1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
//! Implement a library to represent expressions/multivariate polynomials that
//! can be used with folding schemes like
//! [Nova](https://eprint.iacr.org/2021/370).
//!
//! We do enforce expressions to be degree `2` maximum to apply our folding
//! scheme.
//!
//! Before folding, we do suppose that each expression has been reduced to
//! degree `2` using [crate::quadraticization].
//!
//! The library introduces different types of expressions:
//! - [FoldingCompatibleExpr]: an expression that can be used with folding. It
//! aims to be an intermediate representation from
//! [kimchi::circuits::expr::Expr]. It can be printed in a human-readable way
//! using the trait [ToString].
//! - [FoldingExp]: an internal representation of a folded expression.
//! - [IntegratedFoldingExpr]: a simplified expression with all terms separated
//!
//! When using the library, the user should:
//! - Convert an expression from [kimchi::circuits::expr::Expr] into a
//! [FoldingCompatibleExpr] using the trait [From].
//! - Convert a list of [FoldingCompatibleExpr] into a [IntegratedFoldingExpr]
//! using the function [folding_expression].
//!
//! The user can also choose to build a structure [crate::FoldingScheme] from a
//! list of [FoldingCompatibleExpr].
//!
//! As a reminder, after we reduce to degree 2, the multivariate polynomial
//! `P(X_{1}, ..., X_{n})` describing the NP relation will be
//! "relaxed" in another polynomial of the form `P_relaxed(X_{1}, ..., X_{n}, u)`.
//! First, we decompose the polynomial `P` in its monomials of degree `0`, `1` and `2`:
//! ```text
//! P(X_{1}, ..., X_{n}) = ∑_{i} f_{i, 0}(X_{1}, ..., X_{n}) +
//!                        ∑_{i} f_{i, 1}(X_{1}, ..., X_{n}) +
//!                        ∑_{i} f_{i, 2}(X_{1}, ..., X_{n})
//! ```
//! where `f_{i, 0}` is a monomial of degree `0`, `f_{i, 1}` is a monomial of degree
//! `1` and `f_{i, 2}` is a monomial of degree `2`.
//! For instance, for the polynomial `P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} +
//! (1 - X_{3})`, we have:
//! ```text
//! f_{0, 0}(X_{1}, X_{2}, X_{3}) = 1
//! f_{0, 1}(X_{1}, X_{2}, X_{3}) = -X_{3}
//! f_{0, 2}(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2}
//! ```
//! Then, we can relax the polynomial `P` in `P_relaxed` by adding a new
//! variable `u` in the following way:
//! - For the monomials `f_{i, 0}`, i.e. the monomials of degree `0`, we add `u^2`
//! to the expression.
//! - For the monomials `f_{i, 1}`, we add `u` to the expression.
//! - For the monomials `f_{i, 2}`, we keep the expression as is.
//!
//! For the polynomial `P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} + (1 - X_{3})`, we have:
//! ```text
//! P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} * X_{2} + u (u - X_{3})
//! ```
//!
//! From the relaxed form of the polynomial, we can "fold" multiple instances of
//! the NP relation by randomising it into a single instance by adding an error
//! term `E`.
//! For instance, for the polynomial `P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} *
//! X_{2} + u (u - X_{3})`,
//! for two instances `(X_{1}, X_{2}, X_{3}, u)` and `(X_{1}', X_{2}', X_{3}',
//! u')`, we can fold them into a single instance by coining a random value `r`:
//! ```text
//! X''_{1} = X_{1} + r X_{1}'
//! X''_{2} = X_{2} + r X_{2}'
//! X''_{3} = X_{3} + r X_{3}'
//! u'' = u + r u'
//! ```
//! Computing the polynomial `P_relaxed(X''_{1}, X''_{2}, X''_{3}, u'')` will
//! give:
//! ```text
//!   (X_{1} + r X'_{1}) (X_{2} + r X'_{2}) \
//! + (u + r u') [(u + r u') - (X_{3} + r X'_{3})]
//! ```
//! which can be simplified into:
//! ```text
//!   P_relaxed(X_{1}, X_{2}, X_{3}, u) + P_relaxed(r X_{1}', r X_{2}', r X_{3}', r u')
//! + r [u (u' - X_{3}) + u' (u - X_{3})] + r [X_{1} X_{2}'   +   X_{2} X_{1}']
//!   \---------------------------------/   \----------------------------------/
//!  cross terms of monomials of degree 1   cross terms of monomials of degree 2
//!              and degree 0
//! ```
//! The error term `T` (or "cross term") is the last term of the expression,
//! multiplied by `r`.
//! More generally, the error term is the sum of all monomials introduced by
//! the "cross terms" of the instances. For example, if there is a monomial of
//! degree 2 like `X_{1} * X_{2}`, it introduces the cross terms
//! `r X_{1} X_{2}' + r X_{2} X_{1}'`. For a monomial of degree 1, for example
//! `u X_{1}`, it introduces the cross terms `r u X_{1}' + r u' X_{1}`.
//!
//! Note that:
//! ```text
//!       P_relaxed(r X_{1}', r X_{2}', r X_{3}', r u')
//! = r^2 P_relaxed(X_{1}',   X_{2}',   X_{3}',   u')
//! ```
//! and `P_relaxed` is of degree `2`. More
//! precisely, `P_relaxed` is homogenous. And that is the main idea of folding:
//! the "relaxation" of a polynomial means we make it homogenous for a certain
//! degree `d` by introducing the new variable `u`, and introduce the concept of
//! "error terms" that will englobe the "cross-terms". The prover takes care of
//! computing the cross-terms and commit to them.
//!
//! While folding, we aggregate the error terms of all instances into a single
//! error term, E.
//! In our example, if we have a folded instance with the non-zero
//! error terms `E_{1}` and `E_{2}`, we have:
//! ```text
//! E = E_{1} + r T + E_{2}
//! ```
//!
//! ## Aggregating constraints
//!
//! The library also provides a way to fold NP relations described by a list of
//! multi-variate polynomials, like we usually have in a zkSNARK circuit.
//!
//! In PlonK, we aggregate all the polynomials into a single polynomial by
//! coining a random value `α`. For instance, if we have two polynomials `P` and
//! `Q` describing our computation in a zkSNARK circuit, we usually use the
//! randomized polynomial `P + α Q` (used to build the quotient polynomial in
//! PlonK).
//!
//! More generally, if for each row, our computation is constrained by the polynomial
//! list `[P_{1}, P_{2}, ..., P_{n}]`, we can aggregate them into a single
//! polynomial `P_{agg} = ∑_{i} α^{i} P_{i}`. Multiplying by the α terms
//! consequently increases the overall degree of the expression.
//!
