1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
//! This library implements basic components to fold computations expressed as
//! multivariate polynomials of any degree. It is based on the "folding scheme"
//! described in the [Nova](https://eprint.iacr.org/2021/370.pdf) paper.
//! It implements different components to achieve it:
//! - [quadraticization]: a submodule to reduce multivariate polynomials
//! to degree `2`.
//! - [decomposable_folding]: a submodule to "parallelize" folded
//! computations.
//!
//! Examples can be found in the directory `examples`.
//!
//! The folding library is meant to be used in harmony with the library `ivc`.
//! To use the library, the user has to define first a "folding configuration"
//! described in the trait [FoldingConfig].
//! After that, the user can provide folding compatible expressions and build a
//! folding scheme [FoldingScheme]. The process is described in the module
//! [expressions].
// TODO: the documentation above might need more descriptions.
use ark_ec::AffineRepr;
use ark_ff::{Field, One, Zero};
use ark_poly::{EvaluationDomain, Evaluations, Radix2EvaluationDomain};
use error_term::{compute_error, ExtendedEnv};
use expressions::{folding_expression, FoldingColumnTrait, IntegratedFoldingExpr};
use instance_witness::{Foldable, RelaxableInstance, RelaxablePair};
use kimchi::circuits::gate::CurrOrNext;
use mina_poseidon::FqSponge;
use poly_commitment::{commitment::CommitmentCurve, PolyComm, SRS};
use quadraticization::ExtendedWitnessGenerator;
use std::{
fmt::Debug,
hash::Hash,
iter::successors,
rc::Rc,
sync::atomic::{AtomicUsize, Ordering},
};
// Make available outside the crate to avoid code duplication
pub use error_term::Side;
pub use expressions::{ExpExtension, FoldingCompatibleExpr};
pub use instance_witness::{Instance, RelaxedInstance, RelaxedWitness, Witness};
pub mod columns;
pub mod decomposable_folding;
mod error_term;
pub mod eval_leaf;
pub mod expressions;
pub mod instance_witness;
pub mod quadraticization;
pub mod standard_config;
/// Define the different structures required for the examples (both internal and
/// external)
pub mod checker;
// Simple type alias as ScalarField/BaseField is often used. Reduce type
// complexity for clippy.
// Should be moved into FoldingConfig, but associated type defaults are unstable
// at the moment.
type ScalarField<C> = <<C as FoldingConfig>::Curve as AffineRepr>::ScalarField;
type BaseField<C> = <<C as FoldingConfig>::Curve as AffineRepr>::BaseField;
// 'static seems to be used for expressions. Can we get rid of it?
pub trait FoldingConfig: Debug + 'static {
type Column: FoldingColumnTrait + Debug + Eq + Hash;
// in case of using docomposable folding, if not it can be just ()
type Selector: Clone + Debug + Eq + Hash + Copy + Ord + PartialOrd;
/// The type of an abstract challenge that can be found in the expressions
/// provided as constraints.
type Challenge: Clone + Copy + Debug + Eq + Hash;
/// The target curve used by the polynomial commitment
type Curve: CommitmentCurve;
/// The SRS used by the polynomial commitment. The SRS is used to commit to
/// the additional columns that are added by the quadraticization.
type Srs: SRS<Self::Curve>;
/// For Plonk, it will be the commitments to the polynomials and the challenges
type Instance: Instance<Self::Curve> + Clone;
/// For PlonK, it will be the polynomials in evaluation form that we commit
/// to, i.e. the columns.
/// In the generic prover/verifier, it would be `kimchi_msm::witness::Witness`.
type Witness: Witness<Self::Curve> + Clone;
type Structure: Clone;
type Env: FoldingEnv<
<Self::Curve as AffineRepr>::ScalarField,
Self::Instance,
Self::Witness,
Self::Column,
Self::Challenge,
Self::Selector,
Structure = Self::Structure,
>;
}
/// Describe a folding environment.
