1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
//! An argument is simply a number of constraints,
//! which we want to enforce on all points of the domain.
//! Both the permutation and the plookup arguments fit this type.
//! Gates can be seen as filtered arguments,
//! which apply only in some points (rows) of the domain.
//! For more info, read book/src/kimchi/arguments.md
use std::marker::PhantomData;
use crate::{alphas::Alphas, circuits::expr::prologue::*};
use ark_ff::{Field, PrimeField};
use serde::{Deserialize, Serialize};
//TODO use generic challenge
use super::{
berkeley_columns::{BerkeleyChallengeTerm, BerkeleyChallenges},
expr::{constraints::ExprOps, Cache, ConstantExpr, ConstantTerm, Constants},
gate::{CurrOrNext, GateType},
polynomial::COLUMNS,
};
use CurrOrNext::{Curr, Next};
/// A constraint type represents a polynomial that will be part of the final equation f (the circuit equation)
#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug, Serialize, Deserialize)]
pub enum ArgumentType {
/// Gates in the PLONK constraint system.
/// As gates are mutually exclusive (a single gate is set per row),
/// we can reuse the same powers of alpha across gates.
Gate(GateType),
/// The permutation argument
Permutation,
/// The lookup argument
Lookup,
}
/// The argument environment is used to specify how the argument's constraints are
/// represented when they are built. If the environment is created without ArgumentData
/// and with `F = Expr<F>`, then the constraints are built as Expr expressions (e.g. for
/// use with the prover/verifier). On the other hand, if the environment is
/// created with ArgumentData and F = Field or F = PrimeField, then the constraints
/// are built as expressions of real field elements and can be evaluated directly on
/// the witness without using the prover.
pub struct ArgumentEnv<F: 'static, T> {
data: Option<ArgumentData<F>>,
phantom_data: PhantomData<T>,
}
impl<F, T> Default for ArgumentEnv<F, T> {
/// Initialize the environment for creating Expr constraints for use with prover/verifier
fn default() -> Self {
ArgumentEnv {
data: None,
phantom_data: PhantomData,
}
}
}
impl<F: Field, T: ExprOps<F, BerkeleyChallengeTerm>> ArgumentEnv<F, T> {
/// Initialize the environment for creating constraints of real field elements that can be
/// evaluated directly over the witness without the prover/verifier
pub fn create(
witness: ArgumentWitness<F>,
coeffs: Vec<F>,
constants: Constants<F>,
challenges: BerkeleyChallenges<F>,
) -> Self {
ArgumentEnv {
data: Some(ArgumentData {
witness,
coeffs,
constants,
challenges,
}),
phantom_data: PhantomData,
}
}
/// Witness cell (row, col)
pub fn witness(&self, row: CurrOrNext, col: usize) -> T {
T::witness(row, col, self.data.as_ref())
}
/// Witness cell on current row
pub fn witness_curr(&self, col: usize) -> T {
T::witness(Curr, col, self.data.as_ref())
}
/// Witness cell on next row
pub fn witness_next(&self, col: usize) -> T {
T::witness(Next, col, self.data.as_ref())
}
/// Witness cells in current row in an interval [from, to)
pub fn witness_curr_chunk(&self, from: usize, to: usize) -> Vec<T> {
let mut chunk = Vec::with_capacity(to - from);
for i in from..to {
chunk.push(self.witness_curr(i));
}
chunk
}
/// Witness cells in next row in an interval [from, to)
pub fn witness_next_chunk(&self, from: usize, to: usize) -> Vec<T> {
let mut chunk = Vec::with_capacity(to - from);
for i in from..to {
chunk.push(self.witness_next(i));
}
chunk
}
/// Coefficient value at index idx
pub fn coeff(&self, idx: usize) -> T {
