1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
//! Implement a library to represent expressions/multivariate polynomials that
//! can be used with folding schemes like
//! [Nova](https://eprint.iacr.org/2021/370).
//!
//! We do enforce expressions to be degree `2` maximum to apply our folding
//! scheme.
//!
//! Before folding, we do suppose that each expression has been reduced to
//! degree `2` using [crate::quadraticization].
//!
//! The library introduces different types of expressions:
//! - [FoldingCompatibleExpr]: an expression that can be used with folding. It
//! aims to be an intermediate representation from
//! [kimchi::circuits::expr::Expr]. It can be printed in a human-readable way
//! using the trait [ToString].
//! - [FoldingExp]: an internal representation of a folded expression.
//! - [IntegratedFoldingExpr]: a simplified expression with all terms separated
//!
//! When using the library, the user should:
//! - Convert an expression from [kimchi::circuits::expr::Expr] into a
//! [FoldingCompatibleExpr] using the trait [From].
//! - Convert a list of [FoldingCompatibleExpr] into a [IntegratedFoldingExpr]
//! using the function [folding_expression].
//!
//! The user can also choose to build a structure [crate::FoldingScheme] from a
//! list of [FoldingCompatibleExpr].
//!
//! As a reminder, after we reduce to degree 2, the multivariate polynomial
//! `P(X_{1}, ..., X_{n})` describing the NP relation will be
//! "relaxed" in another polynomial of the form `P_relaxed(X_{1}, ..., X_{n}, u)`.
//! First, we decompose the polynomial `P` in its monomials of degree `0`, `1` and `2`:
//! ```text
//! P(X_{1}, ..., X_{n}) = ∑_{i} f_{i, 0}(X_{1}, ..., X_{n}) +
//! ∑_{i} f_{i, 1}(X_{1}, ..., X_{n}) +
//! ∑_{i} f_{i, 2}(X_{1}, ..., X_{n})
//! ```
//! where `f_{i, 0}` is a monomial of degree `0`, `f_{i, 1}` is a monomial of degree
//! `1` and `f_{i, 2}` is a monomial of degree `2`.
//! For instance, for the polynomial `P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} +
//! (1 - X_{3})`, we have:
//! ```text
//! f_{0, 0}(X_{1}, X_{2}, X_{3}) = 1
//! f_{0, 1}(X_{1}, X_{2}, X_{3}) = -X_{3}
//! f_{0, 2}(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2}
//! ```
//! Then, we can relax the polynomial `P` in `P_relaxed` by adding a new
//! variable `u` in the following way:
//! - For the monomials `f_{i, 0}`, i.e. the monomials of degree `0`, we add `u^2`
//! to the expression.
//! - For the monomials `f_{i, 1}`, we add `u` to the expression.
//! - For the monomials `f_{i, 2}`, we keep the expression as is.
//!
//! For the polynomial `P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} + (1 - X_{3})`, we have:
//! ```text
//! P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} * X_{2} + u (u - X_{3})
//! ```
//!
//! From the relaxed form of the polynomial, we can "fold" multiple instances of
//! the NP relation by randomising it into a single instance by adding an error
//! term `E`.
//! For instance, for the polynomial `P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} *
//! X_{2} + u (u - X_{3})`,
//! for two instances `(X_{1}, X_{2}, X_{3}, u)` and `(X_{1}', X_{2}', X_{3}',
//! u')`, we can fold them into a single instance by coining a random value `r`:
//! ```text
//! X''_{1} = X_{1} + r X_{1}'
//! X''_{2} = X_{2} + r X_{2}'
//! X''_{3} = X_{3} + r X_{3}'
//! u'' = u + r u'
//! ```
//! Computing the polynomial `P_relaxed(X''_{1}, X''_{2}, X''_{3}, u'')` will
//! give:
//! ```text
//! (X_{1} + r X'_{1}) (X_{2} + r X'_{2}) \
//! + (u + r u') [(u + r u') - (X_{3} + r X'_{3})]
//! ```
//! which can be simplified into:
//! ```text
//! P_relaxed(X_{1}, X_{2}, X_{3}, u) + P_relaxed(r X_{1}', r X_{2}', r X_{3}', r u')
//! + r [u (u' - X_{3}) + u' (u - X_{3})] + r [X_{1} X_{2}' + X_{2} X_{1}']
//! \---------------------------------/ \----------------------------------/
//! cross terms of monomials of degree 1 cross terms of monomials of degree 2
//! and degree 0
//! ```
//! The error term `T` (or "cross term") is the last term of the expression,
//! multiplied by `r`.
//! More generally, the error term is the sum of all monomials introduced by
//! the "cross terms" of the instances. For example, if there is a monomial of
//! degree 2 like `X_{1} * X_{2}`, it introduces the cross terms
//! `r X_{1} X_{2}' + r X_{2} X_{1}'`. For a monomial of degree 1, for example
//! `u X_{1}`, it introduces the cross terms `r u X_{1}' + r u' X_{1}`.
//!
//! Note that:
//! ```text
//! P_relaxed(r X_{1}', r X_{2}', r X_{3}', r u')
//! = r^2 P_relaxed(X_{1}', X_{2}', X_{3}', u')
//! ```
//! and `P_relaxed` is of degree `2`. More
//! precisely, `P_relaxed` is homogenous. And that is the main idea of folding:
//! the "relaxation" of a polynomial means we make it homogenous for a certain
//! degree `d` by introducing the new variable `u`, and introduce the concept of
//! "error terms" that will englobe the "cross-terms". The prover takes care of
//! computing the cross-terms and commit to them.
