1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#![allow(clippy::type_complexity)]
#![allow(clippy::boxed_local)]

use crate::{
    expr_eval::SimpleEvalEnv,
    plonkish_lang::{PlonkishChallenge, PlonkishInstance, PlonkishWitness},
};
use ark_ff::{Field, One, Zero};
use ark_poly::{
    univariate::DensePolynomial, EvaluationDomain, Evaluations, Polynomial,
    Radix2EvaluationDomain as R2D,
};
use folding::{
    eval_leaf::EvalLeaf,
    instance_witness::{ExtendedWitness, RelaxedInstance, RelaxedWitness},
    Alphas, FoldingCompatibleExpr, FoldingConfig,
};
use kimchi::{
    self,
    circuits::{
        domains::EvaluationDomains,
        expr::{ColumnEvaluations, ExprError},
    },
    curve::KimchiCurve,
    groupmap::GroupMap,
    plonk_sponge::FrSponge,
    proof::PointEvaluations,
};
use kimchi_msm::{columns::Column as GenericColumn, witness::Witness};
use mina_poseidon::{sponge::ScalarChallenge, FqSponge};
use o1_utils::ExtendedDensePolynomial;
use poly_commitment::{
    commitment::{absorb_commitment, CommitmentCurve, PolyComm},
    kzg::{KZGProof, PairingSRS},
    utils::DensePolynomialOrEvaluations,
    OpenProof, SRS,
};
use rand::{CryptoRng, RngCore};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use std::collections::BTreeMap;
use thiserror::Error;

/// Errors that can arise when creating a proof
#[derive(Error, Debug, Clone)]
pub enum ProverError {
    #[error("the proof could not be constructed: {0}")]
    Generic(&'static str),

    #[error("the provided (witness) constraints was not satisfied: {0}")]
    ConstraintNotSatisfied(String),

    #[error("the provided (witness) constraint has degree {0} > allowed {1}; expr: {2}")]
    ConstraintDegreeTooHigh(u64, u64, String),
}

pub type Pairing = kimchi_msm::BN254;
/// The curve we commit into
pub type G = kimchi_msm::BN254G1Affine;
/// Scalar field of the curve.
pub type Fp = kimchi_msm::Fp;
/// The base field of the curve
/// Used to encode the polynomial commitments
pub type Fq = ark_bn254::Fq;

#[derive(Debug, Clone)]
// TODO Should public input and fixed selectors evaluations be here?
pub struct ProofEvaluations<
    const N_WIT: usize,
    const N_REL: usize,
    const N_DSEL: usize,
    const N_FSEL: usize,
    F,
> {
    /// Witness evaluations, including public inputs
    pub witness_evals: Witness<N_WIT, PointEvaluations<F>>,
    /// Evaluations of fixed selectors.
    pub fixed_selectors_evals: Box<[PointEvaluations<F>; N_FSEL]>,
    pub error_vec: PointEvaluations<F>,
    /// Evaluation of Z_H(ζ) (t_0(X) + ζ^n t_1(X) + ...) at ζω.
    pub ft_eval1: F,
}

/// The trait ColumnEvaluations is used by the verifier.
/// It will return the evaluation of the corresponding column at the
/// evaluation points coined by the verifier during the protocol.
impl<
        const N_WIT: usize,
        const N_REL: usize,
        const N_DSEL: usize,
        const N_FSEL: usize,
        F: Clone,
    > ColumnEvaluations<F> for ProofEvaluations<N_WIT, N_REL, N_DSEL, N_FSEL, F>
{
    type Column = kimchi_msm::columns::Column<usize>;

    fn evaluate(&self, col: Self::Column) -> Result<PointEvaluations<F>, ExprError<Self::Column>> {
        // TODO: substitute when non-literal generic constants are available
        assert!(N_WIT == N_REL + N_DSEL);
        let res = match col {
            Self::Column::Relation(i) => {
                assert!(i < N_REL, "Index out of bounds");
                self.witness_evals[i].clone()
            }
            Self::Column::DynamicSelector(i) => {
                assert!(i < N_DSEL, "Index out of bounds");
                self.witness_evals[N_REL + i].clone()
            }
            Self::Column::FixedSelector(i) => {
                assert!(i < N_FSEL, "Index out of bounds");
                self.fixed_selectors_evals[i].clone()
            }
            _ => panic!("lookup columns not supported"),
        };
        Ok(res)
    }
}

#[derive(Debug, Clone)]
pub struct ProofCommitments<const N_WIT: usize, G: KimchiCurve> {
    /// Commitments to the N columns of the circuits, also called the 'witnesses'.
    /// If some columns are considered as public inputs, it is counted in the witness.
    pub witness_comms: Witness<N_WIT, PolyComm<G>>,
    /// Commitments to the quotient polynomial.
    /// The value contains the chunked polynomials.
    pub t_comm: PolyComm<G>,
}

