1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
//! This module defines a list of traits and structures that are used by the
//! folding scheme.
//! The folding library is built over generic traits like [Instance] and
//! [Witness] that defines the the NP relation R.
//!
//! This module describes 3 different types of instance/witness pairs:
//! - [Instance] and [Witness]: the original instance and witness. These are the
//! ones that the user must provide.
//! - [ExtendedInstance] and [ExtendedWitness]: the instance and witness
//! extended by quadraticization.
//! - [RelaxedInstance] and [RelaxedWitness]: the instance and witness related
//! to the relaxed/homogeneous polynomials.
//!
//! Note that [Instance], [ExtendedInstance] and [RelaxedInstance] are
//! supposed to be used to encapsulate the public inputs and challenges. It is
//! the common information the prover and verifier have.
//! [Witness], [ExtendedWitness] and [RelaxedWitness] are supposed to be used
//! to encapsulate the private inputs. For instance, it is the evaluations of
//! the polynomials.
//!
//! A generic trait [Foldable] is defined to combine two objects of the same
//! type using a challenge.
// FIXME: for optimisation, as values are not necessarily Fp elements and are
// relatively small, we could get rid of the scalar field objects, and only use
// bigint where we only apply the modulus when needed.
use crate::{Alphas, Evals};
use ark_ff::Field;
use num_traits::One;
use poly_commitment::commitment::{CommitmentCurve, PolyComm};
use std::collections::BTreeMap;
pub trait Foldable<F: Field> {
/// Combine two objects 'a' and 'b' into a new object using the challenge.
// FIXME: rename in fold2
fn combine(a: Self, b: Self, challenge: F) -> Self;
}
pub trait Instance<G: CommitmentCurve>: Sized + Foldable<G::ScalarField> {
/// This method returns the scalars and commitments that must be absorbed by
/// the sponge. It is not supposed to do any absorption itself, and the user
/// is responsible for calling the sponge absorb methods with the elements
/// returned by this method.
/// When called on a RelaxedInstance, elements will be returned in the
/// following order, for given instances L and R
/// ```text
/// scalar = L.to_absorb().0 | L.u | R.to_absorb().0 | R.u
/// points_l = L.to_absorb().1 | L.extended | L.error // where extended is the commitments to the extra columns
/// points_r = R.to_absorb().1 | R.extended | R.error // where extended is the commitments to the extra columns
/// t_0 and t_1 first and second error terms
/// points = points_l | points_r | t_0 | t_1
/// ```
/// A user implementing the IVC circuit should absorb the elements in the
/// following order:
/// ```text
/// sponge.absorb_fr(scalar); // absorb the scalar elements
/// sponge.absorb_g(points); // absorb the commitments
/// ```
/// This is the order used by the folding library in the method
/// `fold_instance_witness_pair`.
/// From there, a challenge can be coined using:
/// ```text
/// let challenge_r = sponge.challenge();
/// ```
fn to_absorb(&self) -> (Vec<G::ScalarField>, Vec<G>);
/// Returns the alphas values for the instance
fn get_alphas(&self) -> &Alphas<G::ScalarField>;
/// Return the blinder that can be used while committing to polynomials.
fn get_blinder(&self) -> G::ScalarField;
}
pub trait Witness<G: CommitmentCurve>: Sized + Foldable<G::ScalarField> {}
// -- Structures that consist of extending the original instance and witness
// -- with the extra columns added by quadraticization.
impl<G: CommitmentCurve, W: Witness<G>> ExtendedWitness<G, W> {
/// This method returns an extended witness which is defined as the witness itself,
/// followed by an empty BTreeMap.
/// The map will be later filled by the quadraticization witness generator.
fn extend(witness: W) -> ExtendedWitness<G, W> {
let extended = BTreeMap::new();
ExtendedWitness { witness, extended }
}
}
impl<G: CommitmentCurve, I: Instance<G>> ExtendedInstance<G, I> {
/// This method returns an extended instance which is defined as the instance itself,
/// followed by an empty vector.
fn extend(instance: I) -> ExtendedInstance<G, I> {
ExtendedInstance {
instance,
extended: vec![],
}
}
}
// -- Extended witness
/// This structure represents a witness extended with extra columns that are
/// added by quadraticization
#[derive(Clone, Debug)]
pub struct ExtendedWitness<G: CommitmentCurve, W: Witness<G>> {
/// This is the original witness, without quadraticization
pub witness: W,
/// Extra columns added by quadraticization to lower the degree of
/// expressions to 2
pub extended: BTreeMap<usize, Evals<G::ScalarField>>,
}
impl<G: CommitmentCurve, W: Witness<G>> Foldable<G::ScalarField> for ExtendedWitness<G, W> {
fn combine(a: Self, b: Self, challenge: <G>::ScalarField) -> Self {
let Self {
witness: witness1,
extended: ex1,
} = a;
let Self {
witness: witness2,
extended: ex2,
} = b;
// We fold the original witness
let witness = W::combine(witness1, witness2, challenge);
// And we fold the columns created by quadraticization.
