1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
use ark_ec::models::short_weierstrass::SWCurveConfig;
use ark_ff::PrimeField;
use ark_poly::Evaluations;
use kimchi::circuits::{domains::EvaluationDomains, gate::CurrOrNext};
use log::{debug, info};
use mina_poseidon::constants::SpongeConstants;
use num_bigint::{BigInt, BigUint};
use num_integer::Integer;
use o1_utils::field_helpers::FieldHelpers;
use poly_commitment::{ipa::SRS, PolyComm, SRS as _};
use rayon::iter::{IntoParallelRefIterator, ParallelIterator};
use std::time::Instant;
use crate::{
columns::{Column, Gadget},
curve::{ArrabbiataCurve, PlonkSpongeConstants},
interpreter::{Instruction, InterpreterEnv, Side},
MAXIMUM_FIELD_SIZE_IN_BITS, NUMBER_OF_COLUMNS, NUMBER_OF_PUBLIC_INPUTS, NUMBER_OF_SELECTORS,
NUMBER_OF_VALUES_TO_ABSORB_PUBLIC_IO,
};
/// The first instruction in the IVC is the Poseidon permutation. It is used to
/// start hashing the public input.
pub const IVC_STARTING_INSTRUCTION: Instruction = Instruction::Poseidon(0);
/// An environment that can be shared between IVC instances.
///
/// It contains all the accumulators that can be picked for a given fold
/// instance k, including the sponges.
///
/// The environment is run over big integers to avoid performing
/// reduction at all step. Instead the user implementing the interpreter can
/// reduce in the corresponding field when they want.
pub struct Env<
Fp: PrimeField,
Fq: PrimeField,
E1: ArrabbiataCurve<ScalarField = Fp, BaseField = Fq>,
E2: ArrabbiataCurve<ScalarField = Fq, BaseField = Fp>,
> {
// ----------------
// Setup related (domains + SRS)
/// Domain for Fp
pub domain_fp: EvaluationDomains<Fp>,
/// Domain for Fq
pub domain_fq: EvaluationDomains<Fq>,
/// SRS for the first curve
pub srs_e1: SRS<E1>,
/// SRS for the second curve
pub srs_e2: SRS<E2>,
// ----------------
// ----------------
// Information related to the IVC, which will be used by the prover/verifier
// at the end of the whole execution
// FIXME: use a blinded comm and also fold the blinder
pub ivc_accumulator_e1: Vec<PolyComm<E1>>,
// FIXME: use a blinded comm and also fold the blinder
pub ivc_accumulator_e2: Vec<PolyComm<E2>>,
/// Commitments to the previous instances
pub previous_commitments_e1: Vec<PolyComm<E1>>,
pub previous_commitments_e2: Vec<PolyComm<E2>>,
// ----------------
// ----------------
// Data only used by the interpreter while building the witness over time
/// The index of the latest allocated variable in the circuit.
/// It is used to allocate new variables without having to keep track of the
/// position.
pub idx_var: usize,
pub idx_var_next_row: usize,
/// The index of the latest allocated public inputs in the circuit.
/// It is used to allocate new public inputs without having to keep track of
/// the position.
pub idx_var_pi: usize,
/// Current processing row. Used to build the witness.
pub current_row: usize,
/// State of the current row in the execution trace
pub state: [BigInt; NUMBER_OF_COLUMNS],
/// Next row in the execution trace. It is useful when we deal with
/// polynomials accessing "the next row", i.e. witness columns where we do
/// evaluate at ζ and ζω.
pub next_state: [BigInt; NUMBER_OF_COLUMNS],
/// Contain the public state
// FIXME: I don't like this design. Feel free to suggest a better solution
pub public_state: [BigInt; NUMBER_OF_PUBLIC_INPUTS],
/// Selectors to activate the gadgets.
/// The size of the outer vector must be equal to the number of gadgets in
/// the circuit.
/// The size of the inner vector must be equal to the number of rows in
/// the circuit.
///
/// The layout columns/rows is used to avoid rebuilding the arrays per
/// column when committing to the witness.
pub selectors: Vec<Vec<bool>>,
/// While folding, we must keep track of the challenges the verifier would
/// have sent in the SNARK, and we must aggregate them.
// FIXME: nothing is done yet, and the challenges haven't been decided yet.
// See top-level documentation of the interpreter for more information.
pub challenges: Vec<BigInt>,
/// Keep the current executed instruction
/// This can be used to identify which gadget the interpreter is currently
/// building.
pub current_instruction: Instruction,
/// The sponges will be used to simulate the verifier messages, and will
/// also be used to verify the consistency of the computation by hashing the
/// public IO.