T::coeff(idx, self.data.as_ref())
}
/// Chunk of consecutive coefficients in an interval [from, to)
pub fn coeff_chunk(&self, from: usize, to: usize) -> Vec<T> {
let mut chunk = Vec::with_capacity(to - from);
for i in from..to {
chunk.push(self.coeff(i));
}
chunk
}
/// Constant value (see [ConstantExpr] for supported constants)
pub fn constant(&self, expr: ConstantExpr<F, BerkeleyChallengeTerm>) -> T {
T::constant(expr, self.data.as_ref())
}
/// Helper to access endomorphism coefficient constant
pub fn endo_coefficient(&self) -> T {
T::constant(
ConstantExpr::from(ConstantTerm::EndoCoefficient),
self.data.as_ref(),
)
}
/// Helper to access maximum distance separable matrix constant at row, col
pub fn mds(&self, row: usize, col: usize) -> T {
T::constant(
ConstantExpr::from(ConstantTerm::Mds { row, col }),
self.data.as_ref(),
)
}
}
/// Argument environment data for constraints of field elements
pub struct ArgumentData<F: 'static> {
/// Witness rows
pub witness: ArgumentWitness<F>,
/// Gate coefficients
pub coeffs: Vec<F>,
/// Constants
pub constants: Constants<F>,
pub challenges: BerkeleyChallenges<F>,
}
/// Witness data for a argument
pub struct ArgumentWitness<T> {
/// Witness for current row
pub curr: [T; COLUMNS],
/// Witness for next row
pub next: [T; COLUMNS],
}
impl<T> std::ops::Index<(CurrOrNext, usize)> for ArgumentWitness<T> {
type Output = T;
fn index(&self, idx: (CurrOrNext, usize)) -> &T {
match idx.0 {
Curr => &self.curr[idx.1],
Next => &self.next[idx.1],
}
}
}
/// The interface for a minimal argument implementation.
pub trait Argument<F: PrimeField> {
/// The type of constraints that this will produce.
/// This is important to enforce that we don't combine the constraints
/// with powers of alpha that collide with other mutually inclusive arguments.
const ARGUMENT_TYPE: ArgumentType;
/// The number of constraints created by the argument.
const CONSTRAINTS: u32;
/// Constraints for this argument
fn constraint_checks<T: ExprOps<F, BerkeleyChallengeTerm>>(
env: &ArgumentEnv<F, T>,
cache: &mut Cache,
) -> Vec<T>;
/// Returns the set of constraints required to prove this argument.
fn constraints(cache: &mut Cache) -> Vec<E<F>> {
// Generate constraints
Self::constraint_checks(&ArgumentEnv::default(), cache)
}
/// Returns constraints safely combined via the passed combinator.
fn combined_constraints(alphas: &Alphas<F>, cache: &mut Cache) -> E<F> {
let constraints = Self::constraints(cache);
assert_eq!(constraints.len(), Self::CONSTRAINTS as usize);
let alphas = alphas.get_exponents(Self::ARGUMENT_TYPE, Self::CONSTRAINTS);
let combined_constraints = E::combine_constraints(alphas, constraints);
// An optional gate type, if used to define a gate.
// This is used to filter the gate, to avoid applying it on the entire domain.
if let ArgumentType::Gate(gate_type) = Self::ARGUMENT_TYPE {
index(gate_type) * combined_constraints
} else {
combined_constraints
}
}
}
pub trait DynArgument<F: PrimeField> {
fn constraints(&self, cache: &mut Cache) -> Vec<E<F>>;
fn combined_constraints(&self, alphas: &Alphas<F>, cache: &mut Cache) -> E<F>;
fn argument_type(&self) -> ArgumentType;
}
impl<F: PrimeField, T: Argument<F>> DynArgument<F> for T {
fn constraints(&self, cache: &mut Cache) -> Vec<E<F>> {
<Self as Argument<F>>::constraints(cache)
}
fn combined_constraints(&self, alphas: &Alphas<F>, cache: &mut Cache) -> E<F> {
<Self as Argument<F>>::combined_constraints(alphas, cache)
}
fn argument_type(&self) -> ArgumentType {
<Self as Argument<F>>::ARGUMENT_TYPE
}
}