1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//! This module contains the functions used to compute the error terms, as
//! described in the [top-level documentation of the expressions
//! module](crate::expressions).

use crate::{
    columns::ExtendedFoldingColumn,
    decomposable_folding::check_selector,
    eval_leaf::EvalLeaf,
    expressions::{Degree, FoldingExp, IntegratedFoldingExpr, Sign},
    quadraticization::ExtendedWitnessGenerator,
    FoldingConfig, FoldingEnv, Instance, RelaxedInstance, RelaxedWitness, ScalarField,
};
use ark_ff::{Field, One, Zero};
use ark_poly::{Evaluations, Radix2EvaluationDomain};
use kimchi::circuits::expr::Variable;
use poly_commitment::{PolyComm, SRS};

// FIXME: for optimisation, as values are not necessarily Fp elements and are
// relatively small, we could get rid of the scalar field objects, and only use
// bigint where we only apply the modulus when needed.

/// This type refers to the two instances to be folded
#[derive(Clone, Copy)]
pub enum Side {
    Left = 0,
    Right = 1,
}

impl Side {
    pub fn other(self) -> Self {
        match self {
            Side::Left => Side::Right,
            Side::Right => Side::Left,
        }
    }
}

/// Evaluates the expression in the provided side
pub(crate) fn eval_sided<'a, C: FoldingConfig>(
    exp: &FoldingExp<C>,
    env: &'a ExtendedEnv<C>,
    side: Side,
) -> EvalLeaf<'a, ScalarField<C>> {
    use FoldingExp::*;

    match exp {
        Atom(col) => env.col(col, side),
        Double(e) => {
            let col = eval_sided(e, env, side);
            col.map(Field::double, |f| {
                Field::double_in_place(f);
            })
        }
        Square(e) => {
            let col = eval_sided(e, env, side);
            col.map(Field::square, |f| {
                Field::square_in_place(f);
            })
        }
        Add(e1, e2) => eval_sided(e1, env, side) + eval_sided(e2, env, side),
        Sub(e1, e2) => eval_sided(e1, env, side) - eval_sided(e2, env, side),
        Mul(e1, e2) => {
            //this assumes to some degree that selectors don't multiply each other
            let selector = check_selector(e1)
                .or(check_selector(e2))
                .zip(env.enabled_selector())
                .map(|(s1, s2)| s1 == s2);
            match selector {
                Some(false) => {
                    let zero_vec = vec![ScalarField::<C>::zero(); env.domain.size as usize];
                    EvalLeaf::Result(zero_vec)
                }
                Some(true) | None => {
                    let d1 = e1.folding_degree();
                    let d2 = e2.folding_degree();
                    let e1 = match d1 {
                        Degree::Two => eval_sided(e1, env, side),
                        _ => eval_exp_error(e1, env, side),
                    };
                    let e2 = match d2 {
                        Degree::Two => eval_sided(e2, env, side),
                        _ => eval_exp_error(e2, env, side),
                    };
                    e1 * e2
                }
            }
        }
        Pow(e, i) => match i {
            0 => EvalLeaf::Const(ScalarField::<C>::one()),
            1 => eval_sided(e, env, side),
            i => {
                let err = eval_sided(e, env, side);
                let mut acc = err.clone();
                for _ in 1..*i {
                    acc = acc * err.clone()
                }
                acc
            }
        },
    }
}

pub(crate) fn eval_exp_error<'a, C: FoldingConfig>(
    exp: &FoldingExp<C>,
    env: &'a ExtendedEnv<C>,
    side: Side,
) -> EvalLeaf<'a, ScalarField<C>> {
    use FoldingExp::*;