// IMPROVEME: use a list of BigInt? It might be faster as the CPU will
// already have in its cache the values, and we can use a flat array
pub sponge_e1: [BigInt; PlonkSpongeConstants::SPONGE_WIDTH],
pub sponge_e2: [BigInt; PlonkSpongeConstants::SPONGE_WIDTH],
/// The current iteration of the IVC
pub current_iteration: u64,
/// A previous hash, encoded in 2 chunks of 128 bits.
pub previous_hash: [u128; 2],
/// The coin folding combiner will be used to generate the combinaison of
/// folding instances
pub r: BigInt,
/// Temporary registers for elliptic curve points in affine coordinates than
/// can be used to save values between instructions.
///
/// These temporary registers can be loaded into the state by using the
/// function `load_temporary_accumulators`.
///
/// The registers can, and must, be cleaned after the gadget is computed.
///
/// The values are considered as BigInt, even though we should add some
/// type. As we want to apply the KISS method, we tend to avoid adding
/// types. We leave this for future work.
///
/// Two registers are provided, represented by a tuple for the coordinates
/// (x, y).
pub temporary_accumulators: ((BigInt, BigInt), (BigInt, BigInt)),
/// Index of the values to absorb in the sponge
pub idx_values_to_absorb: usize,
// ----------------
/// The witness of the current instance of the circuit.
/// The size of the outer vector must be equal to the number of columns in the
/// circuit.
/// The size of the inner vector must be equal to the number of rows in
/// the circuit.
///
/// The layout columns/rows is used to avoid rebuilding the witness per
/// column when committing to the witness.
pub witness: Vec<Vec<BigInt>>,
// --------------
// Inputs
/// Initial input
pub z0: BigInt,
/// Current input
pub zi: BigInt,
// ---------------
// ---------------
// Only used to have type safety and think about the design at the
// type-level
pub _marker: std::marker::PhantomData<(Fp, Fq, E1, E2)>,
// ---------------
}
// The condition on the parameters for E1 and E2 is to get the coefficients and
// convert them into biguint.
// The condition SWModelParameters is to get the parameters of the curve as
// biguint to use them to compute the slope in the elliptic curve addition
// algorithm.
impl<
Fp: PrimeField,
Fq: PrimeField,
E1: ArrabbiataCurve<ScalarField = Fp, BaseField = Fq>,
E2: ArrabbiataCurve<ScalarField = Fq, BaseField = Fp>,
> InterpreterEnv for Env<Fp, Fq, E1, E2>
where
<E1::Params as ark_ec::CurveConfig>::BaseField: PrimeField,
<E2::Params as ark_ec::CurveConfig>::BaseField: PrimeField,
{
type Position = (Column, CurrOrNext);
/// For efficiency, and for having a single interpreter, we do not use one
/// of the fields. We use a generic BigInt to represent the values.
/// When building the witness, we will reduce into the corresponding field.
// FIXME: it might not be efficient as I initially thought. We do need to
// make some transformations between biguint and bigint, with an extra cost
// for allocations.
type Variable = BigInt;
fn allocate(&mut self) -> Self::Position {
assert!(self.idx_var < NUMBER_OF_COLUMNS, "Maximum number of columns reached ({NUMBER_OF_COLUMNS}), increase the number of columns");
let pos = Column::X(self.idx_var);
self.idx_var += 1;
(pos, CurrOrNext::Curr)
}
fn allocate_next_row(&mut self) -> Self::Position {
assert!(self.idx_var_next_row < NUMBER_OF_COLUMNS, "Maximum number of columns reached ({NUMBER_OF_COLUMNS}), increase the number of columns");
let pos = Column::X(self.idx_var_next_row);
self.idx_var_next_row += 1;
(pos, CurrOrNext::Next)
}
fn read_position(&self, pos: Self::Position) -> Self::Variable {
let (col, row) = pos;
let Column::X(idx) = col else {
unimplemented!("Only works for private inputs")
};
match row {
CurrOrNext::Curr => self.state[idx].clone(),
CurrOrNext::Next => self.next_state[idx].clone(),
}
}
fn allocate_public_input(&mut self) -> Self::Position {
assert!(self.idx_var_pi < NUMBER_OF_PUBLIC_INPUTS, "Maximum number of public inputs reached ({NUMBER_OF_PUBLIC_INPUTS}), increase the number of public inputs");
let pos = Column::PublicInput(self.idx_var_pi);
self.idx_var_pi += 1;
(pos, CurrOrNext::Curr)
}
fn write_column(&mut self, pos: Self::Position, v: Self::Variable) -> Self::Variable {
let (col, row) = pos;
let Column::X(idx) = col else {
unimplemented!("Only works for private inputs")
};
let modulus: BigInt = if self.current_iteration % 2 == 0 {
Fp::modulus_biguint().into()
} else {
Fq::modulus_biguint().into()
};
let v = v.mod_floor(&modulus);
match row {
CurrOrNext::Curr => {
self.state[idx].clone_from(&v);