/// The type parameters are:
/// - `F`: The field of the circuit/computation
/// - `I`: The instance type, i.e the public inputs
/// - `W`: The type of the witness, i.e. the private inputs
/// - `Col`: The type of the column
/// - `Chal`: The type of the challenge
/// - `Selector`: The type of the selector
pub trait FoldingEnv<F: Zero + Clone, I, W, Col, Chal, Selector> {
/// Structure which could be storing useful information like selectors, etc.
type Structure;
/// Creates a new environment storing the structure, instances and
/// witnesses.
fn new(structure: &Self::Structure, instances: [&I; 2], witnesses: [&W; 2]) -> Self;
/// Obtains a given challenge from the expanded instance for one side.
/// The challenges are stored inside the instances structs.
fn challenge(&self, challenge: Chal, side: Side) -> F;
/// Returns the evaluations of a given column witness at omega or zeta*omega.
fn col(&self, col: Col, curr_or_next: CurrOrNext, side: Side) -> &[F];
/// similar to [Self::col], but folding may ask for a dynamic selector directly
/// instead of just column that happens to be a selector
fn selector(&self, s: &Selector, side: Side) -> &[F];
}
type Evals<F> = Evaluations<F, Radix2EvaluationDomain<F>>;
pub struct FoldingScheme<'a, CF: FoldingConfig> {
pub expression: IntegratedFoldingExpr<CF>,
pub srs: &'a CF::Srs,
pub domain: Radix2EvaluationDomain<ScalarField<CF>>,
pub zero_vec: Evals<ScalarField<CF>>,
pub structure: CF::Structure,
pub extended_witness_generator: ExtendedWitnessGenerator<CF>,
quadraticization_columns: usize,
}
impl<'a, CF: FoldingConfig> FoldingScheme<'a, CF> {
pub fn new(
constraints: Vec<FoldingCompatibleExpr<CF>>,
srs: &'a CF::Srs,
domain: Radix2EvaluationDomain<ScalarField<CF>>,
structure: &CF::Structure,
) -> (Self, FoldingCompatibleExpr<CF>) {
let (expression, extended_witness_generator, quadraticization_columns) =
folding_expression(constraints);
let zero = <ScalarField<CF>>::zero();
let evals = std::iter::repeat(zero).take(domain.size()).collect();
let zero_vec = Evaluations::from_vec_and_domain(evals, domain);
let final_expression = expression.clone().final_expression();
let scheme = Self {
expression,
srs,
domain,
zero_vec,
structure: structure.clone(),
extended_witness_generator,
quadraticization_columns,
};
(scheme, final_expression)
}
/// Return the number of additional columns added by quadraticization
pub fn get_number_of_additional_columns(&self) -> usize {
self.quadraticization_columns
}
/// This is the main entry point to fold two instances and their witnesses.
/// The process is as follows:
/// - Both pairs are relaxed.
/// - Both witnesses and instances are extended, i.e. all polynomials are
/// reduced to degree 2 and additional constraints are added to the
/// expression.
/// - While computing the commitments to the additional columns, the
/// commitments are added into a list to absorb them into the sponge later.
/// - The error terms are computed and committed.
/// - The sponge absorbs the commitments and challenges.
#[allow(clippy::type_complexity)]
pub fn fold_instance_witness_pair<A, B, Sponge>(
&self,
a: A,
b: B,
fq_sponge: &mut Sponge,
) -> FoldingOutput<CF>
where
A: RelaxablePair<CF::Curve, CF::Instance, CF::Witness>,
B: RelaxablePair<CF::Curve, CF::Instance, CF::Witness>,
Sponge: FqSponge<BaseField<CF>, CF::Curve, ScalarField<CF>>,
{
let a = a.relax(&self.zero_vec);
let b = b.relax(&self.zero_vec);
let u = (a.0.u, b.0.u);
let (left_instance, left_witness) = a;
let (right_instance, right_witness) = b;
let env = ExtendedEnv::new(
&self.structure,
[left_instance, right_instance],
[left_witness, right_witness],
self.domain,
None,
);
// Computing the additional columns, resulting of the quadritization
// process.