    match exp {
        Atom(col) => env.col(col, side),
        Double(e) => {
            let col = eval_exp_error(e, env, side);
            col.map(Field::double, |f| {
                Field::double_in_place(f);
            })
        }
        Square(e) => match exp.folding_degree() {
            Degree::Two => {
                let cross = eval_exp_error(e, env, side) * eval_exp_error(e, env, side.other());
                cross.map(Field::double, |f| {
                    Field::double_in_place(f);
                })
            }
            _ => {
                let e = eval_exp_error(e, env, side);
                e.map(Field::square, |f| {
                    Field::square_in_place(f);
                })
            }
        },
        Add(e1, e2) => eval_exp_error(e1, env, side) + eval_exp_error(e2, env, side),
        Sub(e1, e2) => eval_exp_error(e1, env, side) - eval_exp_error(e2, env, side),
        Mul(e1, e2) => {
            //this assumes to some degree that selectors don't multiply each other
            let selector = check_selector(e1)
                .or(check_selector(e2))
                .zip(env.enabled_selector())
                .map(|(s1, s2)| s1 == s2);
            match selector {
                Some(false) => {
                    let zero_vec = vec![ScalarField::<C>::zero(); env.domain.size as usize];
                    EvalLeaf::Result(zero_vec)
                }
                Some(true) | None => match (exp.folding_degree(), e1.folding_degree()) {
                    (Degree::Two, Degree::One) => {
                        let first =
                            eval_exp_error(e1, env, side) * eval_exp_error(e2, env, side.other());
                        let second =
                            eval_exp_error(e1, env, side.other()) * eval_exp_error(e2, env, side);
                        first + second
                    }
                    _ => eval_exp_error(e1, env, side) * eval_exp_error(e2, env, side),
                },
            }
        }
        Pow(_, 0) => EvalLeaf::Const(ScalarField::<C>::one()),
        Pow(e, 1) => eval_exp_error(e, env, side),
        Pow(e, 2) => match (exp.folding_degree(), e.folding_degree()) {
            (Degree::Two, Degree::One) => {
                let first = eval_exp_error(e, env, side) * eval_exp_error(e, env, side.other());
                let second = eval_exp_error(e, env, side.other()) * eval_exp_error(e, env, side);
                first + second
            }
            _ => {
                let err = eval_exp_error(e, env, side);
                err.clone() * err
            }
        },
        Pow(e, i) => match exp.folding_degree() {
            Degree::Zero => {
                let e = eval_exp_error(e, env, side);
                // TODO: Implement `pow` here for efficiency
                let mut acc = e.clone();
                for _ in 1..*i {
                    acc = acc * e.clone();
                }
                acc
            }
            _ => panic!("degree over 2"),
        },
    }
}

/// Computes the error terms of a folding/homogeneous expression.
/// The extended environment contains all the evaluations of the columns,
/// including the ones added by the quadraticization process.
/// `u` is the variables used to homogenize the expression.
/// The output is a pair of error terms. To see how it is computed, see the
/// [top-level documentation of the expressions module](crate::expressions).
pub(crate) fn compute_error<C: FoldingConfig>(
    exp: &IntegratedFoldingExpr<C>,
    env: &ExtendedEnv<C>,
    u: (ScalarField<C>, ScalarField<C>),
) -> [Vec<ScalarField<C>>; 2] {
    // FIXME: for speed, use inplace operations, and avoid cloning and
    // allocating a new element.
    // An allocation can cost a third of the time required for an addition and a
    // 9th for a multiplication on the scalar field
    // Indirections are also costly, so we should avoid them as much as
    // possible, and inline code.
    let (ul, ur) = (u.0, u.1);
    let u_cross = ul * ur;
    let zero_vec = vec![ScalarField::<C>::zero(); env.domain.size as usize];
    let zero = || EvalLeaf::Result(zero_vec.clone());

    let alphas_l = env
        .get_relaxed_instance(Side::Left)
        .extended_instance
        .instance
        .get_alphas();
    let alphas_r = env
        .get_relaxed_instance(Side::Right)
        .extended_instance
        .instance
        .get_alphas();

    let t_0 = {
        let t_0 = (zero(), zero());
        let (l, r) = exp.degree_0.iter().fold(t_0, |(l, r), (exp, sign, alpha)| {
            //could be left or right, doesn't matter for constant terms
            let exp = eval_exp_error(exp, env, Side::Left);
            let alpha_l = alphas_l.get(*alpha).expect("alpha not present");
            let alpha_r = alphas_r.get(*alpha).expect("alpha not present");
            let left = exp.clone() * alpha_l;
            let right = exp * alpha_r;
            match sign {
                Sign::Pos => (l + left, r + right),
                Sign::Neg => (l - left, r - right),
            }
        });
        let cross2 = u_cross.double();
        let e0 = l.clone() * cross2 + r.clone() * ul.square();
        let e1 = r * cross2 + l * ur.square();
        (e0, e1)
    };