#[derive(Debug, Clone)]
pub struct Proof<
    const N_WIT: usize,
    const N_REL: usize,
    const N_DSEL: usize,
    const N_FSEL: usize,
    G: KimchiCurve,
    OpeningProof: OpenProof<G>,
> {
    pub proof_comms: ProofCommitments<N_WIT, G>,
    pub proof_evals: ProofEvaluations<N_WIT, N_REL, N_DSEL, N_FSEL, G::ScalarField>,
    pub opening_proof: OpeningProof,

    // Unsure whether this is necessary.
    pub alphas: Alphas<G::ScalarField>,
    pub challenges: [G::ScalarField; 3],
    pub u: G::ScalarField,
}

pub fn prove<
    EFqSponge: Clone + FqSponge<Fq, G, Fp>,
    EFrSponge: FrSponge<Fp>,
    FC: FoldingConfig<Column = GenericColumn<usize>, Curve = G, Challenge = PlonkishChallenge>,
    RNG,
    const N_WIT: usize,
    const N_WIT_QUAD: usize, // witness columns + quad columns
    const N_REL: usize,
    const N_DSEL: usize,
    const N_FSEL: usize,
    const N_ALPHAS: usize,
>(
    domain: EvaluationDomains<Fp>,
    srs: &PairingSRS<Pairing>,
    combined_expr: &FoldingCompatibleExpr<FC>,
    folded_instance: RelaxedInstance<G, PlonkishInstance<G, N_WIT, 3, N_ALPHAS>>,
    folded_witness: RelaxedWitness<G, PlonkishWitness<N_WIT, N_FSEL, Fp>>,
    rng: &mut RNG,
) -> Result<Proof<N_WIT_QUAD, N_WIT_QUAD, N_DSEL, N_FSEL, G, KZGProof<Pairing>>, ProverError>
where
    RNG: RngCore + CryptoRng,
{
    assert_eq!(
        folded_witness.extended_witness.extended.values().len(),
        N_WIT_QUAD - N_WIT
    );
    assert!(N_WIT == N_REL + N_DSEL);

    ////////////////////////////////////////////////////////////////////////////
    // Setting up the protocol
    ////////////////////////////////////////////////////////////////////////////

    let group_map = <G as CommitmentCurve>::Map::setup();

    ////////////////////////////////////////////////////////////////////////////
    // Round 1: Creating and absorbing column commitments
    ////////////////////////////////////////////////////////////////////////////

    let mut fq_sponge = EFqSponge::new(G::other_curve_sponge_params());

    let fixed_selectors_evals_d1: Box<[Evaluations<Fp, R2D<Fp>>; N_FSEL]> =
        folded_witness.extended_witness.witness.fixed_selectors.cols;

    let fixed_selectors_polys: Box<[DensePolynomial<Fp>; N_FSEL]> =
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_evals_d1
                .clone()
                .into_par_iter()
                .map(|evals| evals.interpolate())
                .collect(),
        );

    let fixed_selectors_comms: Box<[PolyComm<G>; N_FSEL]> = {
        let comm = |poly: &DensePolynomial<Fp>| srs.commit_non_hiding(poly, 1);
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_polys
                .as_ref()
                .into_par_iter()
                .map(comm)
                .collect(),
        )
    };

    // Do not use parallelism
    (fixed_selectors_comms)
        .into_iter()
        .for_each(|comm| absorb_commitment(&mut fq_sponge, &comm));

    let witness_main: Witness<N_WIT, _> = folded_witness.extended_witness.witness.witness;
    let witness_ext: BTreeMap<usize, Evaluations<Fp, R2D<Fp>>> =
        folded_witness.extended_witness.extended;

    // Joint main + ext
    let witness_evals_d1: Witness<N_WIT_QUAD, Evaluations<_, _>> = {
        let mut acc = witness_main.cols.to_vec();
        acc.extend(witness_ext.values().cloned());
        acc.try_into().unwrap()
    };

    let witness_polys: Witness<N_WIT_QUAD, DensePolynomial<Fp>> = {
        witness_evals_d1
            .into_par_iter()
            .map(|e| e.interpolate())
            .collect::<Vec<_>>()
            .try_into()
            .unwrap()
    };

    let witness_comms: Witness<N_WIT_QUAD, PolyComm<G>> = {
        let blinders = PolyComm {
            chunks: vec![Fp::one()],
        };
        let comm = {
            |poly: &DensePolynomial<Fp>| {
                // In case the column polynomial is all zeroes, we want to mask the commitment
                let comm = srs.commit_custom(poly, 1, &blinders).unwrap();
                comm.commitment
            }
        };
        (&witness_polys)
            .into_par_iter()
            .map(comm)
            .collect::<Witness<N_WIT_QUAD, PolyComm<G>>>()
    };