// W <- W1 + c W2
let extended = ex1
.into_iter()
.zip(ex2)
.map(|(a, b)| {
let (i, mut evals) = a;
assert_eq!(i, b.0);
evals
.evals
.iter_mut()
.zip(b.1.evals)
.for_each(|(a, b)| *a += b * challenge);
(i, evals)
})
.collect();
Self { witness, extended }
}
}
impl<G: CommitmentCurve, W: Witness<G>> Witness<G> for ExtendedWitness<G, W> {}
impl<G: CommitmentCurve, W: Witness<G>> ExtendedWitness<G, W> {
pub(crate) fn add_witness_evals(&mut self, i: usize, evals: Evals<G::ScalarField>) {
self.extended.insert(i, evals);
}
/// Return true if the no extra columns are added by quadraticization
///
/// Can be used to know if the extended witness columns are already
/// computed, to avoid overriding them
pub fn is_extended(&self) -> bool {
!self.extended.is_empty()
}
}
// -- Extended instance
/// An extended instance is an instance that has been extended with extra
/// columns by quadraticization.
/// The original instance is stored in the `instance` field.
/// The extra columns are stored in the `extended` field.
/// For instance, if the original instance has `n` columns, and the system is
/// described by a degree 3 polynomial, an additional column will be added, and
/// `extended` will contain `1` commitment.
// FIXME: We should forbid cloning, for memory footprint.
#[derive(PartialEq, Eq, Clone)]
pub struct ExtendedInstance<G: CommitmentCurve, I: Instance<G>> {
/// The original instance.
pub instance: I,
/// Commitments to the extra columns added by quadraticization
pub extended: Vec<PolyComm<G>>,
}
impl<G: CommitmentCurve, I: Instance<G>> Foldable<G::ScalarField> for ExtendedInstance<G, I> {
fn combine(a: Self, b: Self, challenge: <G>::ScalarField) -> Self {
let Self {
instance: instance1,
extended: ex1,
} = a;
let Self {
instance: instance2,
extended: ex2,
} = b;
// Combining first the existing commitments (i.e. not the one added by
// quadraticization)
// They are supposed to be blinded already
let instance = I::combine(instance1, instance2, challenge);
// For each commitment, compute
// Comm(W) + c * Comm(W')
let extended = ex1
.into_iter()
.zip(ex2)
.map(|(a, b)| &a + &b.scale(challenge))
.collect();
Self { instance, extended }
}
}
impl<G: CommitmentCurve, I: Instance<G>> Instance<G> for ExtendedInstance<G, I> {
/// Return the elements to be absorbed by the sponge
///
/// The commitments to the additional columns created by quadriticization
/// are appended to the existing commitments of the initial instance
/// to be absorbed. The scalars are unchanged.
fn to_absorb(&self) -> (Vec<G::ScalarField>, Vec<G>) {
let mut elements = self.instance.to_absorb();
let extended_commitments = self.extended.iter().map(|commit| {
assert_eq!(commit.len(), 1);
commit.get_first_chunk()
});
elements.1.extend(extended_commitments);
elements
}
fn get_alphas(&self) -> &Alphas<G::ScalarField> {
self.instance.get_alphas()
}
/// Returns the blinder value. It is the same as the one of the original
fn get_blinder(&self) -> G::ScalarField {
self.instance.get_blinder()
}
}
// -- "Relaxed"/"Homogenized" structures
/// A relaxed instance is an instance that has been relaxed by the folding scheme.
/// It contains the original instance, extended with the columns added by
/// quadriticization, the scalar `u` and a commitment to the
/// slack/error term.
/// See page 15 of [Nova](https://eprint.iacr.org/2021/370.pdf).
// FIXME: We should forbid cloning, for memory footprint.
#[derive(PartialEq, Eq, Clone)]
pub struct RelaxedInstance<G: CommitmentCurve, I: Instance<G>> {
/// The original instance, extended with the columns added by
/// quadriticization
pub extended_instance: ExtendedInstance<G, I>,
/// The scalar `u` that is used to homogenize the polynomials
pub u: G::ScalarField,
/// The commitment to the error term, introduced when homogenizing the
/// polynomials
pub error_commitment: PolyComm<G>,
/// Blinder used for the commitments to the cross terms
pub blinder: G::ScalarField,
}
impl<G: CommitmentCurve, I: Instance<G>> RelaxedInstance<G, I> {
/// Returns the elements to be absorbed by the sponge
///
/// The scalar elements of the are appended with the scalar `u` and the
/// commitments are appended by the commitment to the error term.
pub fn to_absorb(&self) -> (Vec<G::ScalarField>, Vec<G>) {
let mut elements = self.extended_instance.to_absorb();
elements.0.push(self.u);
assert_eq!(self.error_commitment.len(), 1);
elements.1.push(self.error_commitment.get_first_chunk());
elements
}
/// Provides access to commitments to the extra columns added by
/// quadraticization
pub fn get_extended_column_commitment(&self, i: usize) -> Option<&PolyComm<G>> {
self.extended_instance.extended.get(i)
}
/// Combining the commitments of each instance and adding the cross terms
/// into the error term.
