1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//! This module offers a standard implementation of [FoldingConfig] supporting
//! many use cases
use crate::{
    expressions::FoldingColumnTrait, instance_witness::Witness, FoldingConfig, FoldingEnv,
    Instance, Side,
};
use derivative::Derivative;
use kimchi::{circuits::gate::CurrOrNext, curve::KimchiCurve};
use memoization::ColumnMemoizer;
use poly_commitment::{self, commitment::CommitmentCurve};
use std::{fmt::Debug, hash::Hash, marker::PhantomData, ops::Index};

#[derive(Clone, Default)]
/// Default type for when you don't need structure
pub struct EmptyStructure<G: KimchiCurve>(PhantomData<G::ScalarField>);

impl<G: KimchiCurve, Col> Index<Col> for EmptyStructure<G> {
    type Output = Vec<G::ScalarField>;

    fn index(&self, _index: Col) -> &Self::Output {
        panic!("shouldn't reach this point, as this type only works with witness-only constraint systems");
    }
}

/// A standard folding config that supports:
/// `G`: any curve
/// `Col`: any column implementing [FoldingColumnTrait]
/// `Chall`: any challenge
/// `Sel`: any dynamic selector
/// `Str`: structures that can be indexed by `Col`, thus implementing `Index<Col>`
/// `I`: instances (implementing [Instance]) that can be indexed by `Chall`
/// `W`: witnesses (implementing [Witness]) that can be indexed by `Col` and `Sel`
/// ```ignore
/// use ark_poly::{EvaluationDomain, Radix2EvaluationDomain};
/// use mina_poseidon::FqSponge;
/// use folding::{examples::{BaseSponge, Curve, Fp}, FoldingScheme};
///
/// // instantiating the config with our types and the defaults for selectors and structure
/// type MyConfig = StandardConfig<Curve, MyCol, MyChallenge, MyInstance<Curve>, MyWitness<Curve>>;
/// let constraints = vec![constraint()];
/// let domain = Radix2EvaluationDomain::<Fp>::new(2).unwrap();
/// let srs = poly_commitment::srs::SRS::<Curve>::create(2);
/// srs.get_lagrange_basis(domain);
/// // this is the default structure, which does nothing or panics if
/// // indexed (as it shouldn't be indexed)
/// let structure = EmptyStructure::default();
///
/// // here we can use the config
/// let (scheme, _) =
/// FoldingScheme::<MyConfig>::new(constraints, &srs, domain, &structure);
///
/// let [left, right] = pairs;
/// let left = (left.0, left.1);
/// let right = (right.0, right.1);
///
/// let mut fq_sponge = BaseSponge::new(Curve::other_curve_sponge_params());
/// let _output = scheme.fold_instance_witness_pair(left, right, &mut fq_sponge);
/// ```
#[derive(Derivative)]
#[derivative(Hash, PartialEq, Eq, Debug)]
#[allow(clippy::type_complexity)]
pub struct StandardConfig<G, Col, Chall, I, W, Srs, Sel = (), Str = EmptyStructure<G>>(
    PhantomData<(G, Col, Chall, Sel, Str, I, W, Srs)>,
);

//implementing FoldingConfig
impl<G, Col, Chall, Sel, Str, I, W, Srs> FoldingConfig
    for StandardConfig<G, Col, Chall, I, W, Srs, Sel, Str>
where
    Self: 'static,
    G: CommitmentCurve,
    I: Instance<G> + Index<Chall, Output = G::ScalarField> + Clone,
    W: Witness<G> + Clone,
    W: Index<Col, Output = [G::ScalarField]> + Index<Sel, Output = [G::ScalarField]>,
    Srs: poly_commitment::SRS<G>,
    Col: Hash + Eq + Debug + Clone + FoldingColumnTrait,
    Sel: Ord + Copy + Hash + Debug,
    Chall: Hash + Eq + Debug + Copy,
    Str: Clone + Index<Col, Output = [G::ScalarField]>,
{
    type Column = Col;

    type Selector = Sel;

    type Challenge = Chall;

    type Curve = G;

    type Srs = Srs;