}
CurrOrNext::Next => {
self.next_state[idx].clone_from(&v);
}
}
v
}
fn write_public_input(&mut self, pos: Self::Position, v: BigInt) -> Self::Variable {
let (col, _row) = pos;
let Column::PublicInput(idx) = col else {
unimplemented!("Only works for public input columns")
};
let modulus: BigInt = if self.current_iteration % 2 == 0 {
Fp::modulus_biguint().into()
} else {
Fq::modulus_biguint().into()
};
let v = v.mod_floor(&modulus);
self.public_state[idx].clone_from(&v);
v
}
/// Activate the gadget for the current row
fn activate_gadget(&mut self, gadget: Gadget) {
// IMPROVEME: it should be called only once per row
self.selectors[gadget as usize][self.current_row] = true;
}
fn constrain_boolean(&mut self, x: Self::Variable) {
let modulus: BigInt = if self.current_iteration % 2 == 0 {
Fp::modulus_biguint().into()
} else {
Fq::modulus_biguint().into()
};
let x = x.mod_floor(&modulus);
assert!(x == BigInt::from(0_usize) || x == BigInt::from(1_usize));
}
fn constant(&self, v: BigInt) -> Self::Variable {
v
}
fn add_constraint(&mut self, _x: Self::Variable) {
unimplemented!("Only when building the constraints")
}
fn assert_zero(&mut self, var: Self::Variable) {
assert_eq!(var, BigInt::from(0_usize));
}
fn assert_equal(&mut self, x: Self::Variable, y: Self::Variable) {
assert_eq!(x, y);
}
fn square(&mut self, pos: Self::Position, x: Self::Variable) -> Self::Variable {
let res = x.clone() * x.clone();
self.write_column(pos, res.clone());
res
}
/// Flagged as unsafe as it does require an additional range check
unsafe fn bitmask_be(
&mut self,
x: &Self::Variable,
highest_bit: u32,
lowest_bit: u32,
pos: Self::Position,
) -> Self::Variable {
let diff: u32 = highest_bit - lowest_bit;
if diff == 0 {
self.write_column(pos, BigInt::from(0_usize))
} else {
assert!(
diff > 0,
"The difference between the highest and lowest bit should be greater than 0"
);
let rht = (BigInt::from(1_usize) << diff) - BigInt::from(1_usize);
let lft = x >> lowest_bit;
let res: BigInt = lft & rht;
self.write_column(pos, res)
}
}
// FIXME: for now, we use the row number and compute the square.
// This is only for testing purposes, and having something to build the
// witness.
fn fetch_input(&mut self, pos: Self::Position) -> Self::Variable {
let x = BigInt::from(self.current_row as u64);
self.write_column(pos, x.clone());
x
}
/// Reset the environment to build the next row
fn reset(&mut self) {
// Save the current state in the witness
self.state.iter().enumerate().for_each(|(i, x)| {
self.witness[i][self.current_row].clone_from(x);
});
// We increment the row
// TODO: should we check that we are not going over the domain size?
self.current_row += 1;
// We reset the indices for the variables
self.idx_var = 0;
self.idx_var_next_row = 0;
self.idx_var_pi = 0;
// We keep track of the values we already set.
self.state.clone_from(&self.next_state);
// And we reset the next state
self.next_state = std::array::from_fn(|_| BigInt::from(0_usize));
}
/// FIXME: check if we need to pick the left or right sponge
fn coin_folding_combiner(&mut self, pos: Self::Position) -> Self::Variable {
let r = if self.current_iteration % 2 == 0 {
self.sponge_e1[0].clone()
} else {
self.sponge_e2[0].clone()
};
let (col, _) = pos;
let Column::X(idx) = col else {
unimplemented!("Only works for private columns")
};
self.state[idx].clone_from(&r);
self.r.clone_from(&r);
r
}
fn load_poseidon_state(&mut self, pos: Self::Position, i: usize) -> Self::Variable {
let state = if self.current_iteration % 2 == 0 {
self.sponge_e1[i].clone()
} else {
self.sponge_e2[i].clone()
};
self.write_column(pos, state)
}
fn get_poseidon_round_constant(
&mut self,
pos: Self::Position,
round: usize,
i: usize,
) -> Self::Variable {
let rc = if self.current_iteration % 2 == 0 {
E1::sponge_params().round_constants[round][i]
.to_biguint()
.into()
} else {
E2::sponge_params().round_constants[round][i]
.to_biguint()
.into()
};
self.write_public_input(pos, rc)
}
fn get_poseidon_mds_matrix(&mut self, i: usize, j: usize) -> Self::Variable {
if self.current_iteration % 2 == 0 {
E1::sponge_params().mds[i][j].to_biguint().into()
} else {
E2::sponge_params().mds[i][j].to_biguint().into()
}
}
unsafe fn save_poseidon_state(&mut self, x: Self::Variable, i: usize) {
if self.current_iteration % 2 == 0 {
let modulus: BigInt = Fp::modulus_biguint().into();
self.sponge_e1[i] = x.mod_floor(&modulus)
} else {
let modulus: BigInt = Fq::modulus_biguint().into();
self.sponge_e2[i] = x.mod_floor(&modulus)
}
}
// The following values are expected to be absorbed in order:
// - z0
// - z1
// - acc[0]
// - acc[1]
// - ...