//! In particular, when we reduce a polynomial to degree 2, we have this case
//! where the circuit is described by a list of polynomials and we aggregate
//! them into a single polynomial.
//!
//! For instance, if we have two polynomials `P(X_{1}, X_{2}, X_{3})` and
//! `Q(X_{1}, X_{2}, X_{3})` such that:
//! ```text
//! P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} + (1 - X_{3})
//! Q(X_{1}, X_{2}, X_{3}) = X_{1} + X_{2}
//! ```
//!
//! The relaxed form of the polynomials are:
//! ```text
//! P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} * X_{2} + u (u - X_{3})
//! Q_relaxed(X_{1}, X_{2}, X_{3}, u) = u X_{1} + u X_{2}
//! ```
//!
//! We start by coining `α_{1}` and `α_{2}` and we compute the polynomial
//! `P'(X_{1}, X_{2}, X_{3}, u, α_{1})` and `Q'(X_{1}, X_{2}, X_{3}, α_{2})` such that:
//! ```text
//! P'(X_{1}, X_{2}, X_{3}, u, α_{1}) = α_{1} P_relaxed(X_{1}, X_{2}, X_{3}, u)
//!                                   = α_{1} (X_{1} * X_{2} + u (u - X_{3}))
//!                                   = α_{1} X_{1} * X_{2} + α_{1} u^2 - α_{1} u X_{3}
//! Q'(X_{1}, X_{2}, X_{3}, u, α_{2}) = α_{2} Q_relaxed(X_{1}, X_{2}, X_{3}, u)
//!                                   = α_{2} (u X_{1} + u X_{2})
//!                                   = α_{2} u X_{1} + α_{2} u X_{2}
//! ```
//! and we want to fold the multivariate polynomial S defined over six
//! variables:
//! ```text
//!   S(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})
//! = P'(X_{1}, X_{2}, X_{3}, u, α_{1}) + Q'(X_{1}, X_{2}, X_{3}, u, α_{2})`.
//! = α_{1} X_{1} X_{2} +
//!   α_{1} u^2 -
//!   α_{1} u X_{3} +
//!   α_{2} u X_{1} +
//!   α_{2} u X_{2}
//! ```
//!
//! Note that we end up with everything of the same degree, which is `3` in this
//! case. The variables `α_{1}` and `α_{2}` increase the degree of the
//! homogeneous expressions by one.
//!
//! For two given instances `(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})` and
//! `(X_{1}', X_{2}', X_{3}', u', α_{1}', α_{2}')`, we coin a random value `r` and we compute:
//! ```text
//! X''_{1} = X_{1} + r X'_{1}
//! X''_{2} = X_{2} + r X'_{2}
//! X''_{3} = X_{3} + r X'_{3}
//! u'' = u + r u'
//! α''_{1} = α_{1} + r α'_{1}
//! α''_{2} = α_{2} + r α'_{2}
//! ```
//!
//! From there, we compute the evaluations of the polynomial S at the point
//! `S(X''_{1}, X''_{2}, X''_{3}, u'', α''_{1}, α''_{2})`, which gives:
//! ```text
//!   S(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})
//! + S(r X'_{1}, r X'_{2}, r X'_{3}, r u', r α'_{1}, r α'_{2})
//! + r T_{0}
//! + r^2 T_{1}
//! ```
//! where `T_{0}` (respectively `T_{1}`) are cross terms that are multiplied by
//! `r` (respectively `r^2`). More precisely, for `T_{0}` we have:
//! ```text
//! T_{0} = a_{1} X_{1} X'{2} +
//!         X_{2} (α_{1} X'_{1} + α'_{1} X_{1}) +
//!         // we repeat for a_{1} u^{2}, ... as described below
//! ```
//! We must see each monomial as a polynomial P(X, Y, Z) of degree 3, and the
//! cross-term for each monomial will be, for (X', Y', Z') and (X, Y, Z):
//! ```text
//! X Y Z' + Z (X Y' + X' Y)
//! ```
//!
//! As for the degree`2` case described before, we notice that the polynomial S
//! is homogeneous of degree 3, i.e.
//! ```text
//!       S(r X'_{1}, r X'_{2}, r X'_{3}, r u', r α'_{1}, r α'_{2})
//! = r^3 S(X'_{1},   X'_{2},   X'_{3},   u',   α'_{1},   α'_{2})
//! ```
//!
//! ## Fiat-Shamir challenges, interactive protocols and lookup arguments
//!
//! Until now, we have described a way to fold multi-variate polynomials, which
//! is mostly a generalization of [Nova](https://eprint.iacr.org/2021/370) for
//! any multi-variate polynomial.
//! However, we did not describe how it can be used to describe and fold
//! interactive protocols based on polynomials, like PlonK. We do suppose the
//! interactive protocol can be made non-interactive by using the Fiat-Shamir
//! transformation.
//!
//! To fold interactive protocols, our folding scheme must also support
//! Fiat-Shamir challenges. This implementation handles this by representing
//! challenges as new variables in the polynomial describing the NP relation.
//! The challenges are then aggregated in the same way as the other variables.
//!
//! For instance, let's consider the additive
//! lookup/logup argument. For a detailed description of the protocol, see [the
//! online
//! documentation](https://o1-labs.github.io/proof-systems/rustdoc/kimchi_msm/logup/index.html).
//! We will suppose we have only one table `T` and Alice wants to prove to Bob
//! that she knows that all evaluations of `f(X)` is in `t(X)`. The additive
//! lookup argument is described by the polynomial equation:
//! ```text
//! β + f(x) = m(x) (β + t(x))
//! ```
//! where β is the challenge, `f(x)` is the polynomial whose evaluations describe
//! the value Alice wants to prove to Bob that is in the table, `m(x)` is
//! the polynomial describing the multiplicities, and `t(x)` is the
//! polynomial describing the (fixed) table.
//!
//! The equation can be described by the multi-variate polynomial `LOGUP`:
//! ```text
//! LOGUP(β, F, M, T) = β + F - M (β + T)
//! ```
//!
//! The relaxed/homogeneous version of the polynomial LOGUP is:
//! ```text
//! LOGUP_relaxed(β, F, M, T, u) = u β + u F - M (β + T)
//! ```
//!
//! Folding this polynomial means that we will coin a random value `r`, and we compute:
//! ```text
//! β'' = β + r β'
//! F'' = F + r F'
//! M'' = M + r M'
//! T'' = T + r T'
//! u'' = u + r u'
//! ```
//!
//! ## Supporting polynomial commitment blinders
//!
//! The library also supports polynomial commitment blinders. The blinding
//! factors are represented as new variables in the polynomial describing the NP
//! relation. The blinding factors are then aggregated in the same way as the
//! other variables.
//! We want to support blinders in the polynomial commitment scheme to avoid
//! committing to the zero zero polynomial. Using a blinder, we can always
//! suppose that our elliptic curves points are not the point at infinity.
//! The library handles the blinding factors as variables in each instance.
//!
//! When doing the final proof, the blinder factor that will need to be used is
//! the one from the final relaxed instance.