    type Instance = I;

    type Witness = W;

    type Structure = Str;

    type Env = Env<G, Col, Chall, Sel, Str, I, W>;
}
///A generic Index based environment
pub struct Env<G, Col, Chall, Sel, Str, I, W>
where
    G: CommitmentCurve,
    I: Instance<G> + Index<Chall, Output = G::ScalarField> + Clone,
    W: Witness<G> + Clone,
    W: Index<Col, Output = [G::ScalarField]> + Index<Sel, Output = [G::ScalarField]>,
    Col: Hash + Eq,
{
    instances: [I; 2],
    witnesses: [W; 2],
    next_evals: ColumnMemoizer<Col, G::ScalarField, 10>,
    structure: Str,
    //not used but needed as generics for the bounds
    _phantom: PhantomData<(G, Col, Chall, Sel, Str)>,
}

//implementing FoldingEnv
impl<G, Col, Chall, Sel, Str, I, W> FoldingEnv<G::ScalarField, I, W, Col, Chall, Sel>
    for Env<G, Col, Chall, Sel, Str, I, W>
where
    G: CommitmentCurve,
    I: Instance<G> + Index<Chall, Output = G::ScalarField> + Clone,
    W: Witness<G> + Clone,
    W: Index<Col, Output = [G::ScalarField]> + Index<Sel, Output = [G::ScalarField]>,
    Col: FoldingColumnTrait + Eq + Hash,
    Sel: Copy,
    Str: Clone + Index<Col, Output = [G::ScalarField]>,
{
    type Structure = Str;

    fn new(structure: &Self::Structure, instances: [&I; 2], witnesses: [&W; 2]) -> Self {
        // cloning for now, ideally should work with references, but that requires deeper
        // refactorings of folding
        let instances = instances.map(Clone::clone);
        let witnesses = witnesses.map(Clone::clone);
        let structure = structure.clone();
        Self {
            instances,
            witnesses,
            structure,
            next_evals: ColumnMemoizer::new(),
            _phantom: PhantomData,
        }
    }

    fn challenge(&self, challenge: Chall, side: Side) -> G::ScalarField {
        let instance = match side {
            Side::Left => &self.instances[0],
            Side::Right => &self.instances[1],
        };
        // handled through Index in I
        instance[challenge]
    }

    fn col(&self, col: Col, curr_or_next: CurrOrNext, side: Side) -> &[G::ScalarField] {
        let witness = match side {
            Side::Left => &self.witnesses[0],
            Side::Right => &self.witnesses[1],
        };
        // this should hold as long the Index implementations are consistent with the
        // FoldingColumnTrait implementation.
        // either search in witness for witness columns, or in the structure otherwise
        if col.is_witness() {
            match curr_or_next {
                CurrOrNext::Curr => &witness[col],
                CurrOrNext::Next => {
                    let f = || {
                        // simple but not the best, ideally there would be a single vector,
                        // where you push its first element and offer either evals[0..] or
                        // evals[1..].
                        // that would relatively easy to implement in a custom implementation
                        // with just a small change to this trait, but in this generic implementation
                        // it is harder to implement.
                        // The cost is mostly the cost of a clone
                        let evals = &witness[col];
                        let mut next = Vec::with_capacity(evals.len());
                        next.extend(evals[1..].iter());
                        next.push(evals[0]);
                        next
                    };
                    self.next_evals.get_or_insert(col, f)
                }
            }
        } else {
            &self.structure[col]
        }
    }

    fn selector(&self, s: &Sel, side: Side) -> &[G::ScalarField] {
        //similar to the witness case of col, as expected
        let witness = match side {
            Side::Left => &self.witnesses[0],
            Side::Right => &self.witnesses[1],
        };
        &witness[*s]
    }
}

/// contains a data structure useful to support the [CurrOrNext::Next] case
/// in [FoldingEnv::col]
mod memoization {
    use ark_ff::Field;
    use std::{
        cell::{OnceCell, RefCell},
        collections::HashMap,
        hash::Hash,
        sync::atomic::{AtomicUsize, Ordering},
    };