// - acc[N_COL - 1]
// FIXME: for now, we will only absorb the accumulators as z0 and z1 are not
// updated yet.
unsafe fn fetch_value_to_absorb(
&mut self,
pos: Self::Position,
curr_round: usize,
) -> Self::Variable {
let (col, _) = pos;
let Column::PublicInput(_idx) = col else {
panic!("Only works for public inputs")
};
// If we are not the round 0, we must absorb nothing.
if curr_round != 0 {
self.write_public_input(pos, self.zero())
} else {
// FIXME: we must absorb z0, z1 and i!
// We multiply by 2 as we have two coordinates
let idx = self.idx_values_to_absorb;
let res = if idx < 2 * NUMBER_OF_COLUMNS {
let idx_col = idx / 2;
debug!("Absorbing the accumulator for the column index {idx_col}. After this, there will still be {} elements to absorb", NUMBER_OF_VALUES_TO_ABSORB_PUBLIC_IO - idx - 1);
if self.current_iteration % 2 == 0 {
let (pt_x, pt_y) = self.ivc_accumulator_e2[idx_col]
.get_first_chunk()
.to_coordinates()
.unwrap();
if idx % 2 == 0 {
self.write_public_input(pos, pt_x.to_biguint().into())
} else {
self.write_public_input(pos, pt_y.to_biguint().into())
}
} else {
let (pt_x, pt_y) = self.ivc_accumulator_e1[idx_col]
.get_first_chunk()
.to_coordinates()
.unwrap();
if idx % 2 == 0 {
self.write_public_input(pos, pt_x.to_biguint().into())
} else {
self.write_public_input(pos, pt_y.to_biguint().into())
}
}
} else {
unimplemented!(
"We only absorb the accumulators for now. Of course, this is not sound."
)
};
self.idx_values_to_absorb += 1;
res
}
}
unsafe fn load_temporary_accumulators(
&mut self,
pos_x: Self::Position,
pos_y: Self::Position,
side: Side,
) -> (Self::Variable, Self::Variable) {
match self.current_instruction {
Instruction::EllipticCurveScaling(i_comm, bit) => {
// If we're processing the leftmost bit (i.e. bit == 0), we must load
// the initial value into the accumulators from the environment.
// In the left accumulator, we keep track of the value we keep doubling.
// In the right accumulator, we keep the result.
if bit == 0 {
if self.current_iteration % 2 == 0 {
match side {
Side::Left => {
let pt = self.previous_commitments_e2[i_comm].get_first_chunk();
// We suppose we never have a commitment equals to the
// point at infinity
let (pt_x, pt_y) = pt.to_coordinates().unwrap();
let pt_x = self.write_column(pos_x, pt_x.to_biguint().into());
let pt_y = self.write_column(pos_y, pt_y.to_biguint().into());
(pt_x, pt_y)
}
// As it is the first iteration, we must use the point at infinity.
// However, to avoid handling the case equal to zero, we will
// use a blinder, that we will substract at the end.
// As we suppose the probability to get a folding combiner
// equals to zero is negligible, we know we have a negligible
// probability to request to compute `0 * P`.
// FIXME: ! check this statement !
Side::Right => {
let pt = self.srs_e2.h;
let (pt_x, pt_y) = pt.to_coordinates().unwrap();
let pt_x = self.write_column(pos_x, pt_x.to_biguint().into());
let pt_y = self.write_column(pos_y, pt_y.to_biguint().into());
(pt_x, pt_y)
}
}
} else {
match side {
Side::Left => {
let pt = self.previous_commitments_e1[i_comm].get_first_chunk();
// We suppose we never have a commitment equals to the
// point at infinity
let (pt_x, pt_y) = pt.to_coordinates().unwrap();
let pt_x = self.write_column(pos_x, pt_x.to_biguint().into());
let pt_y = self.write_column(pos_y, pt_y.to_biguint().into());
(pt_x, pt_y)
}
// As it is the first iteration, we must use the point at infinity.