    // Do not use parallelism
    (&witness_comms)
        .into_iter()
        .for_each(|comm| absorb_commitment(&mut fq_sponge, comm));

    ////////////////////////////////////////////////////////////////////////////
    // Round 2: Creating and committing to the quotient polynomial
    ////////////////////////////////////////////////////////////////////////////

    let (_, endo_r) = G::endos();

    let quotient_poly = {
        let evaluation_domain = domain.d4;

        let enlarge_to_domain_generic =
            |evaluations: &Evaluations<Fp, R2D<Fp>>, new_domain: R2D<Fp>| {
                assert!(evaluations.domain() == domain.d1);
                evaluations
                    .interpolate_by_ref()
                    .evaluate_over_domain_by_ref(new_domain)
            };

        let enlarge_to_domain = |evaluations: &Evaluations<Fp, R2D<Fp>>| {
            enlarge_to_domain_generic(evaluations, evaluation_domain)
        };

        let simple_eval_env: SimpleEvalEnv<G, N_WIT, N_FSEL> = {
            let ext_witness = ExtendedWitness {
                witness: PlonkishWitness {
                    witness: (&witness_main)
                        .into_par_iter()
                        .map(enlarge_to_domain)
                        .collect(),
                    fixed_selectors: (&fixed_selectors_evals_d1.to_vec())
                        .into_par_iter()
                        .map(enlarge_to_domain)
                        .collect(),
                    phantom: std::marker::PhantomData,
                },
                extended: (&witness_ext)
                    .into_par_iter()
                    .map(|(ix, evals)| (*ix, enlarge_to_domain(evals)))
                    .collect(),
            };

            SimpleEvalEnv {
                ext_witness,
                alphas: folded_instance.extended_instance.instance.alphas.clone(),
                challenges: folded_instance.extended_instance.instance.challenges,
                error_vec: enlarge_to_domain(&folded_witness.error_vec),
                u: folded_instance.u,
            }
        };

        {
            let eval_leaf = simple_eval_env.eval_naive_fcompat(combined_expr);

            let evaluations_big = match eval_leaf {
                EvalLeaf::Result(evaluations) => evaluations,
                EvalLeaf::Col(evaluations) => evaluations.to_vec().clone(),
                _ => panic!("eval_leaf is not Result"),
            };

            let interpolated =
                Evaluations::from_vec_and_domain(evaluations_big, evaluation_domain).interpolate();
            if interpolated.is_zero() {
                println!("Interpolated expression is zero");
            }

            let (quotient, remainder) = interpolated
                .divide_by_vanishing_poly(domain.d1)
                .unwrap_or_else(|| panic!("ERROR: Cannot divide by vanishing polynomial"));
            if !remainder.is_zero() {
                panic!("ERROR: Remainder is not zero for joint folding expression",);
            }

            quotient
        }
    };

    // we interpolate over d4, so number of chunks should be 3
    let num_chunks: usize = 3;

    //~ 1. commit to the quotient polynomial $t$.
    let t_comm = srs.commit_non_hiding(&quotient_poly, num_chunks);

    ////////////////////////////////////////////////////////////////////////////
    // Round 3: Evaluations at ζ and ζω
    ////////////////////////////////////////////////////////////////////////////

    //~ 1. Absorb the commitment of the quotient polynomial with the Fq-Sponge.
    absorb_commitment(&mut fq_sponge, &t_comm);

    //~ 1. Sample ζ with the Fq-Sponge.
    let zeta_chal = ScalarChallenge(fq_sponge.challenge());

    let zeta = zeta_chal.to_field(endo_r);

    let omega = domain.d1.group_gen;
    // We will also evaluate at ζω as lookups do require to go to the next row.
    let zeta_omega = zeta * omega;

    let eval_at_challenge = |p: &DensePolynomial<_>| PointEvaluations {
        zeta: p.evaluate(&zeta),
        zeta_omega: p.evaluate(&zeta_omega),
    };

    // Evaluate the polynomials at ζ and ζω -- Columns
    let witness_point_evals: Witness<N_WIT_QUAD, PointEvaluations<_>> = {
        (&witness_polys)
            .into_par_iter()
            .map(eval_at_challenge)
            .collect::<Witness<N_WIT_QUAD, PointEvaluations<_>>>()
    };

    let fixed_selectors_point_evals: Box<[PointEvaluations<_>; N_FSEL]> = {
        o1_utils::array::vec_to_boxed_array(
            fixed_selectors_polys
                .as_ref()
                .into_par_iter()
                .map(eval_at_challenge)
                .collect::<_>(),
        )
    };

    let error_vec_point_eval = eval_at_challenge(&folded_witness.error_vec.interpolate());