use crate::{
    columns::ExtendedFoldingColumn,
    quadraticization::{quadraticize, ExtendedWitnessGenerator, Quadraticized},
    FoldingConfig, ScalarField,
};
use ark_ec::AffineRepr;
use ark_ff::One;
use core::{
    fmt,
    fmt::{Display, Formatter},
};
use derivative::Derivative;
use itertools::Itertools;
use kimchi::circuits::{
    berkeley_columns::BerkeleyChallengeTerm,
    expr::{ConstantExprInner, ConstantTerm, ExprInner, Operations, Variable},
    gate::CurrOrNext,
};
use num_traits::Zero;

/// Describe the degree of a constraint.
/// As described in the [top level documentation](super::expressions), we only
/// support constraints with degree up to `2`
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Degree {
    Zero,
    One,
    Two,
}

impl std::ops::Add for Degree {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        use Degree::*;
        match (self, rhs) {
            (_, Two) | (Two, _) => Two,
            (_, One) | (One, _) => One,
            (Zero, Zero) => Zero,
        }
    }
}

impl std::ops::Mul for &Degree {
    type Output = Degree;

    fn mul(self, rhs: Self) -> Self::Output {
        use Degree::*;
        match (self, rhs) {
            (Zero, other) | (other, Zero) => *other,
            (One, One) => Two,
            _ => panic!("The folding library does support only expressions of degree `2` maximum"),
        }
    }
}

pub trait FoldingColumnTrait: Copy + Clone {
    fn is_witness(&self) -> bool;

    /// Return the degree of the column
    /// - `0` if the column is a constant
    /// - `1` if the column will take part of the randomisation (see [top level
    /// documentation](super::expressions)
    fn degree(&self) -> Degree {
        match self.is_witness() {
            true => Degree::One,
            false => Degree::Zero,
        }
    }
}

/// Extra expressions that can be created by folding
#[derive(Derivative)]
#[derivative(
    Clone(bound = "C: FoldingConfig"),
    Debug(bound = "C: FoldingConfig"),
    PartialEq(bound = "C: FoldingConfig")
)]
pub enum ExpExtension<C: FoldingConfig> {
    /// The variable `u` used to make the polynomial homogenous
    U,
    /// The error term
    Error,
    /// Additional columns created by quadraticization
    ExtendedWitness(usize),
    /// The random values `α_{i}` used to aggregate constraints
    Alpha(usize),
    /// Represent a dynamic selector, in the case of using decomposable folding
    Selector(C::Selector),
}

/// Components to be used to convert multivariate polynomials into "compatible"
/// multivariate polynomials that will be translated to folding expressions.
#[derive(Derivative)]
#[derivative(
    Clone(bound = "C: FoldingConfig"),
    PartialEq(bound = "C: FoldingConfig"),
    Debug(bound = "C: FoldingConfig")
)]
pub enum FoldingCompatibleExprInner<C: FoldingConfig> {
    Constant(<C::Curve as AffineRepr>::ScalarField),
    Challenge(C::Challenge),
    Cell(Variable<C::Column>),
    /// extra nodes created by folding, should not be passed to folding
    Extensions(ExpExtension<C>),
}