// However, to avoid handling the case equal to zero, we will
// use a blinder, that we will substract at the end.
// As we suppose the probability to get a folding combiner
// equals to zero is negligible, we know we have a negligible
// probability to request to compute `0 * P`.
// FIXME: ! check this statement !
Side::Right => {
let pt = self.srs_e1.h;
let (pt_x, pt_y) = pt.to_coordinates().unwrap();
let pt_x = self.write_column(pos_x, pt_x.to_biguint().into());
let pt_y = self.write_column(pos_x, pt_y.to_biguint().into());
(pt_x, pt_y)
}
}
}
} else {
panic!("We should not load the temporary accumulators for the bits different than 0 when using the elliptic curve scaling. It has been deactivated since we use the 'next row'");
}
}
Instruction::EllipticCurveAddition(i_comm) => {
// FIXME: we must get the scaled commitment, not simply the commitment
let (pt_x, pt_y): (BigInt, BigInt) = match side {
Side::Left => {
if self.current_iteration % 2 == 0 {
let pt = self.ivc_accumulator_e2[i_comm].get_first_chunk();
let (x, y) = pt.to_coordinates().unwrap();
(x.to_biguint().into(), y.to_biguint().into())
} else {
let pt = self.ivc_accumulator_e1[i_comm].get_first_chunk();
let (x, y) = pt.to_coordinates().unwrap();
(x.to_biguint().into(), y.to_biguint().into())
}
}
Side::Right => {
if self.current_iteration % 2 == 0 {
let pt = self.previous_commitments_e2[i_comm].get_first_chunk();
let (x, y) = pt.to_coordinates().unwrap();
(x.to_biguint().into(), y.to_biguint().into())
} else {
let pt = self.previous_commitments_e1[i_comm].get_first_chunk();
let (x, y) = pt.to_coordinates().unwrap();
(x.to_biguint().into(), y.to_biguint().into())
}
}
};
let pt_x = self.write_column(pos_x, pt_x.clone());
let pt_y = self.write_column(pos_y, pt_y.clone());
(pt_x, pt_y)
}
_ => unimplemented!("For now, the accumulators can only be used by the elliptic curve scaling gadget and {:?} is not supported. This should be changed as soon as the gadget is implemented.", self.current_instruction),
}
}
unsafe fn save_temporary_accumulators(
&mut self,
x: Self::Variable,
y: Self::Variable,
side: Side,
) {
match side {
Side::Left => {
self.temporary_accumulators.0 = (x, y);
}
Side::Right => {
self.temporary_accumulators.1 = (x, y);
}
}
}
// It is unsafe as no constraint is added
unsafe fn is_same_ec_point(
&mut self,
pos: Self::Position,
x1: Self::Variable,
y1: Self::Variable,
x2: Self::Variable,
y2: Self::Variable,
) -> Self::Variable {
let res = if x1 == x2 && y1 == y2 {
BigInt::from(1_usize)
} else {
BigInt::from(0_usize)
};
self.write_column(pos, res)
}
fn zero(&self) -> Self::Variable {
BigInt::from(0_usize)
}
fn one(&self) -> Self::Variable {
BigInt::from(1_usize)
}
/// Inverse of a variable
///
/// # Safety
///
/// Zero is not allowed as an input.
unsafe fn inverse(&mut self, pos: Self::Position, x: Self::Variable) -> Self::Variable {
let res = if self.current_iteration % 2 == 0 {
Fp::from_biguint(&x.to_biguint().unwrap())
.unwrap()
.inverse()
.unwrap()
.to_biguint()
.into()
} else {
Fq::from_biguint(&x.to_biguint().unwrap())
.unwrap()
.inverse()
.unwrap()
.to_biguint()
.into()
};
self.write_column(pos, res)
}
fn compute_lambda(
&mut self,
pos: Self::Position,
is_same_point: Self::Variable,
x1: Self::Variable,
y1: Self::Variable,
x2: Self::Variable,
y2: Self::Variable,
) -> Self::Variable {
let modulus: BigInt = if self.current_iteration % 2 == 0 {
Fp::modulus_biguint().into()
} else {
Fq::modulus_biguint().into()
};
// If it is not the same point, we compute lambda as:
// - λ = (Y1 - Y2) / (X1 - X2)
let (num, denom): (BigInt, BigInt) = if is_same_point == BigInt::from(0_usize) {
let num: BigInt = y1.clone() - y2.clone();
let x1_minus_x2: BigInt = (x1.clone() - x2.clone()).mod_floor(&modulus);
// We temporarily store the inverse of the denominator into the
// given position.