    let t_1 = {
        let t_1 = (zero(), zero(), zero());
        let (l, cross, r) = exp
            .degree_1
            .iter()
            .fold(t_1, |(l, cross, r), (exp, sign, alpha)| {
                let expl = eval_exp_error(exp, env, Side::Left);
                let expr = eval_exp_error(exp, env, Side::Right);
                let alpha_l = alphas_l.get(*alpha).expect("alpha not present");
                let alpha_r = alphas_r.get(*alpha).expect("alpha not present");
                let expr_cross = expl.clone() * alpha_r + expr.clone() * alpha_l;
                let left = expl * alpha_l;
                let right = expr * alpha_r;
                match sign {
                    Sign::Pos => (l + left, cross + expr_cross, r + right),
                    Sign::Neg => (l - left, cross - expr_cross, r - right),
                }
            });
        let e0 = cross.clone() * ul + l * ur;
        let e1 = cross.clone() * ur + r * ul;
        (e0, e1)
    };
    let t_2 = (zero(), zero());
    let t_2 = exp.degree_2.iter().fold(t_2, |(l, r), (exp, sign, alpha)| {
        let expl = eval_sided(exp, env, Side::Left);
        let expr = eval_sided(exp, env, Side::Right);
        //left or right matter in some way, but not at the top level call
        let cross = eval_exp_error(exp, env, Side::Left);
        let alpha_l = alphas_l.get(*alpha).expect("alpha not present");
        let alpha_r = alphas_r.get(*alpha).expect("alpha not present");
        let left = expl * alpha_r + cross.clone() * alpha_l;
        let right = expr * alpha_l + cross * alpha_r;
        match sign {
            Sign::Pos => (l + left, r + right),
            Sign::Neg => (l - left, r - right),
        }
    });
    let t = [t_1, t_2]
        .into_iter()
        .fold(t_0, |(tl, tr), (txl, txr)| (tl + txl, tr + txr));

    match t {
        (EvalLeaf::Result(l), EvalLeaf::Result(r)) => [l, r],
        _ => unreachable!(),
    }
}

/// An extended environment contains the evaluations of all the columns, including
/// the ones added by the quadraticization process. It also contains the
/// the two instances and witnesses that are being folded.
/// The domain is required to define the polynomial size of the evaluations of
/// the error terms.
pub(crate) struct ExtendedEnv<CF: FoldingConfig> {
    inner: CF::Env,
    instances: [RelaxedInstance<CF::Curve, CF::Instance>; 2],
    witnesses: [RelaxedWitness<CF::Curve, CF::Witness>; 2],
    domain: Radix2EvaluationDomain<ScalarField<CF>>,
    selector: Option<CF::Selector>,
}

impl<CF: FoldingConfig> ExtendedEnv<CF> {
    pub fn new(
        structure: &CF::Structure,
        // maybe better to have some structure extended or something like that
        instances: [RelaxedInstance<CF::Curve, CF::Instance>; 2],
        witnesses: [RelaxedWitness<CF::Curve, CF::Witness>; 2],
        domain: Radix2EvaluationDomain<ScalarField<CF>>,
        selector: Option<CF::Selector>,
    ) -> Self {
        let inner_instances = [
            &instances[0].extended_instance.instance,
            &instances[1].extended_instance.instance,
        ];
        let inner_witnesses = [
            &witnesses[0].extended_witness.witness,
            &witnesses[1].extended_witness.witness,
        ];
        let inner = <CF::Env>::new(structure, inner_instances, inner_witnesses);
        Self {
            inner,
            instances,
            witnesses,
            domain,
            selector,
        }
    }

    pub fn enabled_selector(&self) -> Option<&CF::Selector> {
        self.selector.as_ref()
    }

    #[allow(clippy::type_complexity)]
    pub fn unwrap(
        self,
    ) -> (
        [RelaxedInstance<CF::Curve, CF::Instance>; 2],
        [RelaxedWitness<CF::Curve, CF::Witness>; 2],
    ) {
        let Self {
            instances,
            witnesses,
            ..
        } = self;
        (instances, witnesses)
    }

    pub fn get_relaxed_instance(&self, side: Side) -> &RelaxedInstance<CF::Curve, CF::Instance> {
        &self.instances[side as usize]
    }

    pub fn get_relaxed_witness(&self, side: Side) -> &RelaxedWitness<CF::Curve, CF::Witness> {
        &self.witnesses[side as usize]
    }