//!
//! While folding, we aggregate the error terms of all instances into a single
//! error term, E.
//! In our example, if we have a folded instance with the non-zero
//! error terms `E_{1}` and `E_{2}`, we have:
//! ```text
//! E = E_{1} + r T + E_{2}
//! ```
//!
//! ## Aggregating constraints
//!
//! The library also provides a way to fold NP relations described by a list of
//! multi-variate polynomials, like we usually have in a zkSNARK circuit.
//!
//! In PlonK, we aggregate all the polynomials into a single polynomial by
//! coining a random value `α`. For instance, if we have two polynomials `P` and
//! `Q` describing our computation in a zkSNARK circuit, we usually use the
//! randomized polynomial `P + α Q` (used to build the quotient polynomial in
//! PlonK).
//!
//! More generally, if for each row, our computation is constrained by the polynomial
//! list `[P_{1}, P_{2}, ..., P_{n}]`, we can aggregate them into a single
//! polynomial `P_{agg} = ∑_{i} α^{i} P_{i}`. Multiplying by the α terms
//! consequently increases the overall degree of the expression.
//!
//! In particular, when we reduce a polynomial to degree 2, we have this case
//! where the circuit is described by a list of polynomials and we aggregate
//! them into a single polynomial.
//!
//! For instance, if we have two polynomials `P(X_{1}, X_{2}, X_{3})` and
//! `Q(X_{1}, X_{2}, X_{3})` such that:
//! ```text
//! P(X_{1}, X_{2}, X_{3}) = X_{1} * X_{2} + (1 - X_{3})
//! Q(X_{1}, X_{2}, X_{3}) = X_{1} + X_{2}
//! ```
//!
//! The relaxed form of the polynomials are:
//! ```text
//! P_relaxed(X_{1}, X_{2}, X_{3}, u) = X_{1} * X_{2} + u (u - X_{3})
//! Q_relaxed(X_{1}, X_{2}, X_{3}, u) = u X_{1} + u X_{2}
//! ```
//!
//! We start by coining `α_{1}` and `α_{2}` and we compute the polynomial
//! `P'(X_{1}, X_{2}, X_{3}, u, α_{1})` and `Q'(X_{1}, X_{2}, X_{3}, α_{2})` such that:
//! ```text
//! P'(X_{1}, X_{2}, X_{3}, u, α_{1}) = α_{1} P_relaxed(X_{1}, X_{2}, X_{3}, u)
//! = α_{1} (X_{1} * X_{2} + u (u - X_{3}))
//! = α_{1} X_{1} * X_{2} + α_{1} u^2 - α_{1} u X_{3}
//! Q'(X_{1}, X_{2}, X_{3}, u, α_{2}) = α_{2} Q_relaxed(X_{1}, X_{2}, X_{3}, u)
//! = α_{2} (u X_{1} + u X_{2})
//! = α_{2} u X_{1} + α_{2} u X_{2}
//! ```
//! and we want to fold the multivariate polynomial S defined over six
//! variables:
//! ```text
//! S(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})
//! = P'(X_{1}, X_{2}, X_{3}, u, α_{1}) + Q'(X_{1}, X_{2}, X_{3}, u, α_{2})`.
//! = α_{1} X_{1} X_{2} +
//! α_{1} u^2 -
//! α_{1} u X_{3} +
//! α_{2} u X_{1} +
//! α_{2} u X_{2}
//! ```
//!
//! Note that we end up with everything of the same degree, which is `3` in this
//! case. The variables `α_{1}` and `α_{2}` increase the degree of the
//! homogeneous expressions by one.
//!
//! For two given instances `(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})` and
//! `(X_{1}', X_{2}', X_{3}', u', α_{1}', α_{2}')`, we coin a random value `r` and we compute:
//! ```text
//! X''_{1} = X_{1} + r X'_{1}
//! X''_{2} = X_{2} + r X'_{2}
//! X''_{3} = X_{3} + r X'_{3}
//! u'' = u + r u'
//! α''_{1} = α_{1} + r α'_{1}
//! α''_{2} = α_{2} + r α'_{2}
//! ```
//!
//! From there, we compute the evaluations of the polynomial S at the point
//! `S(X''_{1}, X''_{2}, X''_{3}, u'', α''_{1}, α''_{2})`, which gives:
//! ```text
//! S(X_{1}, X_{2}, X_{3}, u, α_{1}, α_{2})
//! + S(r X'_{1}, r X'_{2}, r X'_{3}, r u', r α'_{1}, r α'_{2})
//! + r T_{0}
//! + r^2 T_{1}
//! ```
//! where `T_{0}` (respectively `T_{1}`) are cross terms that are multiplied by
//! `r` (respectively `r^2`). More precisely, for `T_{0}` we have:
//! ```text
//! T_{0} = a_{1} X_{1} X'{2} +
//! X_{2} (α_{1} X'_{1} + α'_{1} X_{1}) +
//! // we repeat for a_{1} u^{2}, ... as described below
//! ```
//! We must see each monomial as a polynomial P(X, Y, Z) of degree 3, and the
//! cross-term for each monomial will be, for (X', Y', Z') and (X, Y, Z):
//! ```text
//! X Y Z' + Z (X Y' + X' Y)
//! ```
//!
//! As for the degree`2` case described before, we notice that the polynomial S
//! is homogeneous of degree 3, i.e.
//! ```text
//! S(r X'_{1}, r X'_{2}, r X'_{3}, r u', r α'_{1}, r α'_{2})
//! = r^3 S(X'_{1}, X'_{2}, X'_{3}, u', α'_{1}, α'_{2})
//! ```
//!