    ////////////////////////////////////////////////////////////////////////////
    // Round 4: Opening proof w/o linearization polynomial
    ////////////////////////////////////////////////////////////////////////////

    // Fiat Shamir - absorbing evaluations
    let fq_sponge_before_evaluations = fq_sponge.clone();
    let mut fr_sponge = EFrSponge::new(G::sponge_params());
    fr_sponge.absorb(&fq_sponge.digest());

    for PointEvaluations { zeta, zeta_omega } in (&witness_point_evals).into_iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    for PointEvaluations { zeta, zeta_omega } in fixed_selectors_point_evals.as_ref().iter() {
        fr_sponge.absorb(zeta);
        fr_sponge.absorb(zeta_omega);
    }

    // Compute ft(X) = \
    //   (1 - ζ^n) \
    //    (t_0(X) + ζ^n t_1(X) + ... + ζ^{kn} t_{k}(X))
    // where \sum_i t_i(X) X^{i n} = t(X), and t(X) is the quotient polynomial.
    // At the end, we get the (partial) evaluation of the constraint polynomial
    // in ζ.
    //
    // Note: both (ζ^n - 1) and (1 - ζ^n) (and C * (1 - ζ^n)) are
    // vanishing polynomial, but we have to be consistent with respect
    // to just one everywhere.
    let ft: DensePolynomial<Fp> = {
        let evaluation_point_to_domain_size = zeta.pow([domain.d1.size]);
        // Compute \sum_i t_i(X) ζ^{i n}
        // First we split t in t_i, and we reduce to degree (n - 1) after using `linearize`
        let t_chunked: DensePolynomial<Fp> = quotient_poly
            .to_chunked_polynomial(num_chunks, domain.d1.size as usize)
            .linearize(evaluation_point_to_domain_size);

        // -Z_H = (1 - ζ^n)
        let minus_vanishing_poly_at_zeta: Fp = -domain.d1.vanishing_polynomial().evaluate(&zeta);
        // Multiply the polynomial \sum_i t_i(X) ζ^{i n} by -Z_H(ζ)
        // (the evaluation in ζ of the vanishing polynomial)
        t_chunked.scale(minus_vanishing_poly_at_zeta)
    };

    // We only evaluate at ζω as the verifier can compute the
    // evaluation at ζ from the independent evaluations at ζ of the
    // witness columns because ft(X) is the constraint polynomial, built from
    // the public constraints.
    // We evaluate at ζω because the lookup argument requires to compute
    // \phi(Xω) - \phi(X).
    let ft_eval1 = ft.evaluate(&zeta_omega);

    // Absorb ft(ζω)
    fr_sponge.absorb(&ft_eval1);

    let v_chal = fr_sponge.challenge();
    let v = v_chal.to_field(endo_r);
    let u_chal = fr_sponge.challenge();
    let u = u_chal.to_field(endo_r);

    let coefficients_form = DensePolynomialOrEvaluations::DensePolynomial;
    let non_hiding = |n_chunks| PolyComm {
        chunks: vec![Fp::zero(); n_chunks],
    };
    let hiding = |n_chunks| PolyComm {
        chunks: vec![Fp::one(); n_chunks],
    };

    // Gathering all polynomials_to_open to use in the opening proof
    let mut polynomials_to_open: Vec<_> = vec![];

    polynomials_to_open.extend(
        (&witness_polys)
            .into_par_iter()
            .map(|poly| (coefficients_form(poly), hiding(1)))
            .collect::<Vec<_>>(),
    );

    // @volhovm: I'm not sure we need to prove opening of fixed
    // selectors in the commitment.
    polynomials_to_open.extend(
        fixed_selectors_polys
            .as_ref()
            .into_par_iter()
            .map(|poly| (coefficients_form(poly), non_hiding(1)))
            .collect::<Vec<_>>(),
    );

    polynomials_to_open.push((coefficients_form(&ft), non_hiding(1)));

    let opening_proof = OpenProof::open::<_, _, R2D<Fp>>(
        srs,
        &group_map,
        polynomials_to_open.as_slice(),
        &[zeta, zeta_omega],
        v,
        u,
        fq_sponge_before_evaluations,
        rng,
    );

    let proof_evals: ProofEvaluations<N_WIT_QUAD, N_WIT_QUAD, N_DSEL, N_FSEL, Fp> = {
        ProofEvaluations {
            witness_evals: witness_point_evals,
            fixed_selectors_evals: fixed_selectors_point_evals,
            error_vec: error_vec_point_eval,
            ft_eval1,
        }
    };

    Ok(Proof {
        proof_comms: ProofCommitments {
            witness_comms,
            t_comm,
        },
        proof_evals,
        opening_proof,
        alphas: folded_instance.extended_instance.instance.alphas,
        challenges: folded_instance.extended_instance.instance.challenges,
        u: folded_instance.u,
    })
}