/// Compatible folding expressions that can be used with folding schemes.
/// An expression from [kimchi::circuits::expr::Expr] can be converted into a
/// [FoldingCompatibleExpr] using the trait [From].
/// From there, an expression of type [IntegratedFoldingExpr] can be created
/// using the function [folding_expression].
#[derive(Derivative)]
#[derivative(
    Clone(bound = "C: FoldingConfig"),
    PartialEq(bound = "C: FoldingConfig"),
    Debug(bound = "C: FoldingConfig")
)]
pub enum FoldingCompatibleExpr<C: FoldingConfig> {
    Atom(FoldingCompatibleExprInner<C>),
    Pow(Box<Self>, u64),
    Add(Box<Self>, Box<Self>),
    Sub(Box<Self>, Box<Self>),
    Mul(Box<Self>, Box<Self>),
    Double(Box<Self>),
    Square(Box<Self>),
}

impl<C: FoldingConfig> std::ops::Add for FoldingCompatibleExpr<C> {
    type Output = Self;

    fn add(self, rhs: Self) -> Self {
        Self::Add(Box::new(self), Box::new(rhs))
    }
}

impl<C: FoldingConfig> std::ops::Sub for FoldingCompatibleExpr<C> {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self {
        Self::Sub(Box::new(self), Box::new(rhs))
    }
}

impl<C: FoldingConfig> std::ops::Mul for FoldingCompatibleExpr<C> {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self {
        Self::Mul(Box::new(self), Box::new(rhs))
    }
}

/// Implement a human-readable version of a folding compatible expression.
impl<C: FoldingConfig> Display for FoldingCompatibleExpr<C> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            FoldingCompatibleExpr::Atom(c) => match c {
                FoldingCompatibleExprInner::Constant(c) => {
                    if c.is_zero() {
                        write!(f, "0")
                    } else {
                        write!(f, "{}", c)
                    }
                }
                FoldingCompatibleExprInner::Challenge(c) => {
                    write!(f, "{:?}", c)
                }
                FoldingCompatibleExprInner::Cell(cell) => {
                    let Variable { col, row } = cell;
                    let next = match row {
                        CurrOrNext::Curr => "",
                        CurrOrNext::Next => " * ω",
                    };
                    write!(f, "Col({:?}){}", col, next)
                }
                FoldingCompatibleExprInner::Extensions(e) => match e {
                    ExpExtension::U => write!(f, "U"),
                    ExpExtension::Error => write!(f, "E"),
                    ExpExtension::ExtendedWitness(i) => {
                        write!(f, "ExWit({})", i)
                    }
                    ExpExtension::Alpha(i) => write!(f, "α_{i}"),
                    ExpExtension::Selector(s) => write!(f, "Selec({:?})", s),
                },
            },
            FoldingCompatibleExpr::Double(e) => {
                write!(f, "2 {}", e)
            }
            FoldingCompatibleExpr::Square(e) => {
                write!(f, "{} ^ 2", e)
            }
            FoldingCompatibleExpr::Add(e1, e2) => {
                write!(f, "{} + {}", e1, e2)
            }
            FoldingCompatibleExpr::Sub(e1, e2) => {
                write!(f, "{} - {}", e1, e2)
            }
            FoldingCompatibleExpr::Mul(e1, e2) => {
                write!(f, "({}) ({})", e1, e2)
            }
            FoldingCompatibleExpr::Pow(_, _) => todo!(),
        }
    }
}

/// Internal expression used for folding.
/// A "folding" expression is a multivariate polynomial like defined in
/// [kimchi::circuits::expr] with the following differences.
/// - No constructors related to zero-knowledge or lagrange basis (i.e. no
/// constructors related to the PIOP)
/// - The variables includes a set of columns that describes the initial circuit
/// shape, with additional columns strictly related to the folding scheme (error
/// term, etc).
// TODO: renamed in "RelaxedExpression"?
#[derive(Derivative)]
#[derivative(
    Hash(bound = "C:FoldingConfig"),
    Debug(bound = "C:FoldingConfig"),
    Clone(bound = "C:FoldingConfig"),
    PartialEq(bound = "C:FoldingConfig"),
    Eq(bound = "C:FoldingConfig")
)]
pub enum FoldingExp<C: FoldingConfig> {
    Atom(ExtendedFoldingColumn<C>),
    Pow(Box<Self>, u64),
    Add(Box<Self>, Box<Self>),
    Mul(Box<Self>, Box<Self>),
    Sub(Box<Self>, Box<Self>),
    Double(Box<Self>),
    Square(Box<Self>),
}

impl<C: FoldingConfig> std::ops::Add for FoldingExp<C> {
    type Output = Self;

    fn add(self, rhs: Self) -> Self {
        Self::Add(Box::new(self), Box::new(rhs))
    }
}

impl<C: FoldingConfig> std::ops::Sub for FoldingExp<C> {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self {
        Self::Sub(Box::new(self), Box::new(rhs))
    }
}

impl<C: FoldingConfig> std::ops::Mul for FoldingExp<C> {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self {
        Self::Mul(Box::new(self), Box::new(rhs))
    }
}

impl<C: FoldingConfig> FoldingExp<C> {
    pub fn double(self) -> Self {
        Self::Double(Box::new(self))
    }
}