/// This corresponds to the computation `E <- E1 - c T1 - c^2 T2 + c^3 E2`.
/// As we do support folding of degree 3, we have two cross terms `T1` and
/// `T2`.
/// For more information, see the [top-level
/// documentation](crate::expressions).
pub(super) fn combine_and_sub_cross_terms(
a: Self,
b: Self,
challenge: <G>::ScalarField,
cross_terms: &[PolyComm<G>; 2],
) -> Self {
// Compute E1 + c^3 E2 and all other folding of commitments. The
// resulting error commitment is stored in res.commitment.
let mut res = Self::combine(a, b, challenge);
let [t0, t1] = cross_terms;
// Eq 4, page 15 of the Nova paper
// Computing (E1 + c^3 E2) - c T1 - c^2 T2
res.error_commitment =
&res.error_commitment - (&(&t0.scale(challenge) + &t1.scale(challenge.square())));
res
}
}
/// A relaxed instance can be folded.
impl<G: CommitmentCurve, I: Instance<G>> Foldable<G::ScalarField> for RelaxedInstance<G, I> {
/// Combine two relaxed instances into a new relaxed instance.
fn combine(a: Self, b: Self, challenge: <G>::ScalarField) -> Self {
// We do support degree 3 folding, therefore, we must compute:
// E <- E1 - (c T1 + c^2 T2) + c^3 E2
// (page 15, eq 3 of the Nova paper)
// The term T1 and T2 are the cross terms
let challenge_square = challenge * challenge;
let challenge_cube = challenge_square * challenge;
let RelaxedInstance {
extended_instance: extended_instance_1,
u: u1,
error_commitment: e1,
blinder: blinder1,
} = a;
let RelaxedInstance {
extended_instance: extended_instance_2,
u: u2,
error_commitment: e2,
blinder: blinder2,
} = b;
// We simply fold the blinders
// = 1 = 1
// r_E <- r_E1 + c r_T1 + c^2 r_T2 + c^3 r_E2
let blinder = blinder1 + challenge + challenge_square + challenge_cube * blinder2;
let extended_instance =
<ExtendedInstance<G, I>>::combine(extended_instance_1, extended_instance_2, challenge);
// Combining the challenges
// eq 3, page 15 of the Nova paper
let u = u1 + u2 * challenge;
// We do have 2 cross terms as we have degree 3 folding
// e1 + c^3 e^2
let error_commitment = &e1 + &e2.scale(challenge_cube);
RelaxedInstance {
// I <- I1 + c I2
extended_instance,
// u <- u1 + c u2
u,
// E <- E1 - (c T1 + c^2 T2) + c^3 E2
error_commitment,
blinder,
}
}
}
// -- Relaxed witnesses
#[derive(Clone, Debug)]
pub struct RelaxedWitness<G: CommitmentCurve, W: Witness<G>> {
/// The original witness, extended with the columns added by
/// quadriticization.
pub extended_witness: ExtendedWitness<G, W>,
/// The error vector, introduced when homogenizing the polynomials.
/// For degree 3 folding, it is `E1 - c T1 - c^2 T2 + c^3 E2`
pub error_vec: Evals<G::ScalarField>,
}
impl<G: CommitmentCurve, W: Witness<G>> RelaxedWitness<G, W> {
/// Combining the existing error terms with the cross-terms T1 and T2 given
/// as parameters.
/// existing error terms cross terms
/// /--------------------\ /-------------\
/// The result is ` E1 + c^3 E2 - (c T1 + c^2 T2)`
/// We do have two cross terms as we work with homogeneous polynomials of
/// degree 3. The value is saved into the field `error_vec` of the relaxed
/// witness.