    /// a segment with up to N stored columns, and the potential
    /// next segment, similar to a linked list N-length arrays
    pub struct ColumnMemoizerSegment<F: Field, const N: usize> {
        cols: [OnceCell<Vec<F>>; N],
        next: OnceCell<Box<Self>>,
    }

    impl<F: Field, const N: usize> ColumnMemoizerSegment<F, N> {
        pub fn new() -> Self {
            let cols = [(); N].map(|_| OnceCell::new());
            let next = OnceCell::new();
            Self { cols, next }
        }
        // This will find the column if i < N, and get a reference to it,
        // initializing it with `f` if needed.
        // If i >= N it will continue recursing to the next segment, initializing
        // it if needed
        pub fn get_or_insert<I>(&self, i: usize, f: I) -> &Vec<F>
        where
            I: FnOnce() -> Vec<F>,
        {
            match i {
                i if i < N => {
                    let col = &self.cols[i];
                    col.get_or_init(f)
                }
                i => {
                    let i = i - N;
                    let new = || Box::new(Self::new());
                    let next = self.next.get_or_init(new);
                    next.get_or_insert(i, f)
                }
            }
        }
    }
    /// a hashmap like data structure supporting get-or-insert with
    /// an immutable reference and returning an inmutable reference
    /// without guard
    pub struct ColumnMemoizer<C: Hash + Eq, F: Field, const N: usize> {
        first_segment: ColumnMemoizerSegment<F, N>,
        next: AtomicUsize,
        ids: RefCell<HashMap<C, usize>>,
    }

    impl<C: Hash + Eq, F: Field, const N: usize> ColumnMemoizer<C, F, N> {
        pub fn new() -> Self {
            let first_segment = ColumnMemoizerSegment::new();
            let next = AtomicUsize::from(0);
            let ids = RefCell::new(HashMap::new());
            Self {
                first_segment,
                next,
                ids,
            }
        }
        pub fn get_or_insert<I>(&self, col: C, f: I) -> &Vec<F>
        where
            I: FnOnce() -> Vec<F>,
        {
            // this will find or assign an id for the column and then
            // search the segments using the id
            let mut ids = self.ids.borrow_mut();
            let new_id = || self.next.fetch_add(1, Ordering::Relaxed);
            let id = ids.entry(col).or_insert_with(new_id);
            self.first_segment.get_or_insert(*id, f)
        }
    }
}

#[cfg(feature = "bn254")]
mod example {
    use crate::{
        examples::{BaseSponge, Curve, Fp},
        expressions::{FoldingColumnTrait, FoldingCompatibleExprInner},
        instance_witness::Foldable,
        standard_config::{EmptyStructure, StandardConfig},
        FoldingCompatibleExpr, Instance, Witness,
    };
    use ark_ec::ProjectiveCurve;
    use kimchi::{
        circuits::{expr::Variable, gate::CurrOrNext},
        curve::KimchiCurve,
    };
    use std::ops::Index;

    // we create some example types

    // an instance
    #[derive(Clone, Debug)]
    struct MyInstance<G: KimchiCurve> {
        commitments: [G; 3],
        beta: G::ScalarField,
        gamma: G::ScalarField,
    }

    // implementing foldable
    impl<G: KimchiCurve> Foldable<G::ScalarField> for MyInstance<G> {
        fn combine(mut a: Self, b: Self, challenge: G::ScalarField) -> Self {
            for (a, b) in a.commitments.iter_mut().zip(b.commitments) {
                *a = *a + b.mul(challenge).into_affine();
            }
            a
        }
    }
    // and instance
    impl<G: KimchiCurve> Instance<G> for MyInstance<G> {
        fn to_absorb(&self) -> (Vec<<G>::ScalarField>, Vec<G>) {
            (vec![], self.commitments.to_vec())
        }

        fn get_alphas(&self) -> &crate::Alphas<<G>::ScalarField> {
            todo!()
        }
    }
    // a witness
    #[derive(Clone, Debug)]
    struct MyWitness<G: KimchiCurve> {
        columns: [Vec<G::ScalarField>; 3],
    }