/// Converts an expression "compatible" with folding into a folded expression.
// TODO: use "into"?
// FIXME: add independent tests
// FIXME: test independently the behavior of pow_to_mul, and explain only why 8
// maximum
impl<C: FoldingConfig> FoldingCompatibleExpr<C> {
    pub fn simplify(self) -> FoldingExp<C> {
        use FoldingExp::*;
        match self {
            FoldingCompatibleExpr::Atom(atom) => match atom {
                FoldingCompatibleExprInner::Constant(c) => Atom(ExtendedFoldingColumn::Constant(c)),
                FoldingCompatibleExprInner::Challenge(c) => {
                    Atom(ExtendedFoldingColumn::Challenge(c))
                }
                FoldingCompatibleExprInner::Cell(col) => Atom(ExtendedFoldingColumn::Inner(col)),
                FoldingCompatibleExprInner::Extensions(ext) => {
                    match ext {
                        // TODO: this shouldn't be allowed, but is needed for now to add
                        // decomposable folding without many changes, it should be
                        // refactored at some point in the future
                        ExpExtension::Selector(s) => Atom(ExtendedFoldingColumn::Selector(s)),
                        _ => {
                            panic!("this should only be created by folding itself")
                        }
                    }
                }
            },
            FoldingCompatibleExpr::Double(exp) => Double(Box::new((*exp).simplify())),
            FoldingCompatibleExpr::Square(exp) => Square(Box::new((*exp).simplify())),
            FoldingCompatibleExpr::Add(e1, e2) => {
                let e1 = Box::new(e1.simplify());
                let e2 = Box::new(e2.simplify());
                Add(e1, e2)
            }
            FoldingCompatibleExpr::Sub(e1, e2) => {
                let e1 = Box::new(e1.simplify());
                let e2 = Box::new(e2.simplify());
                Sub(e1, e2)
            }
            FoldingCompatibleExpr::Mul(e1, e2) => {
                let e1 = Box::new(e1.simplify());
                let e2 = Box::new(e2.simplify());
                Mul(e1, e2)
            }
            FoldingCompatibleExpr::Pow(e, p) => Self::pow_to_mul(e.simplify(), p),
        }
    }

    fn pow_to_mul(exp: FoldingExp<C>, p: u64) -> FoldingExp<C>
    where
        C::Column: Clone,
        C::Challenge: Clone,
    {
        use FoldingExp::*;
        let e = Box::new(exp);
        let e_2 = Box::new(Square(e.clone()));
        match p {
            2 => *e_2,
            3 => Mul(e, e_2),
            4..=8 => {
                let e_4 = Box::new(Square(e_2.clone()));
                match p {
                    4 => *e_4,
                    5 => Mul(e, e_4),
                    6 => Mul(e_2, e_4),
                    7 => Mul(e, Box::new(Mul(e_2, e_4))),
                    8 => Square(e_4),
                    _ => unreachable!(),
                }
            }
            _ => panic!("unsupported"),
        }
    }

    /// Maps variable (column index) in expression using the `mapper`
    /// function. Can be used to modify (remap) the indexing of
    /// columns after the expression is built.
    pub fn map_variable(
        self,
        mapper: &(dyn Fn(Variable<C::Column>) -> Variable<C::Column>),
    ) -> FoldingCompatibleExpr<C> {
        use FoldingCompatibleExpr::*;
        match self {
            FoldingCompatibleExpr::Atom(atom) => match atom {
                FoldingCompatibleExprInner::Cell(col) => {
                    Atom(FoldingCompatibleExprInner::Cell((mapper)(col)))
                }
                atom => Atom(atom),
            },
            FoldingCompatibleExpr::Double(exp) => Double(Box::new(exp.map_variable(mapper))),
            FoldingCompatibleExpr::Square(exp) => Square(Box::new(exp.map_variable(mapper))),
            FoldingCompatibleExpr::Add(e1, e2) => {
                let e1 = Box::new(e1.map_variable(mapper));
                let e2 = Box::new(e2.map_variable(mapper));
                Add(e1, e2)
            }
            FoldingCompatibleExpr::Sub(e1, e2) => {
                let e1 = Box::new(e1.map_variable(mapper));
                let e2 = Box::new(e2.map_variable(mapper));
                Sub(e1, e2)
            }
            FoldingCompatibleExpr::Mul(e1, e2) => {
                let e1 = Box::new(e1.map_variable(mapper));
                let e2 = Box::new(e2.map_variable(mapper));
                Mul(e1, e2)
            }
            FoldingCompatibleExpr::Pow(e, p) => Pow(Box::new(e.map_variable(mapper)), p),
        }
    }

    /// Map all quad columns into regular witness columns.
    pub fn flatten_quad_columns(
        self,
        mapper: &(dyn Fn(usize) -> Variable<C::Column>),
    ) -> FoldingCompatibleExpr<C> {
        use FoldingCompatibleExpr::*;
        match self {
            FoldingCompatibleExpr::Atom(atom) => match atom {
                FoldingCompatibleExprInner::Extensions(ExpExtension::ExtendedWitness(i)) => {
                    Atom(FoldingCompatibleExprInner::Cell((mapper)(i)))
                }
                atom => Atom(atom),
            },
            FoldingCompatibleExpr::Double(exp) => {
                Double(Box::new(exp.flatten_quad_columns(mapper)))
            }
            FoldingCompatibleExpr::Square(exp) => {
                Square(Box::new(exp.flatten_quad_columns(mapper)))
            }
            FoldingCompatibleExpr::Add(e1, e2) => {
                let e1 = Box::new(e1.flatten_quad_columns(mapper));
                let e2 = Box::new(e2.flatten_quad_columns(mapper));
                Add(e1, e2)
            }
            FoldingCompatibleExpr::Sub(e1, e2) => {
                let e1 = Box::new(e1.flatten_quad_columns(mapper));
                let e2 = Box::new(e2.flatten_quad_columns(mapper));
                Sub(e1, e2)
            }
            FoldingCompatibleExpr::Mul(e1, e2) => {
                let e1 = Box::new(e1.flatten_quad_columns(mapper));
                let e2 = Box::new(e2.flatten_quad_columns(mapper));
                Mul(e1, e2)
            }
            FoldingCompatibleExpr::Pow(e, p) => Pow(Box::new(e.flatten_quad_columns(mapper)), p),
        }
    }
}