/// This corresponds to the step 4, page 15 of the Nova paper, but with two
/// cross terms (T1 and T2), see [top-level
/// documentation](crate::expressions).
pub(super) fn combine_and_sub_cross_terms(
a: Self,
b: Self,
challenge: <G>::ScalarField,
cross_terms: [Vec<G::ScalarField>; 2],
) -> Self {
// Computing E1 + c^3 E2
let mut res = Self::combine(a, b, challenge);
// Now substracting the cross terms
let [e0, e1] = cross_terms;
for (res, (e0, e1)) in res
.error_vec
.evals
.iter_mut()
.zip(e0.into_iter().zip(e1.into_iter()))
{
// FIXME: for optimisation, use inplace operators. Allocating can be
// costly
// should be the same as e0 * c + e1 * c^2
*res -= ((e1 * challenge) + e0) * challenge;
}
res
}
/// Provides access to the extra columns added by quadraticization
pub fn get_extended_column(&self, i: &usize) -> Option<&Evals<G::ScalarField>> {
self.extended_witness.extended.get(i)
}
}
/// A relaxed/homogenized witness can be folded.
impl<G: CommitmentCurve, W: Witness<G>> Foldable<G::ScalarField> for RelaxedWitness<G, W> {
fn combine(a: Self, b: Self, challenge: <G>::ScalarField) -> Self {
let RelaxedWitness {
extended_witness: a,
error_vec: mut e1,
} = a;
let RelaxedWitness {
extended_witness: b,
error_vec: e2,
} = b;
// We combine E1 and E2 into E1 + c^3 E2 as we do have two cross-terms
// with degree 3 folding
let challenge_cube = (challenge * challenge) * challenge;
let extended_witness = <ExtendedWitness<G, W>>::combine(a, b, challenge);
for (a, b) in e1.evals.iter_mut().zip(e2.evals.into_iter()) {
*a += b * challenge_cube;
}
let error_vec = e1;
RelaxedWitness {
extended_witness,
error_vec,
}
}
}
// -- Relaxable instance
pub trait RelaxableInstance<G: CommitmentCurve, I: Instance<G>> {
fn relax(self) -> RelaxedInstance<G, I>;
}
impl<G: CommitmentCurve, I: Instance<G>> RelaxableInstance<G, I> for I {
/// This method takes an Instance and a commitment to zero and extends the
/// instance, returning a relaxed instance which is composed by the extended
/// instance, the scalar one, and the error commitment which is set to the
/// commitment to zero.
fn relax(self) -> RelaxedInstance<G, Self> {
let extended_instance = ExtendedInstance::extend(self);
let blinder = extended_instance.instance.get_blinder();
let u = G::ScalarField::one();
let error_commitment = PolyComm::new(vec![G::zero()]);
RelaxedInstance {
extended_instance,
u,
error_commitment,
blinder,
}
}
}
/// A relaxed instance is trivially relaxable.
impl<G: CommitmentCurve, I: Instance<G>> RelaxableInstance<G, I> for RelaxedInstance<G, I> {
fn relax(self) -> RelaxedInstance<G, I> {
self
}
}
/// Trait to make a witness relaxable/homogenizable
pub trait RelaxableWitness<G: CommitmentCurve, W: Witness<G>> {
fn relax(self, zero_poly: &Evals<G::ScalarField>) -> RelaxedWitness<G, W>;
}
impl<G: CommitmentCurve, W: Witness<G>> RelaxableWitness<G, W> for W {
/// This method takes a witness and a vector of evaluations to the zero
/// polynomial, returning a relaxed witness which is composed by the
/// extended witness and the error vector that is set to the zero
/// polynomial.
fn relax(self, zero_poly: &Evals<G::ScalarField>) -> RelaxedWitness<G, Self> {
let extended_witness = ExtendedWitness::extend(self);
RelaxedWitness {
extended_witness,
error_vec: zero_poly.clone(),
}
}
}
impl<G: CommitmentCurve, W: Witness<G>> RelaxableWitness<G, W> for RelaxedWitness<G, W> {
fn relax(self, _zero_poly: &Evals<G::ScalarField>) -> RelaxedWitness<G, W> {
self
}
}
pub trait RelaxablePair<G: CommitmentCurve, I: Instance<G>, W: Witness<G>> {
fn relax(
self,
zero_poly: &Evals<G::ScalarField>,
) -> (RelaxedInstance<G, I>, RelaxedWitness<G, W>);
}
impl<G, I, W> RelaxablePair<G, I, W> for (I, W)
where
G: CommitmentCurve,
I: Instance<G> + RelaxableInstance<G, I>,
W: Witness<G> + RelaxableWitness<G, W>,
{
fn relax(
self,
zero_poly: &Evals<G::ScalarField>,
) -> (RelaxedInstance<G, I>, RelaxedWitness<G, W>) {
let (instance, witness) = self;
(
RelaxableInstance::relax(instance),
RelaxableWitness::relax(witness, zero_poly),
)
}
}
impl<G, I, W> RelaxablePair<G, I, W> for (RelaxedInstance<G, I>, RelaxedWitness<G, W>)
where
G: CommitmentCurve,
I: Instance<G> + RelaxableInstance<G, I>,
W: Witness<G> + RelaxableWitness<G, W>,
{
fn relax(
self,
_zero_poly: &Evals<G::ScalarField>,
) -> (RelaxedInstance<G, I>, RelaxedWitness<G, W>) {
self
}
}