//! ## Fiat-Shamir challenges, interactive protocols and lookup arguments
//!
//! Until now, we have described a way to fold multi-variate polynomials, which
//! is mostly a generalization of [Nova](https://eprint.iacr.org/2021/370) for
//! any multi-variate polynomial.
//! However, we did not describe how it can be used to describe and fold
//! interactive protocols based on polynomials, like PlonK. We do suppose the
//! interactive protocol can be made non-interactive by using the Fiat-Shamir
//! transformation.
//!
//! To fold interactive protocols, our folding scheme must also support
//! Fiat-Shamir challenges. This implementation handles this by representing
//! challenges as new variables in the polynomial describing the NP relation.
//! The challenges are then aggregated in the same way as the other variables.
//!
//! For instance, let's consider the additive
//! lookup/logup argument. For a detailed description of the protocol, see [the
//! online
//! documentation](https://o1-labs.github.io/proof-systems/rustdoc/kimchi_msm/logup/index.html).
//! We will suppose we have only one table `T` and Alice wants to prove to Bob
//! that she knows that all evaluations of `f(X)` is in `t(X)`. The additive
//! lookup argument is described by the polynomial equation:
//! ```text
//! β + f(x) = m(x) (β + t(x))
//! ```
//! where β is the challenge, `f(x)` is the polynomial whose evaluations describe
//! the value Alice wants to prove to Bob that is in the table, `m(x)` is
//! the polynomial describing the multiplicities, and `t(x)` is the
//! polynomial describing the (fixed) table.
//!
//! The equation can be described by the multi-variate polynomial `LOGUP`:
//! ```text
//! LOGUP(β, F, M, T) = β + F - M (β + T)
//! ```
//!
//! The relaxed/homogeneous version of the polynomial LOGUP is:
//! ```text
//! LOGUP_relaxed(β, F, M, T, u) = u β + u F - M (β + T)
//! ```
//!
//! Folding this polynomial means that we will coin a random value `r`, and we compute:
//! ```text
//! β'' = β + r β'
//! F'' = F + r F'
//! M'' = M + r M'
//! T'' = T + r T'
//! u'' = u + r u'
//! ```
//!
//! ## Supporting polynomial commitment blinders
//!
//! The library also supports polynomial commitment blinders. The blinding
//! factors are represented as new variables in the polynomial describing the NP
//! relation. The blinding factors are then aggregated in the same way as the
//! other variables.
//! We want to support blinders in the polynomial commitment scheme to avoid
//! committing to the zero zero polynomial. Using a blinder, we can always
//! suppose that our elliptic curves points are not the point at infinity.
//! The library handles the blinding factors as variables in each instance.
//!
//! When doing the final proof, the blinder factor that will need to be used is
//! the one from the final relaxed instance.
use crate::{
columns::ExtendedFoldingColumn,
quadraticization::{quadraticize, ExtendedWitnessGenerator, Quadraticized},
FoldingConfig, ScalarField,
};
use ark_ec::AffineRepr;
use ark_ff::One;
use core::{
fmt,
fmt::{Display, Formatter},
};
use derivative::Derivative;
use itertools::Itertools;
use kimchi::circuits::{
berkeley_columns::BerkeleyChallengeTerm,
expr::{ConstantExprInner, ConstantTerm, ExprInner, Operations, Variable},
gate::CurrOrNext,
};
use num_traits::Zero;
/// Describe the degree of a constraint.
/// As described in the [top level documentation](super::expressions), we only
/// support constraints with degree up to `2`
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Degree {
Zero,
One,
Two,
}
impl std::ops::Add for Degree {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
use Degree::*;
match (self, rhs) {
(_, Two) | (Two, _) => Two,
(_, One) | (One, _) => One,
(Zero, Zero) => Zero,
}
}
}
impl std::ops::Mul for &Degree {
type Output = Degree;
fn mul(self, rhs: Self) -> Self::Output {
use Degree::*;
match (self, rhs) {
(Zero, other) | (other, Zero) => *other,
(One, One) => Two,
_ => panic!("The folding library does support only expressions of degree `2` maximum"),
}
}
}
pub trait FoldingColumnTrait: Copy + Clone {
fn is_witness(&self) -> bool;
/// Return the degree of the column
/// - `0` if the column is a constant
/// - `1` if the column will take part of the randomisation (see [top level
/// documentation](super::expressions)
fn degree(&self) -> Degree {
match self.is_witness() {
true => Degree::One,
false => Degree::Zero,
}
}
}
/// Extra expressions that can be created by folding
#[derive(Derivative)]
#[derivative(
Clone(bound = "C: FoldingConfig"),
Debug(bound = "C: FoldingConfig"),
PartialEq(bound = "C: FoldingConfig")
)]
pub enum ExpExtension<C: FoldingConfig> {
/// The variable `u` used to make the polynomial homogenous
U,
/// The error term
Error,
/// Additional columns created by quadraticization
ExtendedWitness(usize),
/// The random values `α_{i}` used to aggregate constraints
Alpha(usize),
/// Represent a dynamic selector, in the case of using decomposable folding
Selector(C::Selector),
}
/// Components to be used to convert multivariate polynomials into "compatible"
/// multivariate polynomials that will be translated to folding expressions.