// Side-effect: commitments are added in both relaxed (extended) instance.
let env: ExtendedEnv<CF> =
env.compute_extension(&self.extended_witness_generator, self.srs);
// Computing the error terms
let error: [Vec<ScalarField<CF>>; 2] = compute_error(&self.expression, &env, u);
let error_evals = error.map(|e| Evaluations::from_vec_and_domain(e, self.domain));
// Committing to the cross terms
// Default blinder for committing to the cross terms
let blinders = PolyComm::new(vec![ScalarField::<CF>::one()]);
let error_commitments = error_evals
.iter()
.map(|e| {
self.srs
.commit_evaluations_custom(self.domain, e, &blinders)
.unwrap()
.commitment
})
.collect::<Vec<_>>();
let error_commitments: [PolyComm<CF::Curve>; 2] = error_commitments.try_into().unwrap();
let error: [Vec<_>; 2] = error_evals.map(|e| e.evals);
// sanity check to verify that we only have one commitment in polycomm
// (i.e. domain = poly size)
assert_eq!(error_commitments[0].len(), 1);
assert_eq!(error_commitments[1].len(), 1);
let t_0 = &error_commitments[0].get_first_chunk();
let t_1 = &error_commitments[1].get_first_chunk();
// Absorbing the commitments into the sponge
let to_absorb = env.to_absorb(t_0, t_1);
fq_sponge.absorb_fr(&to_absorb.0);
fq_sponge.absorb_g(&to_absorb.1);
let challenge = fq_sponge.challenge();
let (
[relaxed_extended_left_instance, relaxed_extended_right_instance],
[relaxed_extended_left_witness, relaxed_extended_right_witness],
) = env.unwrap();
let folded_instance = RelaxedInstance::combine_and_sub_cross_terms(
// FIXME: remove clone
relaxed_extended_left_instance.clone(),
relaxed_extended_right_instance.clone(),
challenge,
&error_commitments,
);
let folded_witness = RelaxedWitness::combine_and_sub_cross_terms(
relaxed_extended_left_witness,
relaxed_extended_right_witness,
challenge,
error,
);
FoldingOutput {
folded_instance,
folded_witness,
t_0: error_commitments[0].clone(),
t_1: error_commitments[1].clone(),
relaxed_extended_left_instance,
relaxed_extended_right_instance,
to_absorb,
}
}
/// Fold two relaxable instances into a relaxed instance.
/// It is parametrized by two different types `A` and `B` that represent
/// "relaxable" instances to be able to fold a normal and "already relaxed"
/// instance.
pub fn fold_instance_pair<A, B, Sponge>(
&self,
a: A,
b: B,
error_commitments: [PolyComm<CF::Curve>; 2],
fq_sponge: &mut Sponge,
) -> RelaxedInstance<CF::Curve, CF::Instance>
where
A: RelaxableInstance<CF::Curve, CF::Instance>,
B: RelaxableInstance<CF::Curve, CF::Instance>,
Sponge: FqSponge<BaseField<CF>, CF::Curve, ScalarField<CF>>,
{
let a: RelaxedInstance<CF::Curve, CF::Instance> = a.relax();
let b: RelaxedInstance<CF::Curve, CF::Instance> = b.relax();
// sanity check to verify that we only have one commitment in polycomm
// (i.e. domain = poly size)
assert_eq!(error_commitments[0].len(), 1);
assert_eq!(error_commitments[1].len(), 1);
let to_absorb = {
let mut left = a.to_absorb();
let right = b.to_absorb();
left.0.extend(right.0);
left.1.extend(right.1);
left.1.extend([
error_commitments[0].get_first_chunk(),
error_commitments[1].get_first_chunk(),
]);
left
};
fq_sponge.absorb_fr(&to_absorb.0);
fq_sponge.absorb_g(&to_absorb.1);
let challenge = fq_sponge.challenge();
RelaxedInstance::combine_and_sub_cross_terms(a, b, challenge, &error_commitments)
}
#[allow(clippy::type_complexity)]
/// Verifier of the folding scheme; returns a new folded instance,
/// which can be then compared with the one claimed to be the real
/// one.