impl<C: FoldingConfig> FoldingExp<C> {
    /// Compute the degree of a folding expression.
    /// Only constants are of degree `0`, the rest is of degree `1`.
    /// An atom of degree `1` means that the atom is going to be randomised as
    /// described in the [top level documentation](super::expressions).
    pub(super) fn folding_degree(&self) -> Degree {
        use Degree::*;
        match self {
            FoldingExp::Atom(ex_col) => match ex_col {
                ExtendedFoldingColumn::Inner(col) => col.col.degree(),
                ExtendedFoldingColumn::WitnessExtended(_) => One,
                ExtendedFoldingColumn::Error => One,
                ExtendedFoldingColumn::Constant(_) => Zero,
                ExtendedFoldingColumn::Challenge(_) => One,
                ExtendedFoldingColumn::Alpha(_) => One,
                ExtendedFoldingColumn::Selector(_) => One,
            },
            FoldingExp::Double(e) => e.folding_degree(),
            FoldingExp::Square(e) => &e.folding_degree() * &e.folding_degree(),
            FoldingExp::Mul(e1, e2) => &e1.folding_degree() * &e2.folding_degree(),
            FoldingExp::Add(e1, e2) | FoldingExp::Sub(e1, e2) => {
                e1.folding_degree() + e2.folding_degree()
            }
            FoldingExp::Pow(_, 0) => Zero,
            FoldingExp::Pow(e, 1) => e.folding_degree(),
            FoldingExp::Pow(e, i) => {
                let degree = e.folding_degree();
                let mut acc = degree;
                for _ in 1..*i {
                    acc = &acc * &degree;
                }
                acc
            }
        }
    }

    /// Convert a folding expression into a compatible one.
    fn into_compatible(self) -> FoldingCompatibleExpr<C> {
        use FoldingCompatibleExpr::*;
        use FoldingCompatibleExprInner::*;
        match self {
            FoldingExp::Atom(c) => match c {
                ExtendedFoldingColumn::Inner(col) => Atom(Cell(col)),
                ExtendedFoldingColumn::WitnessExtended(i) => {
                    Atom(Extensions(ExpExtension::ExtendedWitness(i)))
                }
                ExtendedFoldingColumn::Error => Atom(Extensions(ExpExtension::Error)),
                ExtendedFoldingColumn::Constant(c) => Atom(Constant(c)),
                ExtendedFoldingColumn::Challenge(c) => Atom(Challenge(c)),
                ExtendedFoldingColumn::Alpha(i) => Atom(Extensions(ExpExtension::Alpha(i))),
                ExtendedFoldingColumn::Selector(s) => Atom(Extensions(ExpExtension::Selector(s))),
            },
            FoldingExp::Double(exp) => Double(Box::new(exp.into_compatible())),
            FoldingExp::Square(exp) => Square(Box::new(exp.into_compatible())),
            FoldingExp::Add(e1, e2) => {
                let e1 = Box::new(e1.into_compatible());
                let e2 = Box::new(e2.into_compatible());
                Add(e1, e2)
            }
            FoldingExp::Sub(e1, e2) => {
                let e1 = Box::new(e1.into_compatible());
                let e2 = Box::new(e2.into_compatible());
                Sub(e1, e2)
            }
            FoldingExp::Mul(e1, e2) => {
                let e1 = Box::new(e1.into_compatible());
                let e2 = Box::new(e2.into_compatible());
                Mul(e1, e2)
            }
            // TODO: Replace with `Pow`
            FoldingExp::Pow(_, 0) => Atom(Constant(<C::Curve as AffineRepr>::ScalarField::one())),
            FoldingExp::Pow(e, 1) => e.into_compatible(),
            FoldingExp::Pow(e, i) => {
                let e = e.into_compatible();
                let mut acc = e.clone();
                for _ in 1..i {
                    acc = Mul(Box::new(e.clone()), Box::new(acc))
                }
                acc
            }
        }
    }
}

/// Used to encode the sign of a term in a polynomial.
// FIXME: is it really needed?
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Sign {
    Pos,
    Neg,
}

impl std::ops::Neg for Sign {
    type Output = Self;

    fn neg(self) -> Self {
        match self {
            Sign::Pos => Sign::Neg,
            Sign::Neg => Sign::Pos,
        }
    }
}

/// A term of a polynomial
/// For instance, in the polynomial `3 X_{1} X_{2} + 2 X_{3}`, the terms are
/// `3 X_{1} X_{2}` and `2 X_{3}`.
/// The sign is used to encode the sign of the term at the expression level.
/// It is used to split a polynomial in its terms/monomials of degree `0`, `1`
/// and `2`.
#[derive(Derivative)]
#[derivative(Debug, Clone(bound = "C: FoldingConfig"))]
pub struct Term<C: FoldingConfig> {
    pub exp: FoldingExp<C>,
    pub sign: Sign,
}

impl<C: FoldingConfig> Term<C> {
    fn double(self) -> Self {
        let Self { exp, sign } = self;
        let exp = FoldingExp::Double(Box::new(exp));
        Self { exp, sign }
    }
}

impl<C: FoldingConfig> std::ops::Mul for &Term<C> {
    type Output = Term<C>;

    fn mul(self, rhs: Self) -> Self::Output {
        let sign = if self.sign == rhs.sign {
            Sign::Pos
        } else {
            Sign::Neg
        };
        let exp = FoldingExp::Mul(Box::new(self.exp.clone()), Box::new(rhs.exp.clone()));
        Term { exp, sign }
    }
}

impl<C: FoldingConfig> std::ops::Neg for Term<C> {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Term {
            sign: -self.sign,
            ..self
        }
    }
}