    // implementing foldable
    impl<G: KimchiCurve> Foldable<G::ScalarField> for MyWitness<G> {
        fn combine(mut a: Self, b: Self, challenge: G::ScalarField) -> Self {
            for (a, b) in a.columns.iter_mut().zip(b.columns) {
                for (a, b) in a.iter_mut().zip(b) {
                    *a += b * challenge;
                }
            }
            a
        }
    }
    // and Witness
    impl<G: KimchiCurve> Witness<G> for MyWitness<G> {}

    // a type for the columns
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
    enum MyCol {
        A,
        B,
        C,
    }

    // implementing FoldingColumnTrait, trivial in this witness-only case
    impl FoldingColumnTrait for MyCol {
        fn is_witness(&self) -> bool {
            true
        }
    }
    // a challenge
    #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
    enum MyChallenge {
        Beta,
        Gamma,
    }

    // now, to use this config with our types, we need to implement Index
    // if not already implemented, to resolve access to values in instance,
    // witness, and structure if present

    // for witness columns
    impl<G: KimchiCurve> Index<MyCol> for MyWitness<G> {
        type Output = Vec<G::ScalarField>;

        fn index(&self, index: MyCol) -> &Self::Output {
            let index = match index {
                MyCol::A => 0,
                MyCol::B => 1,
                MyCol::C => 2,
            };
            &self.columns[index]
        }
    }
    // for selectors, () in this case as we have none
    impl<G: KimchiCurve> Index<()> for MyWitness<G> {
        type Output = [G::ScalarField];

        fn index(&self, _index: ()) -> &Self::Output {
            unreachable!()
        }
    }
    // for challenges, which should live in the instance
    impl<G: KimchiCurve> Index<MyChallenge> for MyInstance<G> {
        type Output = G::ScalarField;

        fn index(&self, index: MyChallenge) -> &Self::Output {
            match index {
                MyChallenge::Beta => &self.beta,
                MyChallenge::Gamma => &self.gamma,
            }
        }
    }

    // now we can get an instance of StandardConfig, where selectors and structures have
    // default for cases like this where we don't need them
    type MyConfig<G> = StandardConfig<G, MyCol, MyChallenge, MyInstance<G>, MyWitness<G>>;

    // creating some example constraint
    fn constraint<G: KimchiCurve>() -> FoldingCompatibleExpr<MyConfig<G>> {
        let column = |col| {
            FoldingCompatibleExpr::Atom(FoldingCompatibleExprInner::Cell(Variable {
                col,
                row: CurrOrNext::Curr,
            }))
        };
        let chall =
            |chall| FoldingCompatibleExpr::Atom(FoldingCompatibleExprInner::Challenge(chall));
        let a = column(MyCol::A);
        let b = column(MyCol::B);
        let c = column(MyCol::C);
        let beta = chall(MyChallenge::Beta);
        let gamma = chall(MyChallenge::Gamma);
        (a + b - c) * (beta + gamma)
    }

    // here an example of how the config would be used, which is similar to any
    // other custom config.
    #[allow(dead_code)]
    fn fold(pairs: [(MyInstance<Curve>, MyWitness<Curve>); 2]) {
        use crate::FoldingScheme;
        use ark_poly::{EvaluationDomain, Radix2EvaluationDomain};
        use mina_poseidon::FqSponge;

        let constraints = vec![constraint()];
        let domain = Radix2EvaluationDomain::<Fp>::new(2).unwrap();
        let srs = poly_commitment::ipa::SRS::<Curve>::create(2);
        srs.get_lagrange_basis(domain);
        // this is the default structure, which does nothing or panics if
        // indexed (as it shouldn't be indexed)
        let structure = EmptyStructure::default();

        // here we can use the config
        let (scheme, _) =
            FoldingScheme::<MyConfig<Curve>>::new(constraints, &srs, domain, &structure);

        let [left, right] = pairs;
        let left = (left.0, left.1);
        let right = (right.0, right.1);

        let mut fq_sponge = BaseSponge::new(Curve::other_curve_sponge_params());
        let _output = scheme.fold_instance_witness_pair(left, right, &mut fq_sponge);
    }
}