#[derive(Derivative)]
#[derivative(
Clone(bound = "C: FoldingConfig"),
PartialEq(bound = "C: FoldingConfig"),
Debug(bound = "C: FoldingConfig")
)]
pub enum FoldingCompatibleExprInner<C: FoldingConfig> {
Constant(<C::Curve as AffineRepr>::ScalarField),
Challenge(C::Challenge),
Cell(Variable<C::Column>),
/// extra nodes created by folding, should not be passed to folding
Extensions(ExpExtension<C>),
}
/// Compatible folding expressions that can be used with folding schemes.
/// An expression from [kimchi::circuits::expr::Expr] can be converted into a
/// [FoldingCompatibleExpr] using the trait [From].
/// From there, an expression of type [IntegratedFoldingExpr] can be created
/// using the function [folding_expression].
#[derive(Derivative)]
#[derivative(
Clone(bound = "C: FoldingConfig"),
PartialEq(bound = "C: FoldingConfig"),
Debug(bound = "C: FoldingConfig")
)]
pub enum FoldingCompatibleExpr<C: FoldingConfig> {
Atom(FoldingCompatibleExprInner<C>),
Pow(Box<Self>, u64),
Add(Box<Self>, Box<Self>),
Sub(Box<Self>, Box<Self>),
Mul(Box<Self>, Box<Self>),
Double(Box<Self>),
Square(Box<Self>),
}
impl<C: FoldingConfig> std::ops::Add for FoldingCompatibleExpr<C> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self::Add(Box::new(self), Box::new(rhs))
}
}
impl<C: FoldingConfig> std::ops::Sub for FoldingCompatibleExpr<C> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self::Sub(Box::new(self), Box::new(rhs))
}
}
impl<C: FoldingConfig> std::ops::Mul for FoldingCompatibleExpr<C> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Self::Mul(Box::new(self), Box::new(rhs))
}
}
/// Implement a human-readable version of a folding compatible expression.
impl<C: FoldingConfig> Display for FoldingCompatibleExpr<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
FoldingCompatibleExpr::Atom(c) => match c {
FoldingCompatibleExprInner::Constant(c) => {
if c.is_zero() {
write!(f, "0")
} else {
write!(f, "{}", c)
}
}
FoldingCompatibleExprInner::Challenge(c) => {
write!(f, "{:?}", c)
}
FoldingCompatibleExprInner::Cell(cell) => {
let Variable { col, row } = cell;
let next = match row {
CurrOrNext::Curr => "",
CurrOrNext::Next => " * ω",
};
write!(f, "Col({:?}){}", col, next)
}
FoldingCompatibleExprInner::Extensions(e) => match e {
ExpExtension::U => write!(f, "U"),
ExpExtension::Error => write!(f, "E"),
ExpExtension::ExtendedWitness(i) => {
write!(f, "ExWit({})", i)
}
ExpExtension::Alpha(i) => write!(f, "α_{i}"),
ExpExtension::Selector(s) => write!(f, "Selec({:?})", s),
},
},
FoldingCompatibleExpr::Double(e) => {
write!(f, "2 {}", e)
}
FoldingCompatibleExpr::Square(e) => {
write!(f, "{} ^ 2", e)
}
FoldingCompatibleExpr::Add(e1, e2) => {
write!(f, "{} + {}", e1, e2)
}
FoldingCompatibleExpr::Sub(e1, e2) => {
write!(f, "{} - {}", e1, e2)
}
FoldingCompatibleExpr::Mul(e1, e2) => {
write!(f, "({}) ({})", e1, e2)
}
FoldingCompatibleExpr::Pow(_, _) => todo!(),
}
}
}
/// Internal expression used for folding.
/// A "folding" expression is a multivariate polynomial like defined in
/// [kimchi::circuits::expr] with the following differences.
/// - No constructors related to zero-knowledge or lagrange basis (i.e. no
/// constructors related to the PIOP)
/// - The variables includes a set of columns that describes the initial circuit
/// shape, with additional columns strictly related to the folding scheme (error
/// term, etc).
// TODO: renamed in "RelaxedExpression"?
#[derive(Derivative)]
#[derivative(
Hash(bound = "C:FoldingConfig"),
Debug(bound = "C:FoldingConfig"),
Clone(bound = "C:FoldingConfig"),
PartialEq(bound = "C:FoldingConfig"),
Eq(bound = "C:FoldingConfig")
)]
pub enum FoldingExp<C: FoldingConfig> {
Atom(ExtendedFoldingColumn<C>),
Pow(Box<Self>, u64),
Add(Box<Self>, Box<Self>),
Mul(Box<Self>, Box<Self>),
Sub(Box<Self>, Box<Self>),
Double(Box<Self>),
Square(Box<Self>),
}
impl<C: FoldingConfig> std::ops::Add for FoldingExp<C> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self::Add(Box::new(self), Box::new(rhs))
}
}
impl<C: FoldingConfig> std::ops::Sub for FoldingExp<C> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self::Sub(Box::new(self), Box::new(rhs))
}
}
impl<C: FoldingConfig> std::ops::Mul for FoldingExp<C> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Self::Mul(Box::new(self), Box::new(rhs))
}
}
impl<C: FoldingConfig> FoldingExp<C> {
pub fn double(self) -> Self {
Self::Double(Box::new(self))
}
}
/// Converts an expression "compatible" with folding into a folded expression.
// TODO: use "into"?