/// A value of type [IntegratedFoldingExpr] is the result of the split of a
/// polynomial in its monomials of degree `0`, `1` and `2`.
/// It is used to compute the error terms. For an example, have a look at the
/// [top level documentation](super::expressions).
#[derive(Derivative)]
#[derivative(
    Debug(bound = "C: FoldingConfig"),
    Clone(bound = "C: FoldingConfig"),
    Default(bound = "C: FoldingConfig")
)]
pub struct IntegratedFoldingExpr<C: FoldingConfig> {
    // (exp,sign,alpha)
    pub(super) degree_0: Vec<(FoldingExp<C>, Sign, usize)>,
    pub(super) degree_1: Vec<(FoldingExp<C>, Sign, usize)>,
    pub(super) degree_2: Vec<(FoldingExp<C>, Sign, usize)>,
}

impl<C: FoldingConfig> IntegratedFoldingExpr<C> {
    /// Combines constraints into single expression
    pub fn final_expression(self) -> FoldingCompatibleExpr<C> {
        use FoldingCompatibleExpr::*;
        /// TODO: should use powers of alpha
        use FoldingCompatibleExprInner::*;
        let Self {
            degree_0,
            degree_1,
            degree_2,
        } = self;
        let [d0, d1, d2] = [degree_0, degree_1, degree_2]
            .map(|exps| {
                let init =
                    FoldingExp::Atom(ExtendedFoldingColumn::Constant(ScalarField::<C>::zero()));
                exps.into_iter().fold(init, |acc, (exp, sign, alpha)| {
                    let exp = FoldingExp::Mul(
                        Box::new(exp),
                        Box::new(FoldingExp::Atom(ExtendedFoldingColumn::Alpha(alpha))),
                    );
                    match sign {
                        Sign::Pos => FoldingExp::Add(Box::new(acc), Box::new(exp)),
                        Sign::Neg => FoldingExp::Sub(Box::new(acc), Box::new(exp)),
                    }
                })
            })
            .map(|e| e.into_compatible());
        let u = || Box::new(Atom(Extensions(ExpExtension::U)));
        let u2 = || Box::new(Square(u()));
        let d0 = FoldingCompatibleExpr::Mul(Box::new(d0), u2());
        let d1 = FoldingCompatibleExpr::Mul(Box::new(d1), u());
        let d2 = Box::new(d2);
        let exp = FoldingCompatibleExpr::Add(Box::new(d0), Box::new(d1));
        let exp = FoldingCompatibleExpr::Add(Box::new(exp), d2);
        FoldingCompatibleExpr::Add(
            Box::new(exp),
            Box::new(Atom(Extensions(ExpExtension::Error))),
        )
    }
}

pub fn extract_terms<C: FoldingConfig>(exp: FoldingExp<C>) -> Box<dyn Iterator<Item = Term<C>>> {
    use FoldingExp::*;
    let exps: Box<dyn Iterator<Item = Term<C>>> = match exp {
        exp @ Atom(_) => Box::new(
            [Term {
                exp,
                sign: Sign::Pos,
            }]
            .into_iter(),
        ),
        Double(exp) => Box::new(extract_terms(*exp).map(Term::double)),
        Square(exp) => {
            let terms = extract_terms(*exp).collect_vec();
            let mut combinations = Vec::with_capacity(terms.len() ^ 2);
            for t1 in terms.iter() {
                for t2 in terms.iter() {
                    combinations.push(t1 * t2)
                }
            }
            Box::new(combinations.into_iter())
        }
        Add(e1, e2) => {
            let e1 = extract_terms(*e1);
            let e2 = extract_terms(*e2);
            Box::new(e1.chain(e2))
        }
        Sub(e1, e2) => {
            let e1 = extract_terms(*e1);
            let e2 = extract_terms(*e2).map(|t| -t);
            Box::new(e1.chain(e2))
        }
        Mul(e1, e2) => {
            let e1 = extract_terms(*e1).collect_vec();
            let e2 = extract_terms(*e2).collect_vec();
            let mut combinations = Vec::with_capacity(e1.len() * e2.len());
            for t1 in e1.iter() {
                for t2 in e2.iter() {
                    combinations.push(t1 * t2)
                }
            }
            Box::new(combinations.into_iter())
        }
        Pow(_, 0) => Box::new(
            [Term {
                exp: FoldingExp::Atom(ExtendedFoldingColumn::Constant(
                    <C::Curve as AffineRepr>::ScalarField::one(),
                )),
                sign: Sign::Pos,
            }]
            .into_iter(),
        ),
        Pow(e, 1) => extract_terms(*e),
        Pow(e, mut i) => {
            let e = extract_terms(*e).collect_vec();
            let mut acc = e.clone();
            // Could do this inplace, but it's more annoying to write
            while i > 2 {
                let mut combinations = Vec::with_capacity(e.len() * acc.len());
                for t1 in e.iter() {
                    for t2 in acc.iter() {
                        combinations.push(t1 * t2)
                    }
                }
                acc = combinations;
                i -= 1;
            }
            Box::new(acc.into_iter())
        }
    };
    exps
}