let denom = unsafe { self.inverse(pos, x1_minus_x2) };
(num, denom)
} else {
// Otherwise, we compute λ as:
// - λ = (3X1^2 + a) / (2Y1)
let denom = {
let double_y1 = y1.clone() + y1.clone();
// We temporarily store the inverse of the denominator into the
// given position.
unsafe { self.inverse(pos, double_y1) }
};
let num = {
let a: BigInt = if self.current_iteration % 2 == 0 {
(E2::Params::COEFF_A).to_biguint().into()
} else {
(E1::Params::COEFF_A).to_biguint().into()
};
let x1_square = x1.clone() * x1.clone();
let two_x1_square = x1_square.clone() + x1_square.clone();
two_x1_square + x1_square + a
};
(num, denom)
};
let res = (num * denom).mod_floor(&modulus);
self.write_column(pos, res)
}
/// Double the elliptic curve point given by the affine coordinates
/// `(x1, y1)` and save the result in the registers `pos_x` and `pos_y`.
fn double_ec_point(
&mut self,
pos_x: Self::Position,
pos_y: Self::Position,
x1: Self::Variable,
y1: Self::Variable,
) -> (Self::Variable, Self::Variable) {
let modulus: BigInt = if self.current_iteration % 2 == 0 {
Fp::modulus_biguint().into()
} else {
Fq::modulus_biguint().into()
};
// - λ = (3X1^2 + a) / (2Y1)
// We compute λ and use an additional column as a temporary value
// otherwise, we get a constraint of degree higher than 5
let lambda_pos = self.allocate();
let denom = {
let double_y1 = y1.clone() + y1.clone();
// We temporarily store the inverse of the denominator into the
// given position.
unsafe { self.inverse(lambda_pos, double_y1) }
};
let num = {
let a: BigInt = if self.current_iteration % 2 == 0 {
(E2::Params::COEFF_A).to_biguint().into()
} else {
(E1::Params::COEFF_A).to_biguint().into()
};
let x1_square = x1.clone() * x1.clone();
let two_x1_square = x1_square.clone() + x1_square.clone();
two_x1_square + x1_square + a
};
let lambda = (num * denom).mod_floor(&modulus);
self.write_column(lambda_pos, lambda.clone());
// - X3 = λ^2 - X1 - X2
let x3 = {
let double_x1 = x1.clone() + x1.clone();
let res = lambda.clone() * lambda.clone() - double_x1.clone();
self.write_column(pos_x, res.clone())
};
// - Y3 = λ(X1 - X3) - Y1
let y3 = {
let x1_minus_x3 = x1.clone() - x3.clone();
let res = lambda.clone() * x1_minus_x3 - y1.clone();
self.write_column(pos_y, res.clone())
};
(x3, y3)
}
}
impl<
Fp: PrimeField,
Fq: PrimeField,
E1: ArrabbiataCurve<ScalarField = Fp, BaseField = Fq>,
E2: ArrabbiataCurve<ScalarField = Fq, BaseField = Fp>,
> Env<Fp, Fq, E1, E2>
{
pub fn new(
srs_log2_size: usize,
z0: BigInt,
sponge_e1: [BigInt; PlonkSpongeConstants::SPONGE_WIDTH],
sponge_e2: [BigInt; PlonkSpongeConstants::SPONGE_WIDTH],
) -> Self {
{
assert!(Fp::MODULUS_BIT_SIZE <= MAXIMUM_FIELD_SIZE_IN_BITS.try_into().unwrap(), "The size of the field Fp is too large, it should be less than {MAXIMUM_FIELD_SIZE_IN_BITS}");
assert!(Fq::MODULUS_BIT_SIZE <= MAXIMUM_FIELD_SIZE_IN_BITS.try_into().unwrap(), "The size of the field Fq is too large, it should be less than {MAXIMUM_FIELD_SIZE_IN_BITS}");
let modulus_fp = Fp::modulus_biguint();
let alpha = PlonkSpongeConstants::PERM_SBOX;
assert!(
(modulus_fp - BigUint::from(1_u64)).gcd(&BigUint::from(alpha))
== BigUint::from(1_u64),
"The modulus of Fp should be coprime with {alpha}"
);
let modulus_fq = Fq::modulus_biguint();
let alpha = PlonkSpongeConstants::PERM_SBOX;
assert!(
(modulus_fq - BigUint::from(1_u64)).gcd(&BigUint::from(alpha))
== BigUint::from(1_u64),
"The modulus of Fq should be coprime with {alpha}"
);
}
let srs_size = 1 << srs_log2_size;
let domain_fp = EvaluationDomains::<Fp>::create(srs_size).unwrap();
let domain_fq = EvaluationDomains::<Fq>::create(srs_size).unwrap();