pub fn verify_fold<Sponge>(
&self,
left_instance: RelaxedInstance<CF::Curve, CF::Instance>,
right_instance: RelaxedInstance<CF::Curve, CF::Instance>,
t_0: PolyComm<CF::Curve>,
t_1: PolyComm<CF::Curve>,
fq_sponge: &mut Sponge,
) -> RelaxedInstance<CF::Curve, CF::Instance>
where
Sponge: FqSponge<BaseField<CF>, CF::Curve, ScalarField<CF>>,
{
let to_absorb = {
let mut left = left_instance.to_absorb();
let right = right_instance.to_absorb();
left.0.extend(right.0);
left.1.extend(right.1);
left.1
.extend([t_0.get_first_chunk(), t_1.get_first_chunk()]);
left
};
fq_sponge.absorb_fr(&to_absorb.0);
fq_sponge.absorb_g(&to_absorb.1);
let challenge = fq_sponge.challenge();
RelaxedInstance::combine_and_sub_cross_terms(
// FIXME: remove clone
left_instance.clone(),
right_instance.clone(),
challenge,
&[t_0, t_1],
)
}
}
/// Output of the folding prover
pub struct FoldingOutput<C: FoldingConfig> {
/// The folded instance, containing, in particular, the result `C_l + r C_r`
pub folded_instance: RelaxedInstance<C::Curve, C::Instance>,
/// Folded witness, containing, in particular, the result of the evaluations
/// `W_l + r W_r`
pub folded_witness: RelaxedWitness<C::Curve, C::Witness>,
/// The error terms of degree 1, see the top-level documentation of
/// [crate::expressions]
pub t_0: PolyComm<C::Curve>,
/// The error terms of degree 2, see the top-level documentation of
/// [crate::expressions]
pub t_1: PolyComm<C::Curve>,
/// The left relaxed instance, including the potential additional columns
/// added by quadritization
pub relaxed_extended_left_instance: RelaxedInstance<C::Curve, C::Instance>,
/// The right relaxed instance, including the potential additional columns
/// added by quadritization
pub relaxed_extended_right_instance: RelaxedInstance<C::Curve, C::Instance>,
/// Elements to absorbed in IVC, in the same order as done in folding
pub to_absorb: (Vec<ScalarField<C>>, Vec<C::Curve>),
}
impl<C: FoldingConfig> FoldingOutput<C> {
#[allow(clippy::type_complexity)]
pub fn pair(
self,
) -> (
RelaxedInstance<C::Curve, C::Instance>,
RelaxedWitness<C::Curve, C::Witness>,
) {
(self.folded_instance, self.folded_witness)
}
}
/// Combinators that will be used to fold the constraints,
/// called the "alphas".
/// The alphas are exceptional, their number cannot be known ahead of time as it
/// will be defined by folding.
/// The values will be computed as powers in new instances, but after folding
/// each alpha will be a linear combination of other alphas, instand of a power
/// of other element. This type represents that, allowing to also recognize
/// which case is present.
#[derive(Debug, Clone)]
pub enum Alphas<F: Field> {
Powers(F, Rc<AtomicUsize>),
Combinations(Vec<F>),
}
impl<F: Field> PartialEq for Alphas<F> {
fn eq(&self, other: &Self) -> bool {
// Maybe there's a more efficient way
self.clone().powers() == other.clone().powers()
}
}
impl<F: Field> Eq for Alphas<F> {}
impl<F: Field> Foldable<F> for Alphas<F> {
fn combine(a: Self, b: Self, challenge: F) -> Self {
let a = a.powers();
let b = b.powers();
assert_eq!(a.len(), b.len());
let comb = a
.into_iter()
.zip(b)
.map(|(a, b)| a + b * challenge)
.collect();
Self::Combinations(comb)
}
}
impl<F: Field> Alphas<F> {
pub fn new(alpha: F) -> Self {
Self::Powers(alpha, Rc::new(AtomicUsize::from(0)))
}
pub fn new_sized(alpha: F, count: usize) -> Self {
Self::Powers(alpha, Rc::new(AtomicUsize::from(count)))
}
pub fn get(&self, i: usize) -> Option<F> {
match self {
Alphas::Powers(alpha, count) => {
let _ = count.fetch_max(i + 1, Ordering::Relaxed);
let i = [i as u64];
Some(alpha.pow(i))
}
Alphas::Combinations(alphas) => alphas.get(i).cloned(),
}
}
pub fn powers(self) -> Vec<F> {
match self {
Alphas::Powers(alpha, count) => {
let n = count.load(Ordering::Relaxed);
let alphas = successors(Some(F::one()), |last| Some(*last * alpha));
alphas.take(n).collect()
}
Alphas::Combinations(c) => c,
}
}
}