    pub fn col(&self, col: &ExtendedFoldingColumn<CF>, side: Side) -> EvalLeaf<ScalarField<CF>> {
        use EvalLeaf::Col;
        use ExtendedFoldingColumn::*;
        let relaxed_instance = self.get_relaxed_instance(side);
        let relaxed_witness = self.get_relaxed_witness(side);
        let alphas = relaxed_instance.extended_instance.instance.get_alphas();
        match col {
            Inner(Variable { col, row }) => Col(self.inner.col(*col, *row, side)),
            WitnessExtended(i) => Col(&relaxed_witness
                .extended_witness
                .extended
                .get(i)
                .expect("extended column not present")
                .evals),
            Error => panic!("shouldn't happen"),
            Constant(c) => EvalLeaf::Const(*c),
            Challenge(chall) => EvalLeaf::Const(self.inner.challenge(*chall, side)),
            Alpha(i) => {
                let alpha = alphas.get(*i).expect("alpha not present");
                EvalLeaf::Const(alpha)
            }
            Selector(s) => Col(self.inner.selector(s, side)),
        }
    }

    pub fn col_try(&self, col: &ExtendedFoldingColumn<CF>, side: Side) -> bool {
        use ExtendedFoldingColumn::*;
        let relaxed_witness = self.get_relaxed_witness(side);
        match col {
            WitnessExtended(i) => relaxed_witness.extended_witness.extended.contains_key(i),
            Error => panic!("shouldn't happen"),
            Inner(_) | Constant(_) | Challenge(_) | Alpha(_) | Selector(_) => true,
        }
    }

    pub fn add_witness_evals(&mut self, i: usize, evals: Vec<ScalarField<CF>>, side: Side) {
        let (_instance, relaxed_witness) = match side {
            Side::Left => (&self.instances[0], &mut self.witnesses[0]),
            Side::Right => (&self.instances[1], &mut self.witnesses[1]),
        };
        let evals = Evaluations::from_vec_and_domain(evals, self.domain);
        relaxed_witness.extended_witness.add_witness_evals(i, evals);
    }

    pub fn needs_extension(&self, side: Side) -> bool {
        !match side {
            Side::Left => self.witnesses[0].extended_witness.is_extended(),
            Side::Right => self.witnesses[1].extended_witness.is_extended(),
        }
    }

    /// Computes the extended witness column and the corresponding commitments,
    /// updating the innner instance/witness pairs
    pub fn compute_extension(
        self,
        witness_generator: &ExtendedWitnessGenerator<CF>,
        srs: &CF::Srs,
    ) -> Self {
        let env = self;
        let env = witness_generator.compute_extended_witness(env, Side::Left);
        let env = witness_generator.compute_extended_witness(env, Side::Right);
        let env = env.compute_extended_commitments(srs, Side::Left);
        env.compute_extended_commitments(srs, Side::Right)
    }

    // FIXME: use reference to avoid indirect copying/cloning.
    /// Computes the commitments of the columns added by quadriaticization, for
    /// the given side.
    /// The commitments are added to the instance, in the same order for both
    /// side.
    /// Note that this function is only going to be called on the left instance
    /// once. When we fold the second time, the left instance will already be
    /// relaxed and will have the extended columns.
    /// Therefore, the blinder is always the one provided by the user, and it is
    /// saved in the field `blinder` in the case of a relaxed instance that has
    /// been built from a non-relaxed one.
    fn compute_extended_commitments(mut self, srs: &CF::Srs, side: Side) -> Self {
        let (relaxed_instance, relaxed_witness) = match side {
            Side::Left => (&mut self.instances[0], &self.witnesses[0]),
            Side::Right => (&mut self.instances[1], &self.witnesses[1]),
        };

        // FIXME: use parallelisation
        let blinder = PolyComm::new(vec![relaxed_instance.blinder]);
        for (expected_i, (i, wit)) in relaxed_witness.extended_witness.extended.iter().enumerate() {
            // in case any where to be missing for some reason
            assert_eq!(*i, expected_i);
            // Blinding the commitments to support the case the witness is zero.
            // The IVC circuit expects to have non-zero commitments.
            let commit = srs
                .commit_evaluations_custom(self.domain, wit, &blinder)
                .unwrap()
                .commitment;
            relaxed_instance.extended_instance.extended.push(commit)
        }
        // FIXME: maybe returning a value is not necessary as it does inplace operations.
        // It implies copying on the stack and possibly copy multiple times.
        self
    }

    /// Return the list of scalars and commitments to be absorbed, by
    /// concatenating the ones of the left with the ones of the right instance
    pub(crate) fn to_absorb(
        &self,
        t0: &CF::Curve,
        t1: &CF::Curve,
    ) -> (Vec<ScalarField<CF>>, Vec<CF::Curve>) {
        let mut left = self.instances[0].to_absorb();
        let right = self.instances[1].to_absorb();

        left.0.extend(right.0);
        left.1.extend(right.1);
        left.1.extend([t0, t1]);
        left
    }
}