// FIXME: add independent tests
// FIXME: test independently the behavior of pow_to_mul, and explain only why 8
// maximum
impl<C: FoldingConfig> FoldingCompatibleExpr<C> {
pub fn simplify(self) -> FoldingExp<C> {
use FoldingExp::*;
match self {
FoldingCompatibleExpr::Atom(atom) => match atom {
FoldingCompatibleExprInner::Constant(c) => Atom(ExtendedFoldingColumn::Constant(c)),
FoldingCompatibleExprInner::Challenge(c) => {
Atom(ExtendedFoldingColumn::Challenge(c))
}
FoldingCompatibleExprInner::Cell(col) => Atom(ExtendedFoldingColumn::Inner(col)),
FoldingCompatibleExprInner::Extensions(ext) => {
match ext {
// TODO: this shouldn't be allowed, but is needed for now to add
// decomposable folding without many changes, it should be
// refactored at some point in the future
ExpExtension::Selector(s) => Atom(ExtendedFoldingColumn::Selector(s)),
_ => {
panic!("this should only be created by folding itself")
}
}
}
},
FoldingCompatibleExpr::Double(exp) => Double(Box::new((*exp).simplify())),
FoldingCompatibleExpr::Square(exp) => Square(Box::new((*exp).simplify())),
FoldingCompatibleExpr::Add(e1, e2) => {
let e1 = Box::new(e1.simplify());
let e2 = Box::new(e2.simplify());
Add(e1, e2)
}
FoldingCompatibleExpr::Sub(e1, e2) => {
let e1 = Box::new(e1.simplify());
let e2 = Box::new(e2.simplify());
Sub(e1, e2)
}
FoldingCompatibleExpr::Mul(e1, e2) => {
let e1 = Box::new(e1.simplify());
let e2 = Box::new(e2.simplify());
Mul(e1, e2)
}
FoldingCompatibleExpr::Pow(e, p) => Self::pow_to_mul(e.simplify(), p),
}
}
fn pow_to_mul(exp: FoldingExp<C>, p: u64) -> FoldingExp<C>
where
C::Column: Clone,
C::Challenge: Clone,
{
use FoldingExp::*;
let e = Box::new(exp);
let e_2 = Box::new(Square(e.clone()));
match p {
2 => *e_2,
3 => Mul(e, e_2),
4..=8 => {
let e_4 = Box::new(Square(e_2.clone()));
match p {
4 => *e_4,
5 => Mul(e, e_4),
6 => Mul(e_2, e_4),
7 => Mul(e, Box::new(Mul(e_2, e_4))),
8 => Square(e_4),
_ => unreachable!(),
}
}
_ => panic!("unsupported"),
}
}
/// Maps variable (column index) in expression using the `mapper`
/// function. Can be used to modify (remap) the indexing of
/// columns after the expression is built.
pub fn map_variable(
self,
mapper: &(dyn Fn(Variable<C::Column>) -> Variable<C::Column>),
) -> FoldingCompatibleExpr<C> {
use FoldingCompatibleExpr::*;
match self {
FoldingCompatibleExpr::Atom(atom) => match atom {
FoldingCompatibleExprInner::Cell(col) => {
Atom(FoldingCompatibleExprInner::Cell((mapper)(col)))
}
atom => Atom(atom),
},
FoldingCompatibleExpr::Double(exp) => Double(Box::new(exp.map_variable(mapper))),
FoldingCompatibleExpr::Square(exp) => Square(Box::new(exp.map_variable(mapper))),
FoldingCompatibleExpr::Add(e1, e2) => {
let e1 = Box::new(e1.map_variable(mapper));
let e2 = Box::new(e2.map_variable(mapper));
Add(e1, e2)
}
FoldingCompatibleExpr::Sub(e1, e2) => {
let e1 = Box::new(e1.map_variable(mapper));
let e2 = Box::new(e2.map_variable(mapper));
Sub(e1, e2)
}
FoldingCompatibleExpr::Mul(e1, e2) => {
let e1 = Box::new(e1.map_variable(mapper));
let e2 = Box::new(e2.map_variable(mapper));
Mul(e1, e2)
}
FoldingCompatibleExpr::Pow(e, p) => Pow(Box::new(e.map_variable(mapper)), p),
}
}
/// Map all quad columns into regular witness columns.
pub fn flatten_quad_columns(
self,
mapper: &(dyn Fn(usize) -> Variable<C::Column>),
) -> FoldingCompatibleExpr<C> {
use FoldingCompatibleExpr::*;
match self {
FoldingCompatibleExpr::Atom(atom) => match atom {
FoldingCompatibleExprInner::Extensions(ExpExtension::ExtendedWitness(i)) => {
Atom(FoldingCompatibleExprInner::Cell((mapper)(i)))
}
atom => Atom(atom),
},
FoldingCompatibleExpr::Double(exp) => {
Double(Box::new(exp.flatten_quad_columns(mapper)))
}
FoldingCompatibleExpr::Square(exp) => {
Square(Box::new(exp.flatten_quad_columns(mapper)))
}
FoldingCompatibleExpr::Add(e1, e2) => {
let e1 = Box::new(e1.flatten_quad_columns(mapper));
let e2 = Box::new(e2.flatten_quad_columns(mapper));
Add(e1, e2)
}
FoldingCompatibleExpr::Sub(e1, e2) => {
let e1 = Box::new(e1.flatten_quad_columns(mapper));
let e2 = Box::new(e2.flatten_quad_columns(mapper));
Sub(e1, e2)
}
FoldingCompatibleExpr::Mul(e1, e2) => {
let e1 = Box::new(e1.flatten_quad_columns(mapper));
let e2 = Box::new(e2.flatten_quad_columns(mapper));
Mul(e1, e2)
}
FoldingCompatibleExpr::Pow(e, p) => Pow(Box::new(e.flatten_quad_columns(mapper)), p),
}
}
}
impl<C: FoldingConfig> FoldingExp<C> {
/// Compute the degree of a folding expression.