info!("Create an SRS of size {srs_log2_size} for the first curve");
let srs_e1: SRS<E1> = {
let start = Instant::now();
let srs = SRS::create(srs_size);
debug!("SRS for E1 created in {:?}", start.elapsed());
let start = Instant::now();
srs.get_lagrange_basis(domain_fp.d1);
debug!("Lagrange basis for E1 added in {:?}", start.elapsed());
srs
};
info!("Create an SRS of size {srs_log2_size} for the second curve");
let srs_e2: SRS<E2> = {
let start = Instant::now();
let srs = SRS::create(srs_size);
debug!("SRS for E2 created in {:?}", start.elapsed());
let start = Instant::now();
srs.get_lagrange_basis(domain_fq.d1);
debug!("Lagrange basis for E2 added in {:?}", start.elapsed());
srs
};
let mut witness: Vec<Vec<BigInt>> = Vec::with_capacity(NUMBER_OF_COLUMNS);
{
let mut vec: Vec<BigInt> = Vec::with_capacity(srs_size);
(0..srs_size).for_each(|_| vec.push(BigInt::from(0_usize)));
(0..NUMBER_OF_COLUMNS).for_each(|_| witness.push(vec.clone()));
};
let mut selectors: Vec<Vec<bool>> = Vec::with_capacity(NUMBER_OF_SELECTORS);
{
let mut vec: Vec<bool> = Vec::with_capacity(srs_size);
(0..srs_size).for_each(|_| vec.push(false));
(0..NUMBER_OF_SELECTORS).for_each(|_| selectors.push(vec.clone()));
};
// Default set to the blinders. Using double to make the EC scaling happy.
let previous_commitments_e1: Vec<PolyComm<E1>> = (0..NUMBER_OF_COLUMNS)
.map(|_| PolyComm::new(vec![(srs_e1.h + srs_e1.h).into()]))
.collect();
let previous_commitments_e2: Vec<PolyComm<E2>> = (0..NUMBER_OF_COLUMNS)
.map(|_| PolyComm::new(vec![(srs_e2.h + srs_e2.h).into()]))
.collect();
// FIXME: zero will not work.
let ivc_accumulator_e1: Vec<PolyComm<E1>> = (0..NUMBER_OF_COLUMNS)
.map(|_| PolyComm::new(vec![srs_e1.h]))
.collect();
let ivc_accumulator_e2: Vec<PolyComm<E2>> = (0..NUMBER_OF_COLUMNS)
.map(|_| PolyComm::new(vec![srs_e2.h]))
.collect();
// FIXME: challenges
let challenges: Vec<BigInt> = vec![];
Self {
// -------
// Setup
domain_fp,
domain_fq,
srs_e1,
srs_e2,
// -------
// -------
// IVC only
ivc_accumulator_e1,
ivc_accumulator_e2,
previous_commitments_e1,
previous_commitments_e2,
// ------
// ------
idx_var: 0,
idx_var_next_row: 0,
idx_var_pi: 0,
current_row: 0,
state: std::array::from_fn(|_| BigInt::from(0_usize)),
next_state: std::array::from_fn(|_| BigInt::from(0_usize)),
public_state: std::array::from_fn(|_| BigInt::from(0_usize)),
selectors,
challenges,
current_instruction: IVC_STARTING_INSTRUCTION,
sponge_e1,
sponge_e2,
current_iteration: 0,
previous_hash: [0; 2],
r: BigInt::from(0_usize),
// Initialize the temporary accumulators with 0
temporary_accumulators: (
(BigInt::from(0_u64), BigInt::from(0_u64)),
(BigInt::from(0_u64), BigInt::from(0_u64)),
),
idx_values_to_absorb: 0,
// ------
// ------
// Used by the interpreter
// Used to allocate variables
// Witness builder related
witness,
// ------
// Inputs
z0: z0.clone(),
zi: z0,
// ------
_marker: std::marker::PhantomData,
}
}
/// Reset the environment to build the next iteration
pub fn reset_for_next_iteration(&mut self) {
// Rest the state for the next row
self.current_row = 0;
self.state = std::array::from_fn(|_| BigInt::from(0_usize));
self.idx_var = 0;
self.current_instruction = IVC_STARTING_INSTRUCTION;
self.idx_values_to_absorb = 0;
}
/// The blinder used to commit, to avoid committing to the zero polynomial
/// and accumulate it in the IVC.
///
/// It is part of the instance, and it is accumulated in the IVC.
pub fn accumulate_commitment_blinder(&mut self) {
// TODO
}
/// Compute the commitments to the current witness, and update the previous
/// instances.
