                .iter()
                .map(|gate| gate.coeffs.get(i).cloned().unwrap_or_else(F::zero))
                .collect();
            let eval = E::from_vec_and_domain(padded, self.domain.d1);
            eval.interpolate()
        });

        EvaluatedColumnCoefficients {
            permutation_coefficients,
            coefficients,
            generic_selector,
            poseidon_selector,
        }
    }

    pub(crate) fn column_evaluations(
        &self,
        evaluated_column_coefficients: &EvaluatedColumnCoefficients<F>,
    ) -> ColumnEvaluations<F> {
        let permutation_coefficients8 = array::from_fn(|i| {
            evaluated_column_coefficients.permutation_coefficients[i]
                .evaluate_over_domain_by_ref(self.domain.d8)
        });

        let poseidon_selector8 = evaluated_column_coefficients
            .poseidon_selector
            .evaluate_over_domain_by_ref(self.domain.d8);

        // ECC gates
        let complete_add_selector4 = selector_polynomial(
            GateType::CompleteAdd,
            &self.gates,
            &self.domain,
            &self.domain.d4,
            self.disable_gates_checks,
        );

        let mul_selector8 = selector_polynomial(
            GateType::VarBaseMul,
            &self.gates,
            &self.domain,
            &self.domain.d8,
            self.disable_gates_checks,
        );

        let emul_selector8 = selector_polynomial(
            GateType::EndoMul,
            &self.gates,
            &self.domain,
            &self.domain.d8,
            self.disable_gates_checks,
        );

        let endomul_scalar_selector8 = selector_polynomial(
            GateType::EndoMulScalar,
            &self.gates,
            &self.domain,
            &self.domain.d8,
            self.disable_gates_checks,
        );

        let generic_selector4 = evaluated_column_coefficients
            .generic_selector
            .evaluate_over_domain_by_ref(self.domain.d4);

        // RangeCheck0 constraint selector polynomials
        let range_check0_selector8 = {
            if !self.feature_flags.range_check0 {
                None
            } else {
                Some(selector_polynomial(
                    GateType::RangeCheck0,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        // RangeCheck1 constraint selector polynomials
        let range_check1_selector8 = {
            if !self.feature_flags.range_check1 {
                None
            } else {
                Some(selector_polynomial(
                    GateType::RangeCheck1,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        // Foreign field addition constraint selector polynomial
        let foreign_field_add_selector8 = {
            if !self.feature_flags.foreign_field_add {
                None
            } else {
                Some(selector_polynomial(
                    GateType::ForeignFieldAdd,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        // Foreign field multiplication constraint selector polynomial
        let foreign_field_mul_selector8 = {
            if !self.feature_flags.foreign_field_mul {
                None
            } else {
                Some(selector_polynomial(
                    GateType::ForeignFieldMul,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        let xor_selector8 = {
            if !self.feature_flags.xor {
                None
            } else {
                Some(selector_polynomial(
                    GateType::Xor16,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        let rot_selector8 = {
            if !self.feature_flags.rot {
                None
            } else {
                Some(selector_polynomial(
                    GateType::Rot64,
                    &self.gates,
                    &self.domain,
                    &self.domain.d8,
                    self.disable_gates_checks,
                ))
            }
        };

        // TODO: This doesn't need to be degree 8 but that would require some changes in expr
        let coefficients8 = array::from_fn(|i| {
            evaluated_column_coefficients.coefficients[i]
                .evaluate_over_domain_by_ref(self.domain.d8)
        });

        ColumnEvaluations {
            permutation_coefficients8,
            coefficients8,
            generic_selector4,
            poseidon_selector8,
            complete_add_selector4,
            mul_selector8,
            emul_selector8,
            endomul_scalar_selector8,
            range_check0_selector8,
            range_check1_selector8,
            foreign_field_add_selector8,
            foreign_field_mul_selector8,
            xor_selector8,
            rot_selector8,
        }
    }
}

/// The default number of chunks in a circuit is one (< 2^16 rows)
pub const NUM_CHUNKS_BY_DEFAULT: usize = 1;

/// The number of rows required for zero knowledge in circuits with one single chunk
pub const ZK_ROWS_BY_DEFAULT: u64 = 3;

/// This function computes a strict lower bound in the number of rows required
/// for zero knowledge in circuits with `num_chunks` chunks. This means that at
/// least one needs 1 more row than the result of this function to achieve zero
/// knowledge.
/// Example:
///   for 1 chunk, this function returns 2, but at least 3 rows are needed
/// Note:
///   the number of zero knowledge rows is usually computed across the codebase
///   as the formula `(16 * num_chunks + 5) / 7`, which is precisely the formula
///   in this function plus one.
pub fn zk_rows_strict_lower_bound(num_chunks: usize) -> usize {
    (2 * (PERMUTS + 1) * num_chunks - 2) / PERMUTS
}

impl FeatureFlags {
    pub fn from_gates_and_lookup_features<F: PrimeField>(
        gates: &[CircuitGate<F>],
        lookup_features: LookupFeatures,
    ) -> FeatureFlags {
        let mut feature_flags = FeatureFlags {
            range_check0: false,
            range_check1: false,
            lookup_features,
            foreign_field_add: false,
            foreign_field_mul: false,
            xor: false,
            rot: false,
        };