/// Only constants are of degree `0`, the rest is of degree `1`.
/// An atom of degree `1` means that the atom is going to be randomised as
/// described in the [top level documentation](super::expressions).
pub(super) fn folding_degree(&self) -> Degree {
use Degree::*;
match self {
FoldingExp::Atom(ex_col) => match ex_col {
ExtendedFoldingColumn::Inner(col) => col.col.degree(),
ExtendedFoldingColumn::WitnessExtended(_) => One,
ExtendedFoldingColumn::Error => One,
ExtendedFoldingColumn::Constant(_) => Zero,
ExtendedFoldingColumn::Challenge(_) => One,
ExtendedFoldingColumn::Alpha(_) => One,
ExtendedFoldingColumn::Selector(_) => One,
},
FoldingExp::Double(e) => e.folding_degree(),
FoldingExp::Square(e) => &e.folding_degree() * &e.folding_degree(),
FoldingExp::Mul(e1, e2) => &e1.folding_degree() * &e2.folding_degree(),
FoldingExp::Add(e1, e2) | FoldingExp::Sub(e1, e2) => {
e1.folding_degree() + e2.folding_degree()
}
FoldingExp::Pow(_, 0) => Zero,
FoldingExp::Pow(e, 1) => e.folding_degree(),
FoldingExp::Pow(e, i) => {
let degree = e.folding_degree();
let mut acc = degree;
for _ in 1..*i {
acc = &acc * °ree;
}
acc
}
}
}
/// Convert a folding expression into a compatible one.
fn into_compatible(self) -> FoldingCompatibleExpr<C> {
use FoldingCompatibleExpr::*;
use FoldingCompatibleExprInner::*;
match self {
FoldingExp::Atom(c) => match c {
ExtendedFoldingColumn::Inner(col) => Atom(Cell(col)),
ExtendedFoldingColumn::WitnessExtended(i) => {
Atom(Extensions(ExpExtension::ExtendedWitness(i)))
}
ExtendedFoldingColumn::Error => Atom(Extensions(ExpExtension::Error)),
ExtendedFoldingColumn::Constant(c) => Atom(Constant(c)),
ExtendedFoldingColumn::Challenge(c) => Atom(Challenge(c)),
ExtendedFoldingColumn::Alpha(i) => Atom(Extensions(ExpExtension::Alpha(i))),
ExtendedFoldingColumn::Selector(s) => Atom(Extensions(ExpExtension::Selector(s))),
},
FoldingExp::Double(exp) => Double(Box::new(exp.into_compatible())),
FoldingExp::Square(exp) => Square(Box::new(exp.into_compatible())),
FoldingExp::Add(e1, e2) => {
let e1 = Box::new(e1.into_compatible());
let e2 = Box::new(e2.into_compatible());
Add(e1, e2)
}
FoldingExp::Sub(e1, e2) => {
let e1 = Box::new(e1.into_compatible());
let e2 = Box::new(e2.into_compatible());
Sub(e1, e2)
}
FoldingExp::Mul(e1, e2) => {
let e1 = Box::new(e1.into_compatible());
let e2 = Box::new(e2.into_compatible());
Mul(e1, e2)
}
// TODO: Replace with `Pow`
FoldingExp::Pow(_, 0) => Atom(Constant(<C::Curve as AffineRepr>::ScalarField::one())),
FoldingExp::Pow(e, 1) => e.into_compatible(),
FoldingExp::Pow(e, i) => {
let e = e.into_compatible();
let mut acc = e.clone();
for _ in 1..i {
acc = Mul(Box::new(e.clone()), Box::new(acc))
}
acc
}
}
}
}
/// Used to encode the sign of a term in a polynomial.
// FIXME: is it really needed?
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Sign {
Pos,
Neg,
}
impl std::ops::Neg for Sign {
type Output = Self;
fn neg(self) -> Self {
match self {
Sign::Pos => Sign::Neg,
Sign::Neg => Sign::Pos,
}
}
}
/// A term of a polynomial
/// For instance, in the polynomial `3 X_{1} X_{2} + 2 X_{3}`, the terms are
/// `3 X_{1} X_{2}` and `2 X_{3}`.
/// The sign is used to encode the sign of the term at the expression level.
/// It is used to split a polynomial in its terms/monomials of degree `0`, `1`
/// and `2`.
#[derive(Derivative)]
#[derivative(Debug, Clone(bound = "C: FoldingConfig"))]
pub struct Term<C: FoldingConfig> {
pub exp: FoldingExp<C>,
pub sign: Sign,
}
impl<C: FoldingConfig> Term<C> {
fn double(self) -> Self {
let Self { exp, sign } = self;
let exp = FoldingExp::Double(Box::new(exp));
Self { exp, sign }
}
}
impl<C: FoldingConfig> std::ops::Mul for &Term<C> {
type Output = Term<C>;
fn mul(self, rhs: Self) -> Self::Output {
let sign = if self.sign == rhs.sign {
Sign::Pos
} else {
Sign::Neg
};
let exp = FoldingExp::Mul(Box::new(self.exp.clone()), Box::new(rhs.exp.clone()));
Term { exp, sign }
}
}
impl<C: FoldingConfig> std::ops::Neg for Term<C> {
type Output = Self;
fn neg(self) -> Self::Output {
Term {
sign: -self.sign,
..self
}
}
}
/// A value of type [IntegratedFoldingExpr] is the result of the split of a
/// polynomial in its monomials of degree `0`, `1` and `2`.
/// It is used to compute the error terms. For an example, have a look at the
/// [top level documentation](super::expressions).