// Might be worth renaming this function
pub fn compute_and_update_previous_commitments(&mut self) {
if self.current_iteration % 2 == 0 {
let comms: Vec<PolyComm<E1>> = self
.witness
.par_iter()
.map(|evals| {
let evals: Vec<Fp> = evals
.par_iter()
.map(|x| Fp::from_biguint(&x.to_biguint().unwrap()).unwrap())
.collect();
let evals = Evaluations::from_vec_and_domain(evals.to_vec(), self.domain_fp.d1);
self.srs_e1
.commit_evaluations_non_hiding(self.domain_fp.d1, &evals)
})
.collect();
self.previous_commitments_e1 = comms
} else {
let comms: Vec<PolyComm<E2>> = self
.witness
.iter()
.map(|evals| {
let evals: Vec<Fq> = evals
.par_iter()
.map(|x| Fq::from_biguint(&x.to_biguint().unwrap()).unwrap())
.collect();
let evals = Evaluations::from_vec_and_domain(evals.to_vec(), self.domain_fq.d1);
self.srs_e2
.commit_evaluations_non_hiding(self.domain_fq.d1, &evals)
})
.collect();
self.previous_commitments_e2 = comms
}
}
/// Compute the output of the application on the previous output
// TODO: we should compute the hash of the previous commitments, only on
// CPU?
pub fn compute_output(&mut self) {
self.zi = BigInt::from(42_usize)
}
pub fn fetch_instruction(&self) -> Instruction {
self.current_instruction
}
/// Describe the control-flow for the IVC circuit.
///
/// For a step i + 1, the IVC circuit receives as public input the following
/// values:
///
/// - The commitments to the previous witnesses.
/// - The previous challenges (α_{i}, β_{i}, γ_{i}) - the challenges β and γ
/// are used by the permutation argument where α is used by the quotient
/// polynomial, generated after also absorbing the accumulator of the
/// permutation argument.
/// - The previous accumulators (acc_1, ..., acc_17).
/// - The previous output z_i.
/// - The initial input z_0.
/// - The natural i describing the previous step.
///
/// The control flow is as follow:
/// - We compute the hash of the previous commitments and verify the hash
/// corresponds to the public input:
///
/// ```text
/// hash = H(i, acc_1, ..., acc_17, z_0, z_i)
/// ```
///
/// - We also have to check that the previous challenges (α, β, γ) have been
/// correctly generated. Therefore, we must compute the hashes of the
/// witnesses and verify they correspond to the public input.
///
/// TODO
///
/// - We compute the output of the application (TODO)
///
/// ```text
/// z_(i + 1) = F(w_i, z_i)
/// ```
///
/// - We compute the MSM (verifier)
///
/// ```text
/// acc_(i + 1)_j = acc_i + r C_j
/// ```
/// And also the cross-terms:
///
/// ```text
/// E = E1 - r T1 - r^2 T2 - ... - r^d T^d + r^(d+1) E2
/// = E1 - r (T1 + r (T2 + ... + r T^(d - 1)) - r E2)
/// ```
/// where (d + 1) is the degree of the highest gate.
///
/// - We compute the next hash we give to the next instance
///
/// ```text
/// hash' = H(i + 1, acc'_1, ..., acc'_17, z_0, z_(i + 1))
/// ```
pub fn fetch_next_instruction(&mut self) -> Instruction {
match self.current_instruction {
Instruction::Poseidon(i) => {
if i < PlonkSpongeConstants::PERM_ROUNDS_FULL - 5 {
Instruction::Poseidon(i + 5)
} else {
// FIXME: we continue absorbing
Instruction::Poseidon(0)
}
}
Instruction::EllipticCurveScaling(i_comm, bit) => {
// TODO: we still need to substract (or not?) the blinder.
// Maybe we can avoid this by aggregating them.
// TODO: we also need to aggregate the cross-terms.
// Therefore i_comm must also take into the account the number
// of cross-terms.
assert!(i_comm < NUMBER_OF_COLUMNS, "Maximum number of columns reached ({NUMBER_OF_COLUMNS}), increase the number of columns");
assert!(bit < MAXIMUM_FIELD_SIZE_IN_BITS, "Maximum number of bits reached ({MAXIMUM_FIELD_SIZE_IN_BITS}), increase the number of bits");
if bit < MAXIMUM_FIELD_SIZE_IN_BITS - 1 {
Instruction::EllipticCurveScaling(i_comm, bit + 1)
} else if i_comm < NUMBER_OF_COLUMNS - 1 {
Instruction::EllipticCurveScaling(i_comm + 1, 0)
} else {
// We have computed all the bits for all the columns
Instruction::NoOp
}
}
Instruction::EllipticCurveAddition(i_comm) => {
if i_comm < NUMBER_OF_COLUMNS - 1 {
Instruction::EllipticCurveAddition(i_comm + 1)
} else {
Instruction::NoOp
}
}
Instruction::NoOp => Instruction::NoOp,
}
}
}