        for gate in gates {
            match gate.typ {
                GateType::RangeCheck0 => feature_flags.range_check0 = true,
                GateType::RangeCheck1 => feature_flags.range_check1 = true,
                GateType::ForeignFieldAdd => feature_flags.foreign_field_add = true,
                GateType::ForeignFieldMul => feature_flags.foreign_field_mul = true,
                GateType::Xor16 => feature_flags.xor = true,
                GateType::Rot64 => feature_flags.rot = true,
                _ => (),
            }
        }

        feature_flags
    }

    pub fn from_gates<F: PrimeField>(
        gates: &[CircuitGate<F>],
        uses_runtime_tables: bool,
    ) -> FeatureFlags {
        FeatureFlags::from_gates_and_lookup_features(
            gates,
            LookupFeatures::from_gates(gates, uses_runtime_tables),
        )
    }
}

impl<F: PrimeField> Builder<F> {
    /// Set up the number of public inputs.
    /// If not invoked, it equals `0` by default.
    pub fn public(mut self, public: usize) -> Self {
        self.public = public;
        self
    }

    /// Set up the number of previous challenges, used for recusive proving.
    /// If not invoked, it equals `0` by default.
    pub fn prev_challenges(mut self, prev_challenges: usize) -> Self {
        self.prev_challenges = prev_challenges;
        self
    }

    /// Set up the lookup tables.
    /// If not invoked, it is `vec![]` by default.
    ///
    /// **Warning:** you have to make sure that the IDs of the lookup tables,
    /// are unique and not colliding with IDs of built-in lookup tables, otherwise
    /// the error will be raised.
    ///
    /// (see [crate::circuits::lookup::tables]).
    pub fn lookup(mut self, lookup_tables: Vec<LookupTable<F>>) -> Self {
        self.lookup_tables = lookup_tables;
        self
    }

    /// Set up the runtime tables.
    /// If not invoked, it is `None` by default.
    ///
    /// **Warning:** you have to make sure that the IDs of the runtime
    /// lookup tables, are unique, i.e. not colliding internaly (with other runtime tables),
    /// otherwise error will be raised.
    /// (see [crate::circuits::lookup::tables]).
    pub fn runtime(mut self, runtime_tables: Option<Vec<RuntimeTableCfg<F>>>) -> Self {
        self.runtime_tables = runtime_tables;
        self
    }

    /// Set up the shared precomputations.
    /// If not invoked, it is `None` by default.
    pub fn shared_precomputations(
        mut self,
        shared_precomputations: Arc<DomainConstantEvaluations<F>>,
    ) -> Self {
        self.precomputations = Some(shared_precomputations);
        self
    }

    /// Disable gates checks (for testing; only enables with development builds)
    pub fn disable_gates_checks(mut self, disable_gates_checks: bool) -> Self {
        self.disable_gates_checks = disable_gates_checks;
        self
    }

    pub fn max_poly_size(mut self, max_poly_size: Option<usize>) -> Self {
        self.max_poly_size = max_poly_size;
        self
    }

    /// Build the [ConstraintSystem] from a [Builder].
    pub fn build(self) -> Result<ConstraintSystem<F>, SetupError> {
        let mut gates = self.gates;
        let lookup_tables = self.lookup_tables;
        let runtime_tables = self.runtime_tables;

        //~ 1. If the circuit is less than 2 gates, abort.
        // for some reason we need more than 1 gate for the circuit to work, see TODO below
        assert!(gates.len() > 1);

        let feature_flags = FeatureFlags::from_gates(&gates, runtime_tables.is_some());

        let lookup_domain_size = {
            // First we sum over the lookup table size
            let mut has_table_with_id_0 = false;
            let mut lookup_domain_size: usize = lookup_tables
                .iter()
                .map(|LookupTable { id, data }| {
                    // See below for the reason
                    if *id == 0_i32 {
                        has_table_with_id_0 = true
                    }
                    if data.is_empty() {
                        0
                    } else {
                        data[0].len()
                    }
                })
                .sum();
            // After that on the runtime tables
            if let Some(runtime_tables) = runtime_tables.as_ref() {
                // FIXME: Check that a runtime table with ID 0 is enforced to
                // contain a zero entry row.
                for runtime_table in runtime_tables.iter() {
                    lookup_domain_size += runtime_table.len();
                }
            }
            // And we add the built-in tables, depending on the features.
            let LookupFeatures { patterns, .. } = &feature_flags.lookup_features;
            let mut gate_lookup_tables = GateLookupTables {
                xor: false,
                range_check: false,
            };
            for pattern in patterns.into_iter() {
                if let Some(gate_table) = pattern.table() {
                    gate_lookup_tables[gate_table] = true
                }
            }
            for gate_table in gate_lookup_tables.into_iter() {
                lookup_domain_size += gate_table.table_size();
            }

            // A dummy zero entry will be added if there is no table with ID
            // zero. Therefore we must count this in the size.
            if has_table_with_id_0 {
                lookup_domain_size
            } else {
                lookup_domain_size + 1
            }
        };