#[derive(Derivative)]
#[derivative(
Debug(bound = "C: FoldingConfig"),
Clone(bound = "C: FoldingConfig"),
Default(bound = "C: FoldingConfig")
)]
pub struct IntegratedFoldingExpr<C: FoldingConfig> {
// (exp,sign,alpha)
pub(super) degree_0: Vec<(FoldingExp<C>, Sign, usize)>,
pub(super) degree_1: Vec<(FoldingExp<C>, Sign, usize)>,
pub(super) degree_2: Vec<(FoldingExp<C>, Sign, usize)>,
}
impl<C: FoldingConfig> IntegratedFoldingExpr<C> {
/// Combines constraints into single expression
pub fn final_expression(self) -> FoldingCompatibleExpr<C> {
use FoldingCompatibleExpr::*;
/// TODO: should use powers of alpha
use FoldingCompatibleExprInner::*;
let Self {
degree_0,
degree_1,
degree_2,
} = self;
let [d0, d1, d2] = [degree_0, degree_1, degree_2]
.map(|exps| {
let init =
FoldingExp::Atom(ExtendedFoldingColumn::Constant(ScalarField::<C>::zero()));
exps.into_iter().fold(init, |acc, (exp, sign, alpha)| {
let exp = FoldingExp::Mul(
Box::new(exp),
Box::new(FoldingExp::Atom(ExtendedFoldingColumn::Alpha(alpha))),
);
match sign {
Sign::Pos => FoldingExp::Add(Box::new(acc), Box::new(exp)),
Sign::Neg => FoldingExp::Sub(Box::new(acc), Box::new(exp)),
}
})
})
.map(|e| e.into_compatible());
let u = || Box::new(Atom(Extensions(ExpExtension::U)));
let u2 = || Box::new(Square(u()));
let d0 = FoldingCompatibleExpr::Mul(Box::new(d0), u2());
let d1 = FoldingCompatibleExpr::Mul(Box::new(d1), u());
let d2 = Box::new(d2);
let exp = FoldingCompatibleExpr::Add(Box::new(d0), Box::new(d1));
let exp = FoldingCompatibleExpr::Add(Box::new(exp), d2);
FoldingCompatibleExpr::Add(
Box::new(exp),
Box::new(Atom(Extensions(ExpExtension::Error))),
)
}
}
pub fn extract_terms<C: FoldingConfig>(exp: FoldingExp<C>) -> Box<dyn Iterator<Item = Term<C>>> {
use FoldingExp::*;
let exps: Box<dyn Iterator<Item = Term<C>>> = match exp {
exp @ Atom(_) => Box::new(
[Term {
exp,
sign: Sign::Pos,
}]
.into_iter(),
),
Double(exp) => Box::new(extract_terms(*exp).map(Term::double)),
Square(exp) => {
let terms = extract_terms(*exp).collect_vec();
let mut combinations = Vec::with_capacity(terms.len() ^ 2);
for t1 in terms.iter() {
for t2 in terms.iter() {
combinations.push(t1 * t2)
}
}
Box::new(combinations.into_iter())
}
Add(e1, e2) => {
let e1 = extract_terms(*e1);
let e2 = extract_terms(*e2);
Box::new(e1.chain(e2))
}
Sub(e1, e2) => {
let e1 = extract_terms(*e1);
let e2 = extract_terms(*e2).map(|t| -t);
Box::new(e1.chain(e2))
}
Mul(e1, e2) => {
let e1 = extract_terms(*e1).collect_vec();
let e2 = extract_terms(*e2).collect_vec();
let mut combinations = Vec::with_capacity(e1.len() * e2.len());
for t1 in e1.iter() {
for t2 in e2.iter() {
combinations.push(t1 * t2)
}
}
Box::new(combinations.into_iter())
}
Pow(_, 0) => Box::new(
[Term {
exp: FoldingExp::Atom(ExtendedFoldingColumn::Constant(
<C::Curve as AffineRepr>::ScalarField::one(),
)),
sign: Sign::Pos,
}]
.into_iter(),
),
Pow(e, 1) => extract_terms(*e),
Pow(e, mut i) => {
let e = extract_terms(*e).collect_vec();
let mut acc = e.clone();
// Could do this inplace, but it's more annoying to write
while i > 2 {
let mut combinations = Vec::with_capacity(e.len() * acc.len());
for t1 in e.iter() {
for t2 in acc.iter() {
combinations.push(t1 * t2)
}
}
acc = combinations;
i -= 1;
}
Box::new(acc.into_iter())
}
};
exps
}
/// Convert a list of folding compatible expression into the folded form.
pub fn folding_expression<C: FoldingConfig>(
exps: Vec<FoldingCompatibleExpr<C>>,
) -> (IntegratedFoldingExpr<C>, ExtendedWitnessGenerator<C>, usize) {
let simplified_expressions = exps.into_iter().map(|exp| exp.simplify()).collect_vec();
let (
Quadraticized {
original_constraints: expressions,
extra_constraints: extra_expressions,
extended_witness_generator,
},
added_columns,
) = quadraticize(simplified_expressions);
let mut terms = vec![];
let mut alpha = 0;
// Alpha is always increased, equal to the total number of
// expressions. We could optimise it and only assign increasing
// alphas in "blocks" that depend on selectors. This would make
// #alphas equal to the expressions in the biggest block (+ some
// columns common for all blocks of the circuit).