/// Convert a list of folding compatible expression into the folded form.
pub fn folding_expression<C: FoldingConfig>(
    exps: Vec<FoldingCompatibleExpr<C>>,
) -> (IntegratedFoldingExpr<C>, ExtendedWitnessGenerator<C>, usize) {
    let simplified_expressions = exps.into_iter().map(|exp| exp.simplify()).collect_vec();
    let (
        Quadraticized {
            original_constraints: expressions,
            extra_constraints: extra_expressions,
            extended_witness_generator,
        },
        added_columns,
    ) = quadraticize(simplified_expressions);
    let mut terms = vec![];
    let mut alpha = 0;
    // Alpha is always increased, equal to the total number of
    // expressions. We could optimise it and only assign increasing
    // alphas in "blocks" that depend on selectors. This would make
    // #alphas equal to the expressions in the biggest block (+ some
    // columns common for all blocks of the circuit).
    for exp in expressions.into_iter() {
        terms.extend(extract_terms(exp).map(|term| (term, alpha)));
        alpha += 1;
    }
    for exp in extra_expressions.into_iter() {
        terms.extend(extract_terms(exp).map(|term| (term, alpha)));
        alpha += 1;
    }
    let mut integrated = IntegratedFoldingExpr::default();
    for (term, alpha) in terms.into_iter() {
        let Term { exp, sign } = term;
        let degree = exp.folding_degree();
        let t = (exp, sign, alpha);
        match degree {
            Degree::Zero => integrated.degree_0.push(t),
            Degree::One => integrated.degree_1.push(t),
            Degree::Two => integrated.degree_2.push(t),
        }
    }
    (integrated, extended_witness_generator, added_columns)
}

// CONVERSIONS FROM EXPR TO FOLDING COMPATIBLE EXPRESSIONS

impl<F, Config: FoldingConfig> From<ConstantExprInner<F, BerkeleyChallengeTerm>>
    for FoldingCompatibleExprInner<Config>
where
    Config::Curve: AffineRepr<ScalarField = F>,
    Config::Challenge: From<BerkeleyChallengeTerm>,
{
    fn from(expr: ConstantExprInner<F, BerkeleyChallengeTerm>) -> Self {
        match expr {
            ConstantExprInner::Challenge(chal) => {
                FoldingCompatibleExprInner::Challenge(chal.into())
            }
            ConstantExprInner::Constant(c) => match c {
                ConstantTerm::Literal(f) => FoldingCompatibleExprInner::Constant(f),
                ConstantTerm::EndoCoefficient | ConstantTerm::Mds { row: _, col: _ } => {
                    panic!("When special constants are involved, don't forget to simplify the expression before.")
                }
            },
        }
    }
}

impl<F, Col, Config: FoldingConfig<Column = Col>>
    From<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>
    for FoldingCompatibleExprInner<Config>
where
    Config::Curve: AffineRepr<ScalarField = F>,
    Config::Challenge: From<BerkeleyChallengeTerm>,
{
    // TODO: check if this needs some special treatment for Extensions
    fn from(expr: ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>) -> Self {
        match expr {
            ExprInner::Constant(cexpr) => cexpr.into(),
            ExprInner::Cell(col) => FoldingCompatibleExprInner::Cell(col),
            ExprInner::UnnormalizedLagrangeBasis(_) => {
                panic!("UnnormalizedLagrangeBasis should not be used in folding expressions")
            }
            ExprInner::VanishesOnZeroKnowledgeAndPreviousRows => {
                panic!("VanishesOnZeroKnowledgeAndPreviousRows should not be used in folding expressions")
            }
        }
    }
}

impl<F, Col, Config: FoldingConfig<Column = Col>>
    From<Operations<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>>
    for FoldingCompatibleExpr<Config>
where
    Config::Curve: AffineRepr<ScalarField = F>,
    Config::Challenge: From<BerkeleyChallengeTerm>,
{
    fn from(expr: Operations<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>) -> Self {
        match expr {
            Operations::Atom(inner) => FoldingCompatibleExpr::Atom(inner.into()),
            Operations::Add(x, y) => {
                FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Mul(x, y) => {
                FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Sub(x, y) => {
                FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
            Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
            Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
            _ => panic!("Operation not supported in folding expressions"),
        }
    }
}

impl<F, Col, Config: FoldingConfig<Column = Col>>
    From<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>> for FoldingCompatibleExpr<Config>
where
    Config::Curve: AffineRepr<ScalarField = F>,
    Config::Challenge: From<BerkeleyChallengeTerm>,
{
    fn from(expr: Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>) -> Self {
        match expr {
            Operations::Add(x, y) => {
                FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Mul(x, y) => {
                FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Sub(x, y) => {
                FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
            Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
            Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
            _ => panic!("Operation not supported in folding expressions"),
        }
    }
}

impl<F, Col, Config: FoldingConfig<Column = Col>>
    From<Operations<ExprInner<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>, Col>>>
    for FoldingCompatibleExpr<Config>
where
    Config::Curve: AffineRepr<ScalarField = F>,
    Config::Challenge: From<BerkeleyChallengeTerm>,
{
    fn from(
        expr: Operations<ExprInner<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>, Col>>,
    ) -> Self {
        match expr {
            Operations::Atom(inner) => match inner {
                ExprInner::Constant(op) => match op {
                    // The constant expressions nodes are considered as top level
                    // expressions in folding
                    Operations::Atom(inner) => FoldingCompatibleExpr::Atom(inner.into()),
                    Operations::Add(x, y) => {
                        FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
                    }
                    Operations::Mul(x, y) => {
                        FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
                    }
                    Operations::Sub(x, y) => {
                        FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
                    }
                    Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
                    Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
                    Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
                    _ => panic!("Operation not supported in folding expressions"),
                },
                ExprInner::Cell(col) => {
                    FoldingCompatibleExpr::Atom(FoldingCompatibleExprInner::Cell(col))
                }
                ExprInner::UnnormalizedLagrangeBasis(_) => {
                    panic!("UnnormalizedLagrangeBasis should not be used in folding expressions")
                }
                ExprInner::VanishesOnZeroKnowledgeAndPreviousRows => {
                    panic!("VanishesOnZeroKnowledgeAndPreviousRows should not be used in folding expressions")
                }
            },
            Operations::Add(x, y) => {
                FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Mul(x, y) => {
                FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Sub(x, y) => {
                FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
            }
            Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
            Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
            Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
            _ => panic!("Operation not supported in folding expressions"),
        }
    }
}