        //~ 1. Compute the number of zero-knowledge rows (`zk_rows`) that will be required to
        //~    achieve zero-knowledge. The following constraints apply to `zk_rows`:
        //~    * The number of chunks `c` results in an evaluation at `zeta` and `zeta * omega` in
        //~      each column for `2*c` evaluations per column, so `zk_rows >= 2*c + 1`.
        //~    * The permutation argument interacts with the `c` chunks in parallel, so it is
        //~      possible to cross-correlate between them to compromise zero knowledge. We know
        //~      that there is some `c >= 1` such that `zk_rows = 2*c + k` from the above. Thus,
        //~      attempting to find the evaluation at a new point, we find that:
        //~      * the evaluation of every witness column in the permutation contains `k` unknowns;
        //~      * the evaluations of the permutation argument aggregation has `k-1` unknowns;
        //~      * the permutation argument applies on all but `zk_rows - 3` rows;
        //~      * and thus we form the equation `zk_rows - 3 < 7 * k + (k - 1)` to ensure that we
        //~        can construct fewer equations than we have unknowns.
        //~
        //~    This simplifies to `k > (2 * c - 2) / 7`, giving `zk_rows > (16 * c - 2) / 7`.
        //~    We can derive `c` from the `max_poly_size` supported by the URS, and thus we find
        //~    `zk_rows` and `domain_size` satisfying the fixpoint
        //~
        //~    ```text
        //~    zk_rows = (16 * (domain_size / max_poly_size) + 5) / 7
        //~    domain_size = circuit_size + zk_rows
        //~    ```
        //~
        let (zk_rows, domain_size_lower_bound) = {
            // We add 1 to the lookup domain size because there is one element
            // used to close the permutation argument (the polynomial Z is of
            // degree n + 1 where n is the order of the subgroup H).
            let circuit_lower_bound = std::cmp::max(gates.len(), lookup_domain_size + 1);
            let get_domain_size_lower_bound = |zk_rows: u64| circuit_lower_bound + zk_rows as usize;

            let mut zk_rows = 3;
            let mut domain_size_lower_bound = get_domain_size_lower_bound(zk_rows);
            if let Some(max_poly_size) = self.max_poly_size {
                // Iterate to find a fixed-point where zk_rows is sufficient for the number of
                // chunks that we use, and also does not cause us to overflow the domain size.
                // NB: We use iteration here rather than hard-coding an assumption about
                // `compute_size_of_domain`s internals. In practice, this will never be executed
                // more than once.
                while {
                    let domain_size = D::<F>::compute_size_of_domain(domain_size_lower_bound)
                        .ok_or(SetupError::DomainCreation(
                            DomainCreationError::DomainSizeFailed(domain_size_lower_bound),
                        ))?;
                    let num_chunks = if domain_size < max_poly_size {
                        1
                    } else {
                        domain_size / max_poly_size
                    };
                    zk_rows = (zk_rows_strict_lower_bound(num_chunks) + 1) as u64;
                    domain_size_lower_bound = get_domain_size_lower_bound(zk_rows);
                    domain_size < domain_size_lower_bound
                } {}
            }
            (zk_rows, domain_size_lower_bound)
        };

        //~ 1. Create a domain for the circuit. That is,
        //~    compute the smallest subgroup of the field that
        //~    has order greater or equal to `n + zk_rows` elements.
        let domain = EvaluationDomains::<F>::create(domain_size_lower_bound)
            .map_err(SetupError::DomainCreation)?;

        assert!(domain.d1.size > zk_rows);

        //~ 1. Pad the circuit: add zero gates to reach the domain size.
        let d1_size = domain.d1.size();
        let mut padding = (gates.len()..d1_size)
            .map(|i| {
                CircuitGate::<F>::zero(array::from_fn(|j| Wire {
                    col: WIRES[j],
                    row: i,
                }))
            })
            .collect();
        gates.append(&mut padding);

        //~ 1. sample the `PERMUTS` shifts.
        let shifts = Shifts::new(&domain.d1);

        //
        // Lookup
        // ------
        let lookup_constraint_system = LookupConstraintSystem::create(
            &gates,
            lookup_tables,
            runtime_tables,
            &domain,
            zk_rows as usize,
        )
        .map_err(SetupError::LookupCreation)?;

        let sid = shifts.map[0].clone();

        // TODO: remove endo as a field
        let endo = F::zero();

        let domain_constant_evaluation = OnceCell::new();

        let constraints = ConstraintSystem {
            domain,
            public: self.public,
            prev_challenges: self.prev_challenges,
            sid,
            gates,
            shift: shifts.shifts,
            endo,
            zk_rows,
            //fr_sponge_params: self.sponge_params,
            lookup_constraint_system,
            feature_flags,
            precomputations: domain_constant_evaluation,
            disable_gates_checks: self.disable_gates_checks,
        };

        match self.precomputations {
            Some(t) => {
                constraints.set_precomputations(t);
            }
            None => {
                constraints.precomputations();
            }
        }
        Ok(constraints)
    }
}