for exp in expressions.into_iter() {
terms.extend(extract_terms(exp).map(|term| (term, alpha)));
alpha += 1;
}
for exp in extra_expressions.into_iter() {
terms.extend(extract_terms(exp).map(|term| (term, alpha)));
alpha += 1;
}
let mut integrated = IntegratedFoldingExpr::default();
for (term, alpha) in terms.into_iter() {
let Term { exp, sign } = term;
let degree = exp.folding_degree();
let t = (exp, sign, alpha);
match degree {
Degree::Zero => integrated.degree_0.push(t),
Degree::One => integrated.degree_1.push(t),
Degree::Two => integrated.degree_2.push(t),
}
}
(integrated, extended_witness_generator, added_columns)
}
// CONVERSIONS FROM EXPR TO FOLDING COMPATIBLE EXPRESSIONS
impl<F, Config: FoldingConfig> From<ConstantExprInner<F, BerkeleyChallengeTerm>>
for FoldingCompatibleExprInner<Config>
where
Config::Curve: AffineRepr<ScalarField = F>,
Config::Challenge: From<BerkeleyChallengeTerm>,
{
fn from(expr: ConstantExprInner<F, BerkeleyChallengeTerm>) -> Self {
match expr {
ConstantExprInner::Challenge(chal) => {
FoldingCompatibleExprInner::Challenge(chal.into())
}
ConstantExprInner::Constant(c) => match c {
ConstantTerm::Literal(f) => FoldingCompatibleExprInner::Constant(f),
ConstantTerm::EndoCoefficient | ConstantTerm::Mds { row: _, col: _ } => {
panic!("When special constants are involved, don't forget to simplify the expression before.")
}
},
}
}
}
impl<F, Col, Config: FoldingConfig<Column = Col>>
From<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>
for FoldingCompatibleExprInner<Config>
where
Config::Curve: AffineRepr<ScalarField = F>,
Config::Challenge: From<BerkeleyChallengeTerm>,
{
// TODO: check if this needs some special treatment for Extensions
fn from(expr: ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>) -> Self {
match expr {
ExprInner::Constant(cexpr) => cexpr.into(),
ExprInner::Cell(col) => FoldingCompatibleExprInner::Cell(col),
ExprInner::UnnormalizedLagrangeBasis(_) => {
panic!("UnnormalizedLagrangeBasis should not be used in folding expressions")
}
ExprInner::VanishesOnZeroKnowledgeAndPreviousRows => {
panic!("VanishesOnZeroKnowledgeAndPreviousRows should not be used in folding expressions")
}
}
}
}
impl<F, Col, Config: FoldingConfig<Column = Col>>
From<Operations<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>>
for FoldingCompatibleExpr<Config>
where
Config::Curve: AffineRepr<ScalarField = F>,
Config::Challenge: From<BerkeleyChallengeTerm>,
{
fn from(expr: Operations<ExprInner<ConstantExprInner<F, BerkeleyChallengeTerm>, Col>>) -> Self {
match expr {
Operations::Atom(inner) => FoldingCompatibleExpr::Atom(inner.into()),
Operations::Add(x, y) => {
FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Mul(x, y) => {
FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Sub(x, y) => {
FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
_ => panic!("Operation not supported in folding expressions"),
}
}
}
impl<F, Col, Config: FoldingConfig<Column = Col>>
From<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>> for FoldingCompatibleExpr<Config>
where
Config::Curve: AffineRepr<ScalarField = F>,
Config::Challenge: From<BerkeleyChallengeTerm>,
{
fn from(expr: Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>) -> Self {
match expr {
Operations::Add(x, y) => {
FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Mul(x, y) => {
FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Sub(x, y) => {
FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
_ => panic!("Operation not supported in folding expressions"),
}
}
}
impl<F, Col, Config: FoldingConfig<Column = Col>>
From<Operations<ExprInner<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>, Col>>>
for FoldingCompatibleExpr<Config>
where
Config::Curve: AffineRepr<ScalarField = F>,
Config::Challenge: From<BerkeleyChallengeTerm>,
{
fn from(
expr: Operations<ExprInner<Operations<ConstantExprInner<F, BerkeleyChallengeTerm>>, Col>>,
) -> Self {
match expr {
Operations::Atom(inner) => match inner {
ExprInner::Constant(op) => match op {
// The constant expressions nodes are considered as top level
// expressions in folding
Operations::Atom(inner) => FoldingCompatibleExpr::Atom(inner.into()),
Operations::Add(x, y) => {
FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Mul(x, y) => {
FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Sub(x, y) => {
FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
_ => panic!("Operation not supported in folding expressions"),
},
ExprInner::Cell(col) => {
FoldingCompatibleExpr::Atom(FoldingCompatibleExprInner::Cell(col))
}
ExprInner::UnnormalizedLagrangeBasis(_) => {
panic!("UnnormalizedLagrangeBasis should not be used in folding expressions")
}
ExprInner::VanishesOnZeroKnowledgeAndPreviousRows => {
panic!("VanishesOnZeroKnowledgeAndPreviousRows should not be used in folding expressions")
}
},
Operations::Add(x, y) => {
FoldingCompatibleExpr::Add(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Mul(x, y) => {
FoldingCompatibleExpr::Mul(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Sub(x, y) => {
FoldingCompatibleExpr::Sub(Box::new((*x).into()), Box::new((*y).into()))
}
Operations::Double(x) => FoldingCompatibleExpr::Double(Box::new((*x).into())),
Operations::Square(x) => FoldingCompatibleExpr::Square(Box::new((*x).into())),
Operations::Pow(e, p) => FoldingCompatibleExpr::Pow(Box::new((*e).into()), p),
_ => panic!("Operation not supported in folding expressions"),
}
}
}